Acta Psychologica Sinica ›› 2020, Vol. 52 ›› Issue (8): 933-945.doi: 10.3724/SP.J.1041.2020.00933
• Reports of Empirical Studies • Previous Articles Next Articles
ZHANG Manman, ZANG Chuanli(), XU Yufeng, BAI Xuejun(), YAN Guoli
Received:
2019-11-21
Published:
2020-08-25
Online:
2020-06-28
Contact:
ZANG Chuanli,BAI Xuejun
E-mail:zangchuanli@163.com;bxuejun@126.com
Supported by:
ZHANG Manman, ZANG Chuanli, XU Yufeng, BAI Xuejun, YAN Guoli. (2020). The influence of foveal processing load on parafoveal preview of fast and slow readers during Chinese reading. Acta Psychologica Sinica, 52(8), 933-945.
Add to citation manager EndNote|Ris|BibTeX
URL: https://journal.psych.ac.cn/acps/EN/10.3724/SP.J.1041.2020.00933
Reading group | Number of judged sentences | Number of correctly judged sentences | Accuracy (%) | Average reaction time (ms) |
---|---|---|---|---|
Fast readers | 130 (9) | 125 (10) | 96 (2.6) | 1380 (94) |
Slow readers | 73 (6) | 70 (6) | 96 (2.3) | 2500 (244) |
Table 1 Means and standard deviations (in parentheses) of judging sentences for fast readers and slow readers in the 3-minute reading task
Reading group | Number of judged sentences | Number of correctly judged sentences | Accuracy (%) | Average reaction time (ms) |
---|---|---|---|---|
Fast readers | 130 (9) | 125 (10) | 96 (2.6) | 1380 (94) |
Slow readers | 73 (6) | 70 (6) | 96 (2.3) | 2500 (244) |
Foveal load | Word frequency (per million) | Number of strokes | Sentence naturalness | Predictability of the pre-target words (%) | Predictability of the target words (%) |
---|---|---|---|---|---|
Low load | 242.9 (295.7) | 16.8 (1.8) | 4.0 (0.3) | 1.3 (3.7) | 2.3 (4.9) |
High load | 0.4 (0.3) | 16.6 (1.9) | 3.9 (0.3) | 0.6 (2.5) | 4.5 (7.7) |
Table 2 Descriptive information of the pre-target words, the target words and sentences in different foveal load conditions (standard deviation are in parentheses)
Foveal load | Word frequency (per million) | Number of strokes | Sentence naturalness | Predictability of the pre-target words (%) | Predictability of the target words (%) |
---|---|---|---|---|---|
Low load | 242.9 (295.7) | 16.8 (1.8) | 4.0 (0.3) | 1.3 (3.7) | 2.3 (4.9) |
High load | 0.4 (0.3) | 16.6 (1.9) | 3.9 (0.3) | 0.6 (2.5) | 4.5 (7.7) |
Figure 1. Examples of sentences under the four conditions before and after display changes in the boundary paradigm Note. “挑战/诱捕” are the pre-target words, “熊” is the target word, the dotted line indicates the location of the invisible boundary, * represents the two continuous fixation points before and after the eye crossing the boundary.
