ISSN 0439-755X
CN 11-1911/B
主办:中国心理学会
   中国科学院心理研究所
出版:科学出版社

心理学报, 2020, 52(8): 933-945 doi: 10.3724/SP.J.1041.2020.00933

研究报告

快速与慢速读者的中央凹加工对副中央凹预视的影响

张慢慢, 臧传丽,, 徐宇峰, 白学军,, 闫国利

教育部人文社会科学重点研究基地天津师范大学心理与行为研究院, 天津师范大学心理学部, “学生心理发展与学习”天津市高校社会科学实验室, 天津 300387

The influence of foveal processing load on parafoveal preview of fast and slow readers during Chinese reading

ZHANG Manman, ZANG Chuanli,, XU Yufeng, BAI Xuejun,, YAN Guoli

Key Research Base of Humanities and Social Sciences of the Ministry of Education, Academy of Psychology and Behavior, Tianjin Normal University, Faculty of Psychology, Tianjin Normal University, Tianjin Social Science Laboratory of Students' Mental Development and Learning, Tianjin 300387, China

通讯作者: 臧传丽, E-mail:zangchuanli@163.com;白学军, E-mail:bxuejun@126.com

收稿日期: 2019-11-21   网络出版日期: 2020-08-25

基金资助: * 国家自然科学基金项目.  31800920
国家自然科学基金项目.  31571122
天津市人才发展特殊支持计划青年拔尖人才项目; 天津师范大学杰出青年创新团队项目.  52WZ1702
教育部“长江学者”奖励计划特聘教授; 教育部人文社会科学重点研究基地重大项目.  18JJD190001

Received: 2019-11-21   Online: 2020-08-25

摘要

在中文阅读中, 预视量是否存在个体差异及其是否受中央凹加工调节, 尚不清楚。本研究采用眼动技术和边界范式, 通过操纵前目标词的加工负荷(高、低)与目标词的预视(相同、假字)来考察快速与慢速读者的中央凹加工对副中央凹预视的影响。结果显示, 中央凹负荷主效应显著; 快速读者对低负荷词的首次和单次注视短于高负荷词, 而慢速读者对两种负荷词的首次和单次注视无差异, 表明快速读者能更快利用词汇特性加工中央凹词汇。预视主效应显著, 即与假字预视相比, 相同预视使两组读者都对目标词的注视更短、向前眼跳更长、跳读率更高; 而且该效应与中央凹负荷没有交互作用。这表明快速读者与慢速读者提取了等量预视, 且不受其中央凹加工的调节。E-Z读者模型和SWIFT模型不能完全解释当前结果。

关键词: 快速读者 ; 慢速读者 ; 副中央凹预视 ; 中央凹加工负荷 ; 中文阅读

Abstract

Parafoveal pre-processing contributes to highly efficient reading for skilled readers. Research has demonstrated that high-skilled or fast readers extract more parafoveal information from a wider parafoveal region more efficiently compared to less-skilled or slow readers. It is argued that individual differences in parafoveal preview are due to high-skilled or fast readers focusing less of their attention on foveal word processing than less-skilled or slow readers. In other words, foveal processing difficulty might modulate an individual's amount of parafoveal preview (i.e., Foveal Load Hypothesis). However, few studies have provided evidence in support of this claim. Therefore, the present study aimed to explore whether and how foveal lexical processing load modulates parafoveal preview of readers with different reading speeds (a commonly used measurement of reading skill or reading proficiency).

By using a three-minute reading comprehension task, 28 groups of fast and slow readers were selected from 300 participants (234 were valid) according to their reading speed in the current study. Participants were then asked to read sentences while their eye movements were recorded using an Eyelink 1000 eyetracker. Each experimental sentence contained a pre-target word that varied in lexical frequency to manipulate foveal processing load (low load: high frequency; high load: low frequency), and a target word manipulated for preview (identical or pseudo-character) within the boundary paradigm.

Global analyses showed that, although fast readers had similar accuracy of reading comprehension to slow readers, they had shorter reading times, longer forward saccades, made less fixations and regressions, and had higher reading speeds compared to slow readers, indicating that our selection of fast and slow readers was highly effective. The pre-target word analyses showed that there was a main effect of word frequency on first-pass reading times, indicating an effective manipulation of foveal load. Additionally, there were significant interactions of Reading Group × Word Frequency, and Reading Group × Word Frequency × Parafoveal Preview for first fixation and single fixation durations, showing that the frequency effects were reliable for fast readers rather than for slow readers with pseudocharacter previews, while the frequency effects were similar for the two groups with identical previews. However, the target word analyses did not show any three-way or two-way interactions for the first-pass reading times as well as for skipping probability. To be specific, the first-pass reading times were shorter at the target word with identical previews in relation to pseudocharacter previews (i.e. preview benefit effects); importantly, similar size effects occurred for both fast readers and slow readers.

The findings in the present study suggest that lexical information from the currently fixated word can be extracted and can be used quickly for fast readers, while such information is used later for slow readers. This, however, does not result in more (or less) preview benefit for fast readers in relation to slow readers. In conclusion, foveal lexical processing does not modulate preview benefit for fast and slow readers, and the present results provide no support for the Foveal Load Hypothesis. Our findings of foveal load effects on parafoveal preview for fast and slow readers cannot be readily explained by current computational models (e.g., E-Z Reader model and SWIFT model).

Keywords: fast readers ; slow readers ; parafoveal preview ; foveal processing load ; Chinese reading.

PDF (713KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

张慢慢, 臧传丽, 徐宇峰, 白学军, 闫国利. 快速与慢速读者的中央凹加工对副中央凹预视的影响. 心理学报[J], 2020, 52(8): 933-945 doi:10.3724/SP.J.1041.2020.00933

ZHANG Manman, ZANG Chuanli, XU Yufeng, BAI Xuejun, YAN Guoli. The influence of foveal processing load on parafoveal preview of fast and slow readers during Chinese reading. Acta Psychologica Sinica[J], 2020, 52(8): 933-945 doi:10.3724/SP.J.1041.2020.00933

1 引言

1.1 副中央凹预视的个体差异

在自然阅读中, 读者在一次注视中提取有效信息的视觉区域包括中央凹区和副中央凹区。中央凹区即当前正在注视的区域, 视敏度最高, 提取的视觉信息最精细。由于视敏度显著下降, 从副中央凹词汇提取的信息(即预视)比较有限, 包括语音、正字法和亚词汇信息等(可能还有语义信息), 这些信息会减少读者对这些词汇的加工时间, 产生预视效益(preview benefit; 白学军 等, 2011; Rayner, 2009), 也会促进眼跳目标选择(李玉刚, 黄忍, 滑慧敏, 李兴珊, 2017; Liu, Reichle, & Li, 2015; 王永胜 等, 2018)。从整个阅读过程来看, 预视提升了阅读效率(Rayner, 2009; Schotter, Angele, & Rayner, 2012)。在熟练阅读的个体差异研究中, 比较受关注的一个问题是, 预视是否及如何随个体阅读能力不同而变化?

以往研究, 有的以阅读测验分数来衡量个体阅读能力(如, Ashby, Rayner, & Clifton, 2005; Chace, Rayner, & Well, 2005; Veldre & Andrews, 2015a, 2015b), 也有的直接以有效阅读理解下的阅读速度代替阅读测验分数来区分个体阅读能力(如, Frömer et al., 2015; Rayner, Slattery, & Bélanger, 2010; Risse, 2014)。在有效阅读下, 阅读速度越快表明阅读效率越高(Ashby et al., 2005; Rayner et al., 2010)。因此, 阅读速度被认为是反映阅读能力的一个综合指标(Ashby et al., 2005; Rayner, Schotter, Masson, Potter, & Treiman, 2016)。