Eye movement measures | Fast readers | Slow readers |
---|---|---|
Total reading time (ms) | 3013 (881) | 4911 (1977) |
Average fixation time (ms) | 221 (23) | 239 (20) |
Number of fixations | 13.5 (3.6) | 20.6 (8.3) |
Number of forward saccades | 9.3 (2.4) | 13.6 (5.1) |
Number of regressive saccades | 3.4 (1.1) | 5.5 (3.1) |
Forward saccade length (character) | 2.5 (0.6) | 2.0 (0.6) |
Reading speed (character/minute) | 458 (139) | 299 (114) |
Table 3 Means with standard deviations in parentheses of global measures for fast and slow readers
Eye movement measures | Fast readers | Slow readers |
---|---|---|
Total reading time (ms) | 3013 (881) | 4911 (1977) |
Average fixation time (ms) | 221 (23) | 239 (20) |
Number of fixations | 13.5 (3.6) | 20.6 (8.3) |
Number of forward saccades | 9.3 (2.4) | 13.6 (5.1) |
Number of regressive saccades | 3.4 (1.1) | 5.5 (3.1) |
Forward saccade length (character) | 2.5 (0.6) | 2.0 (0.6) |
Reading speed (character/minute) | 458 (139) | 299 (114) |
Eye movement measures | Reading group effect (slow vs. fast) | ||||
---|---|---|---|---|---|
b | SE | t | p | 95% CI | |
Total reading time | 0.45 | 0.09 | 4.96 | < 0.001 | [0.27, 0.63] |
Average fixation time | 0.08 | 0.03 | 3.21 | < 0.01 | [0.03, 0.13] |
Total fixation counts | 0.37 | 0.09 | 4.28 | < 0.001 | [0.20, 0.54] |
Number of forward saccades | 0.34 | 0.09 | 3.91 | < 0.001 | [0.17, 0.52] |
Forward saccade length | -0.23 | 0.07 | -3.48 | <0.01 | [-0.36, -0.10] |
Number of backward saccades | 0.39 | 0.12 | 3.30 | <0.01 | [0.16, 0.62] |
Reading speed | -0.46 | 0.09 | -4.98 | <0.001 | [-0.64, -0.28] |
Table 4 Fixed effect estimates s of global measures for fast and slow readers
Eye movement measures | Reading group effect (slow vs. fast) | ||||
---|---|---|---|---|---|
b | SE | t | p | 95% CI | |
Total reading time | 0.45 | 0.09 | 4.96 | < 0.001 | [0.27, 0.63] |
Average fixation time | 0.08 | 0.03 | 3.21 | < 0.01 | [0.03, 0.13] |
Total fixation counts | 0.37 | 0.09 | 4.28 | < 0.001 | [0.20, 0.54] |
Number of forward saccades | 0.34 | 0.09 | 3.91 | < 0.001 | [0.17, 0.52] |
Forward saccade length | -0.23 | 0.07 | -3.48 | <0.01 | [-0.36, -0.10] |
Number of backward saccades | 0.39 | 0.12 | 3.30 | <0.01 | [0.16, 0.62] |
Reading speed | -0.46 | 0.09 | -4.98 | <0.001 | [-0.64, -0.28] |
Eye movement measures | Reading group | Low-identical | Low-pseudocharacter | High-identical | High-pseudocharacter |
---|---|---|---|---|---|
First fixation duration (ms) | Fast | 219(47) | 207 (33) | 229 (42) | 245 (68) |
Slow | 245(36) | 250 (39) | 258 (44) | 253 (41) | |
Single fixation duration (ms) | Fast | 216 (47) | 202 (36) | 231 (46) | 248 (70) |
Slow | 248 (43) | 257 (44) | 263 (55) | 246 (54) | |
Gaze duration (ms) | Fast | 237 (52) | 243 (62) | 258 (68) | 283 (90) |
Slow | 317 (78) | 329 (66) | 387 (108) | 379 (102) | |
Forward saccade length (characters) | Fast | 2.62 (0.97) | 2.29 (0.72) | 2.40 (0.82) | 2.14 (0.75) |
Slow | 1.99 (0.54) | 1.73 (0.56) | 1.82 (0.82) | 1.57 (0.60) |
Table 5 Eye movement measures (standard deviation in parentheses) at the pre-target words for fast readers and slow readers under different conditions
Eye movement measures | Reading group | Low-identical | Low-pseudocharacter | High-identical | High-pseudocharacter |
---|---|---|---|---|---|
First fixation duration (ms) | Fast | 219(47) | 207 (33) | 229 (42) | 245 (68) |
Slow | 245(36) | 250 (39) | 258 (44) | 253 (41) | |
Single fixation duration (ms) | Fast | 216 (47) | 202 (36) | 231 (46) | 248 (70) |
Slow | 248 (43) | 257 (44) | 263 (55) | 246 (54) | |
Gaze duration (ms) | Fast | 237 (52) | 243 (62) | 258 (68) | 283 (90) |
Slow | 317 (78) | 329 (66) | 387 (108) | 379 (102) | |
Forward saccade length (characters) | Fast | 2.62 (0.97) | 2.29 (0.72) | 2.40 (0.82) | 2.14 (0.75) |
Slow | 1.99 (0.54) | 1.73 (0.56) | 1.82 (0.82) | 1.57 (0.60) |
Eye movement measures | Reading group | Low-identical | Low-pseudocharacter | High-identical | High-pseudocharacter |
---|---|---|---|---|---|
Skipping probability | Fast | 0.60 (0.27) | 0.44 (0.22) | 0.52 (0.23) | 0.45 (0.25) |
Slow | 0.44 (0.24) | 0.32 (0.25) | 0.38 (0.22) | 0.23 (0.28) | |
First fixation duration (ms) | Fast | 245 (72) | 272 (53) | 234 (57) | 269 (78) |
Slow | 250 (51) | 312 (65) | 260 (53) | 292 (78) | |
Single fixation duration (ms) | Fast | 249 (73) | 286 (74) | 231 (56) | 272 (78) |
Slow | 262 (51) | 315 (75) | 252 (58) | 316 (76) | |
Gaze duration (ms) | Fast | 252 (73) | 296 (70) | 235 (61) | 288 (72) |
Slow | 267 (53) | 326 (70) | 273 (80) | 336 (84) |
Table 6 Eye movement measures at the target words for fast readers and slow readers under different conditions (standard deviation in parentheses)
Eye movement measures | Reading group | Low-identical | Low-pseudocharacter | High-identical | High-pseudocharacter |
---|---|---|---|---|---|
Skipping probability | Fast | 0.60 (0.27) | 0.44 (0.22) | 0.52 (0.23) | 0.45 (0.25) |
Slow | 0.44 (0.24) | 0.32 (0.25) | 0.38 (0.22) | 0.23 (0.28) | |
First fixation duration (ms) | Fast | 245 (72) | 272 (53) | 234 (57) | 269 (78) |
Slow | 250 (51) | 312 (65) | 260 (53) | 292 (78) | |
Single fixation duration (ms) | Fast | 249 (73) | 286 (74) | 231 (56) | 272 (78) |
Slow | 262 (51) | 315 (75) | 252 (58) | 316 (76) | |
Gaze duration (ms) | Fast | 252 (73) | 296 (70) | 235 (61) | 288 (72) |
Slow | 267 (53) | 326 (70) | 273 (80) | 336 (84) |
[1] |
Angele B., Slattery T. J., & Rayner K. (2016). Two stages of parafoveal processing during reading: Evidence from a display change detection task. Psychonomic Bulletin & Review, 23, 1241-1249.
doi: 10.3758/s13423-015-0995-0 URL pmid: 26769246 |
[2] |
Ashby J., Rayner K., & Clifton C. (2005). Eye movements of highly skilled and average readers: Differential effects of frequency and predictability. Quarterly Journal of Experimental Psychology Section A, 58(6), 1065-1086.
doi: 10.1080/02724980443000476 URL |
[3] | Ashby J., Yang J. M., Evans K. H., & Rayner K. (2012). Eye movements and the perceptual span in silent and oral reading. Attention, Perception, & Psychophysics, 74(4), 634-640. |
[4] | Baayen R. H., Davidson D. J., & Bates D. M. (2008). Mixed-effects modeling with crossed random effects for subjects and items. Journal of Memory and Language, 59(4), 390-412. |
[5] | Bai X. J., Liu J., Zang C. L., Zhang M. M., Guo X. F., & Yan G. L. (2011). The advance of parafoveal preview effects in Chinese reading. Advances in Psychological Science, 19(12), 1721-1729. |
[6] | Barr D. J., Levy R., Scheepers C., & Tily H. J. (2013). Random effects structure for confirmatory hypothesis testing: Keep it maximal. Journal of Memory and Language, 68(3), 255-278. |
[7] | Bates D., Mächler M., Bolker B., & Walker S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67, 1-48. |
[8] | Brothers T., Hoversten L. J., & Traxler M. J. (2017). Looking back on reading ahead: No evidence for lexical parafoveal-on-foveal effects. Journal of Memory and Language, 96, 9-22. |
[9] |
Chace K. H., Rayner K., & Well A. D. (2005). Eye movements and phonological parafoveal preview: Effects of reading skill. Canadian Journal of Experimental Psychology, 59(3), 209-217.