从空间维度来看, 预视的个体差异首先表现在预视范围上。Rayner等人(2010)对比了快速与慢速读者的知觉广度。结果发现, 慢速读者的预视范围为1个词, 快速读者的则大于2个词。Ashby, Yang, Evans和Rayner (2012)进一步发现, 当有效预视范围增大时, 快速读者获得的预视效益远大于慢速读者。以阅读能力区分个体差异时, 也发现类似结果:当预视范围增大时, 与阅读能力低的读者相比, 阅读能力高的读者提取的预视信息更多, 获得的预视效益更大, 阅读速度提高幅度更大(Veldre & Andrews, 2014)。这些结果表明, 阅读能力高或阅读速度快与更大的预视范围有关。

从时间维度来看, 预视的个体差异还体现在预视程度上。Chace等人(2005)比较了一般熟练读者与阅读能力低的读者的预视类型。结果发现, 熟练读者获得的语音预视效益更大, 而阅读能力低的读者无法从副中央凹提取语音信息, 不能从有效预视中获益。Veldre和Andrews (2015a, 2015b)考察了不同阅读能力读者对副中央凹正字法信息加工的情况, 结果发现, 阅读能力高的读者对副中央凹正字法信息的提取更早、更快且更精确; 准确的正字法预视使阅读能力高的读者获得的预视效益或预视量更大, 无效预视则严重干扰他们的词汇加工。由此可推测, 阅读能力高的读者之所以阅读速度更快, 是因为他们对预视信息提取速度更快、利用程度更高。

1.2 中央凹词汇加工对副中央凹预视的影响及其个体差异

在中央凹词汇加工方面, 以往通常选择词频来考察词汇加工情况(Clifton et al., 2016; Rayner, 2009), 这是因为影响词汇加工难易的首要属性是词频。高频词加工更容易、加工负荷低, 而低频词加工更难、加工负荷高。对拼音文字阅读的研究显示, 阅读能力较低的读者对低频词的加工时间更长, 表现出更大的词频效应(Ashby et al., 2005); 而阅读能力高的读者对低频词的加工时间更短, 词频效应更小(Kuperman & Van Dyke, 2011; Taylor & Perfetti, 2016), 说明了阅读能力高的读者对中央凹的词汇加工效率更高。

研究者推测, 阅读能力低的读者之所以阅读速度慢, 是因为他们对中央凹的词汇加工耗费了更多的注意资源、加工效率更低, 只有很少的注意资源可以提取副中央凹信息; 而阅读能力高的读者之所以阅读更快, 是因为他们对中央凹词汇的加工效率高, 使得他们有更多的注意资源来提取更多和更广的预视(Ashby et al., 2012; Chace et al., 2005; Rayner, 1986; Veldre & Andrews, 2015b)。换言之, 副中央凹预视的个体差异可能只是个体中央凹词汇加工差异的间接产物(Rayner, 1986; Veldre & Andrews, 2015b), 这是基于“中央凹负荷假说” (Foveal Load Hypothesis: 读者提取的预视会随着中央凹加工负荷或加工难度的增大而减少, Henderson & Ferreira, 1990)作出的解释。Veldre和Andrews (2015b)检验了这种可能, 他们考察了中央凹加工负荷(高频:低负荷, 低频:高负荷)对高、低阅读能力读者提取预视类型(词长和预视准确性)的影响。结果显示, 在首次注视和单次注视时间上, 当中央凹加工负荷低时, 高、低阅读能力的读者获得的预视量一样, 而当中央凹加工负荷高时, 阅读能力高的读者提取的预视量更大。相反的是, Risse (2014)的研究发现慢速读者比快速读者获得的预视量更大。Risse基于词汇平行加工的观点(具体见1.3部分)解释为, 快速读者的词汇加工已达到自动化水平, 对中央凹词的注视时间在最低阈限内, 没有额外时间来预视, 这种极高水平的词汇加工效率可以弥补他们预视少的不足; 慢速读者对中央凹词的注视需要更长时间, 有更多的机会提取预视。尽管Risse没有直接操纵中央凹负荷, 但基于她的解释可预测, 在中央凹负荷高时, 与快速读者相比, 慢速读者对中央凹词注视更长,可以提取的预视更多。综上, 关于预视的个体差异研究还没有一致结论。