doi: 10.1037/h0087476 URL pmid: 16248500 |
[10] | Clifton C., Ferreira F., Henderson J. M., Inhoff A. W., Liversedge S. P., Reichle E. D., & Schotter E. R. (2016). Eye movements in reading and information processing: Keith Rayner’s 40 year legacy. Journal of Memory and Language, 86, 1-19. |
[11] | Drieghe D. (2011). Parafoveal-on-foveal effects in eye movements during reading. In S. P. Liversedge, I. D. Gilchrist, & S. Everling (Eds.), Oxford library of psychology. The Oxford handbook on eye movements (pp. 839-855). New York, NY, US: Oxford University Press. |
[12] |
Drieghe D., Rayner K., & Pollatsek A. (2005). Eye movements and word skipping during reading revisited. Journal of Experimental Psychology: Human Perception and Performance, 31, 954-969.
doi: 10.1037/0096-1523.31.5.954 URL pmid: 16262491 |
[13] | Engbert R., & Kliegl R. (2011). Parallel graded attention models of reading. In S. P. Liversedge, I. D. Gilchrist, & S. Everling (Eds.), Oxford library of psychology. The Oxford handbook of eye movements (pp.787-800). New York, NY, US: Oxford University Press. |
[14] |
Engbert R., Nuthmann A., Richter E. M., & Kliegl R. (2005). SWIFT: A dynamical model of saccade generation during reading. Psychological Review, 112, 777-813.
doi: 10.1037/0033-295X.112.4.777 URL pmid: 16262468 |
[15] |
Frömer R., Dimigen O., Niefind F., Krause N., Kliegl R., & Sommer W. (2015). Are individual differences in reading speed related to extrafoveal visual acuity and crowding?. PloS One, 10(3), e0121986.
doi: 10.1371/journal.pone.0121986 URL pmid: 25789812 |
[16] |
Hawelka S., Schuster S., Gagl B., & Hutzler F. (2015). On forward inferences of fast and slow readers: An eye movement study. Scientific Reports, 5, 8432.
doi: 10.1038/srep08432 URL pmid: 25678030 |
[17] |
Henderson J. M., & Ferreira F. (1990). Effects of foveal processing difficulty on the perceptual span in reading: Implications for attention and eye movement control. Journal of Experimental Psychology: Learning, Memory, and Cognition, 16(3), 417-429.
URL pmid: 2140401 |
[18] |
Kuperman V., & Van Dyke J. A. (2011). Effects of individual differences in verbal skills on eye-movement patterns during sentence reading. Journal of Memory and Language, 65(1), 42-73.
doi: 10.1016/j.jml.2011.03.002 URL pmid: 21709808 |
[19] | Li X. S., Zang C. L., Liversedge S.P., & Pollatsek A. (2015). The role of words in Chinese reading. In Pollatsek, A., & Treiman, R. (Eds), Oxford library of psychology. The Oxford handbook of reading (pp. 232-244). New York, NY, US: Oxford University Press. |
[20] | Li Y. G., Huang R., Hua H. M., & Li X. S. (2017). How do readers select the saccade targets?. Advances in Psychological Science, 25(3), 404-412. |
[21] |
Liu Y. P., Reichle E. D., & Li X. S. (2015). Parafoveal processing affects outgoing saccade length during the reading of Chinese. Journal of Experimental Psychology: Learning, Memory, and Cognition, 41(4), 1229-1236.
doi: 10.1037/xlm0000057 URL pmid: 25181495 |
[22] |
Liversedge S. P., Drieghe D., Li X., Yan G. L., Bai X. J., & Hyönä J. (2016). Universality in eye movements and reading: A trilingual investigation. Cognition, 147, 1-20.
doi: 10.1016/j.cognition.2015.10.013 URL pmid: 26605961 |
[23] |
Marx C., Hawelka S., Schuster S., & Hutzler F. (2017). Foveal processing difficulty does not affect parafoveal preprocessing in young readers. Scientific Reports, 7, 41602.
doi: 10.1038/srep41602 URL pmid: 28139718 |
[24] | Morey R. D., Rouder J. N., Jamil T., Urbanek S., Forner K., & Ly A. (2018). BayesFactor: Computation of Bayes factors for common designs. Retrieved from https://CRAN.R-project.org/package=BayesFactor |
[25] | R Core Team. (2018). R: A language and environment for statistical computing. Vienna, Austria: R foundation for statistical computing. Retrieved from https://www.r-project.org/ |
[26] |
Rayner K. (1975). The perceptual span and peripheral cues in reading. Cognitive Psychology, 7(1), 65-81.
doi: 10.1016/0010-0285(75)90005-5 URL |
[27] |
Rayner K. (1986). Eye movements and the perceptual span in beginning and skilled readers. Journal of Experimental Child Psychology, 41(2), 211-236.
doi: 10.1016/0022-0965(86)90037-8 URL pmid: 3701249 |
[28] |
Rayner K. (2009). The Thirty-fifth Sir Frederick Bartlett Lecture: Eye movements and attention in reading, scene perception, and visual search. Quarterly Journal of Experimental Psychology, 62(8), 1457-1506.
doi: 10.1080/17470210902816461 URL |
[29] |
Rayner K., Schotter E. R., Masson M. E., Potter M. C., & Treiman R. (2016). So much to read, so little time: How do we read, and can speed reading help?. Psychological Science in the Public Interest, 17(1), 4-34.
doi: 10.1177/1529100615623267 URL pmid: 26769745 |
[30] |
Rayner K., Slattery T. J., & Bélanger N. N. (2010). Eye movements, the perceptual span, and reading speed. Psychonomic Bulletin & Review, 17(6), 834-839.
doi: 10.3758/PBR.17.6.834 URL pmid: 21169577 |
[31] |
Rayner K., Yang J. M., Schuett S., & Slattery T. J. (2013). Eye movements of older and younger readers when reading unspaced text. Experimental Psychology, 60, 354-361.
doi: 10.1027/1618-3169/a000207 URL pmid: 23681016 |
[32] | Reichle E. D. (2011). Serial-attention models of reading. In S. P. Liversedge, I. D. Gilchrist, & S. Everling (Eds.), Oxford library of psychology. The Oxford handbook of eye movements (pp. 767-786). New York, NY, US: Oxford University Press. |
[33] |
Reichle E. D., & Drieghe D. (2013). Using E-Z Reader to examine word skipping during reading. Journal of Experimental Psychology: Learning, Memory, and Cognition, 39(4), 1311-1320.
doi: 10.1037/a0030910 URL pmid: 23206168 |
[34] |
Reichle E. D., Pollatsek A., Fisher D. L., & Rayner K. (1998). Toward a model of eye movement control in reading. Psychological Review, 105(1), 125-157.
doi: 10.1037/0033-295x.105.1.125 URL pmid: 9450374 |
[35] |
Risse S. (2014). Effects of visual span on reading speed and parafoveal processing in eye movements during sentence reading. Journal of Vision, 14(8), 1-13.
doi: 10.1167/14.8.1 URL pmid: 24986186 |
[36] | Schotter E. R., Angele B., & Rayner K. (2012). Parafoveal processing in reading. Attention, Perception, & Psychophysics, 74(1), 5-35. |
[37] | Taylor J. N., & Perfetti C. A. (2016). Eye movements reveal readers’ lexical quality and reading experience. Reading and Writing, 29(6), 1069-1103. |
[38] |
Vasilev M. R., Slattery T. J., Kirkby J. A., & Angele B. (2018). What are the costs of degraded parafoveal previews during silent reading?. Journal of Experimental Psychology: Learning, Memory, and Cognition, 44(3), 371-386.