1.3 副中央凹预视个体差异的理论解释

关于预视程度的个体差异, 当前阅读眼动控制的两大模型——E-Z读者模型与SWIFT模型作出了不同解释。E-Z读者模型认为, 词汇加工是按照序列逐个进行的, 注意每次只分布在一个词上。对当前注视词(用词n表示)的熟悉性验证(L1)后, 眼球运动系统开始计划下一次眼跳; 词汇通达(L2)后, 且在下一次眼跳开始执行前, 注意开始转移到下一个词n+1上, 副中央凹预视开始(Reichle, 2011; Reichle, Pollatsek, Fisher, & Rayner, 1998)。中央凹词汇越简单或加工负荷越低, L1L2就越快完成, 注意转移到词n+1上越早, 词n+1被提取的预视越多、被跳读的概率越大。由该模型可推测, 阅读能力高或速度快的读者之所以获得更多预视, 是因为他们的中央凹加工更快、注意转移到词n+1上的时间更早。SWIFT模型假设, 注意按照梯度分布在知觉广度内的词上, 知觉广度内的词是平行加工的。读者在注视当前词n的同时, 也开始加工副中央凹词汇, 只是对副中央凹词的加工效率因视敏度下降而降低。由此推测, 中央凹加工时间越长, 提取的预视量越大(Engbert & Kliegl, 2011; Engbert, Nuthmann, Richter, & Kliegl, 2005)。阅读能力低或慢速读者对中央凹词的注视长, 意味着他们可以提取的预视量更大, 这与E-Z读者模型的预测正好相反。

在预视范围的个体差异研究方面, E-Z读者模型推测, 当从词n+1获得足够多的预视且足够快地使词n+1达到词汇通达时, 注意会转移到词n+2上, 对词n+2的预视开始进行(Reichle, 2011; Schotter et al., 2012)。与阅读能力低或慢速读者相比, 阅读能力高或快速读者对中央凹的词汇加工更快, 注意转移到词n+1更早, 更可能达到词n+1的词汇通达阶段, 因而, 预视到词n+2的可能性更大。SWIFT模型认为中央凹加工难度或负荷调节预视范围:中央凹加工容易或负荷越低, 预视范围越广。由此推测, 读者阅读能力或阅读速度越高, 中央凹加工越容易或负荷越低, 预视范围越广。可见, 两个模型对预视范围的个体差异的预测较一致。

1.4 中文阅读中的副中央凹预视

以上研究及相关理论关注的是拼音文字阅读。尽管Henderson和Ferriera (1990)证明了随着中央凹加工负荷增大, 提取的预视量减小, 但后续的研究没有很好的重复该结果(Veldre & Andrews, 2018; White, Rayner, & Liversedge, 2005)。其中一个可能原因是, 拼音文字词长变异非常大, 不同研究间使用的目标词词长不同, 在考察中央凹加工对预视程度的影响时, 没有很好地控制预视范围。如前文所述, 从时间和空间维度来看, 副中央凹的信息加工涉及预视程度和预视范围。在考察预视程度时, 理想的方式是可以在限定的空间单元内最大化地操纵预视程度。相比之下, 中文的词长变异较小, 约90%的常用词是1~3字长(Li, Zang, Liversedge, & Pollatsek, 2015); 更重要的是, 每个汉字所占空间相同, 但是每个汉字视觉和词汇复杂程度不同, 这意味着在一个词单元内呈现的副中央凹信息量更多, 可能受中央凹加工影响的敏感性更大(Zhang, Liversedge, Bai, Yan, & Zang, 2019)。

Zhang等人(2019)以中文阅读为考察对象, 把预视范围控制在单个字内, 结果发现, 在注视时间上, 中央凹词汇加工负荷对预视量没有调节作用。而Liu等人(2015)发现中央凹负荷对预视的调节作用发生在眼跳长度上, 即在正常预视下, 中央凹加工负荷越小, 下一次向前眼跳越长, 与E-Z读者模型观点一致。不过, Liu等人使用了特殊符号(※)作为无效预视, 某种程度上可能破坏了正常句子阅读。在正常句子阅读下, Zhang等人与王永胜等人(2018)的研究证明中央凹加工负荷与预视独立影响向前眼跳长度。另一方面, Yan (2015)考察了中央凹视觉加工负荷(低负荷:少笔画, 高负荷:多笔画)对预视(正确或非词预视)的影响。结果发现, 中央凹视觉加工负荷对预视量具有反向调节作用:随着中央凹视觉加工负荷变大, 对预视的提取更多, 支持SWIFT模型的推测, 这也意味着中央凹的视觉加工与词汇加工对预视的作用可能不同。总之, 中文阅读中关于中央凹加工负荷是否及如何调节预视量还没有一致的结论。

对中文阅读中的儿童读者和汉语留学生读者的研究发现, 随着个体阅读能力的提高, 他们的预视范围更广, 提取的预视类型和预视量更多(Wang, Zhou, Shu, & Yan, 2014; 闫国利, 李赛男, 王亚丽, 刘敏, 王丽红, 2018; 闫国利, 王丽红, 巫金根, 白学军, 2011)。中文阅读研究者推测这是因为阅读能力低的读者对中央凹词汇的加工更困难, 占用了更多的注意资源, 注意转移到副中央凹词更晚或仅有较少的注意来提取副中央凹信息(Wang et al., 2014; 闫国利, 熊建萍, 白学军, 2008)。但是这种推测还缺少直接的证据支持。

为了探讨中文阅读中预视量的个体差异是否受中央凹加工的调节, 或者中央凹负荷对预视量影响的不同研究结果是否由个体差异所致, 本研究以成人读者为考察对象, 参考以往研究, 以阅读速度作为衡量阅读能力高低的指标并筛选出快速与慢速读者(Ashby et al., 2005; Rayner et al., 2016), 选用双字词作为前目标词(中央凹词), 选用单字词作为目标词(副中央凹词)。双字词被注视的概率很高(Zang, Fu, Bai, Yan, & Liversedge, 2018), 而使用单字词可将预视空间限定在最小词汇单元内, 从而大大提高了副中央凹词被预视的概率。目标词的预视包括相同预视(目标词本身)和假字预视。假字预视为基线条件, 提供“零”预视, 而相同预视则提供“全”预视。对比假字预视与相同预视条件下对目标词的注视时间, 即为获得的所有预视量(Rayner, 1975, 2009)。研究假设:(1)如果中央凹负荷调节不同阅读速度读者的预视量, 那么根据E-Z读者模型, 中央凹加工负荷正向调节预视量, 表现为, 当中央凹加工负荷低时, 快速与慢速读者的预视量没有差异; 当中央凹负荷高时, 快速读者提取的预视量大于慢速读者; 根据SWIFT模型, 中央凹加工负荷反向调节预视量, 即中央凹负荷低时, 快速与慢速读者的预视量没有差异, 在中央凹负荷高时, 慢速读者提取的预视量显著大于快速读者。(2)如果中央凹负荷不影响快速与慢速读者的预视量, 则无论中央凹加工负荷大小, 快速与慢速读者提取的预视量相同。

2 方法

2.1 被试

2.1.1 快速与慢速读者筛选程序

以往研究对快速与慢速的筛选方法主要有两种, 一种是按照阅读速度的中位数把被试分为快速组和慢速组(如, Rayner et al., 2010)。另一种是从一定数量的被试样本中, 将所有被试阅读速度从高到低排序, 从数值两端筛选出快速与慢速读者(如, Hawelka, Schuster, Gagl, & Hutzler, 2015), 这种方式可以使两组被试的区分度较高。本研究采用第二种, 具体筛选同Hawelka等人的方法, 即根据3分钟阅读速度来筛选快速与慢速被试。具体流程为, 从天津师范大学随机选取300名母语均为汉语的大学生和研究生被试, 所有被试的视力或矫正视力正常。被试的任务是默读一系列简单易懂的句子, 并对句子表达意思既快又准地作出“是”或“否”的判断。被试在3分钟内正确判断句子的个数即为该被试的阅读速度。