doi: 10.1037/xlm0000433 URL pmid: 28661179 |
[39] | Veldre A., & Andrews S. (2014). Lexical quality and eye movements: Individual differences in the perceptual span of skilled adult readers. Quarterly Journal of Experimental Psychology, 67(4), 703-727. |
[40] |
Veldre A., & Andrews S. (2015a). Parafoveal lexical activation depends on skilled reading proficiency. Journal of Experimental Psychology: Learning, Memory, and Cognition, 41(2), 586-595.
doi: 10.1037/xlm0000039 URL pmid: 25068856 |
[41] |
Veldre A., & Andrews S. (2015b). Parafoveal preview benefit is modulated by the precision of skilled readers’ lexical representations. Journal of Experimental Psychology: Human Perception and Performance, 41(1), 219-232.
doi: 10.1037/xhp0000017 URL pmid: 25384238 |
[42] | Veldre A., & Andrews S. (2018). How does foveal processing difficulty affect parafoveal processing during reading? Journal of Memory and Language, 103, 74-90. |
[43] |
Wang A. P., Zhou W., Shu H., & Yan M. (2014). Reading proficiency modulates parafoveal processing efficiency: Evidence from reading Chinese as a second language. Acta Psychologica, 152, 29-33.
doi: 10.1016/j.actpsy.2014.07.010 URL pmid: 25103417 |
[44] |
Wang Y. S., Zhao B. J., Chen M. J., Li X., Yan G. L., & Bai X. J. (2018). Influence of the frequency of fixated words and the number of strokes of parafoveal words on saccadic target selection in Chinese reading. Acta Psychologica Sinica, 50(12), 1336-1345.
doi: 10.3724/SP.J.1041.2018.01336 URL |
[45] |
White S. J., Rayner K., & Liversedge S. P. (2005). Eye movements and the modulation of parafoveal processing by foveal processing difficulty: A reexamination. Psychonomic Bulletin & Review, 12, 891-896.
doi: 10.3758/bf03196782 URL pmid: 16524007 |
[46] | Yan G. L., Li S. N., Wang Y. L., Liu M., & Wang L. H. (2018). The perceptual span of Chinese second graders. Journal of Psychological Science, 41(4), 849-855. |
[47] | Yan G. L., Wang L. H., Wu J. G., & Bai X. J. (2011). The perceptual span and parafoveal preview effect of fifth graders and college students: An eye movement study. Acta Psychologica Sinica, 43(3), 249-263. |
[48] | Yan G. L., Xiong J. P., & Bai X. J. (2008). Eye movement studies on the perceptual span of Chinese reading by fifth graders. Psychological Development and Education, 24(1), 72-77. |
[49] | Yan G. L., Xiong J. P., Zang C. L., Yu L. L., Cui L., & Bai X. J. (2013). Review of eye-movement measures in reading research. Advances in Psychological Science, 21(4), 589-605. |
[50] |
Yan M. (2015). Visually complex foveal words increase the amount of parafoveal information acquired. Vision research, 111, 91-96.
doi: 10.1016/j.visres.2015.03.025 URL pmid: 25911574 |
[51] |
Zang C. L., Fu Y., Bai X. J., Yan G. L., & Liversedge S. P. (2018). Investigating word length effects in Chinese reading. Journal of Experimental Psychology: Human Perception and Performance, 44(12), 1831-1841.
doi: 10.1037/xhp0000589 URL pmid: 30475051 |
[52] |
Zang C. L., Zhang M. M., Bai X. J., Yan G. L., Paterson K. B., & Liversedge S. P. (2016). Effects of word frequency and visual complexity on eye movements of young and older Chinese readers. Quarterly Journal of Experimental Psychology, 69(7), 1409-1425.
doi: 10.1080/17470218.2015.1083594 URL |
[53] |
Zhang M. M., Liversedge S. P., Bai X. J., Yan G. L., & Zang C. L. (2019). The influence of foveal lexical processing load on parafoveal preview and saccadic targeting during Chinese reading. Journal of Experimental Psychology: Human Perception and Performance, 45(6), 812-825.
doi: 10.1037/xhp0000644 URL pmid: 31120302 |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||