参考Hawelka等人(2015)的阅读速度测试, 本研究对快速与慢速筛选使用的测试材料为自编的150句常识性句子。每个句子所表达的句意, 或符合常识(例如“月球绕着地球旋转”), 或违背常识(例如“大象的鼻子特别短”)。符合常识与违背常识的句子各半。句子长度为10 ± 3个汉字。在正式测试前, 另选取20名被试进行预测验。预测验结果表明, 在限定3分钟时间内, 被试判断句子的数量在66~132个之间, 对句子判断的平均反应时为1911 ms (SD = 1010 ms), 平均正确率为95%。

测试程序在E-prime 2.0中编制, 刺激以32号宋体呈现在15.6英寸的Dell笔记本电脑上。每次只呈现一个句子。每个被试单独施测。被试距离电脑屏幕约60 cm。测试前向被试呈现指导语, 确保被试明确实验任务和要求。指导语为“下面将在屏幕中呈现一系列与常识有关的句子。每次只呈现一句。在句子呈现前, 请先注视屏幕中的注视点‘+'。请你既快又准地对句意的正误进行判断。若句意符合常识, 请按‘D'键; 若句意违背常识, 请按‘J'键。下面开始练习。”注视点“+”每次呈现1000 ms。正式测试前, 有4个练习句子, 以帮助被试熟悉测试程序。练习时, 对被试判断的结果提供反馈, 被试正确判断句子个数超过3个以上才可以进行正式测验, 否则重新练习。正式测试时, 不提供反馈。

2.1.2 快速与慢速读者筛选结果

根据阅读速度的测试结果, 通过两个步骤筛选快速与慢速读者。第一步, 排除句子判断正确率低于90%的被试, 或者不愿意继续参加随后眼动实验的被试, 共排除70人。第二步, 在余下的234名被试中, 根据每个被试正确判断句子的数量由高到低排序, 从该序列中选取排名最前的28人作为快速读者; 选取排名最后的28人作为慢速读者。快速读者的平均年龄为22 ± 2岁, 女生有20人。慢速读者的平均年龄为22 ± 2岁, 女生有22人。

快速组与慢速组在阅读速度测试中的结果如表1所示。结果显示, 在3分钟内, 快速读者正确判断句子总数显著多于慢速读者, F (1, 27) = 656.15, p < 0.001, ηp2 = 0.96。快速组平均判断一个句子的时间显著短于慢速组, F (1, 27) = 535.95, p < 0.001, ηp2 = 0.95。但是, 两组被试在正确率上没有差异, F (1, 27) = 1.55, p = 0.22。这些结果表明, 快速组的有效阅读速度显著高于慢速组。

表1   快速组与慢速组在句子判断任务中的基本信息(括号内为标准差)

组别判断句子
总数
正确判断
句子数
正确率
(%)
平均反应时 (ms)
快速组130 (9)125 (10)96 (2.6)1380 (94)
慢速组73 (6)70 (6)96 (2.3)2500 (244)

新窗口打开| 下载CSV


2.2 实验材料

本研究使用了与Zhang等人(2019)相同的实验材料。选取双字词作为前目标词(中央凹词), 操纵双字词的词频(高频和低频)。以往研究主要以词频来操纵中央凹词汇的加工负荷(如, 王永胜 等, 2018; Henderson & Ferriera, 1990; Liu et al., 2015; Veldre & Andrews, 2018; White et al., 2005; Zhang et al., 2019), 本研究以同样的方式来操纵中央凹负荷。高频词容易被加工, 意味着中央凹加工负荷低; 低频词加工难度大, 意味着中央凹加工负荷高。共有32对高频-低频词对。高频词的词频显著地高于低频词的词频, F(1, 31) = 21.49, p < 0.001, ηp2 = 0.41。二者的笔画数没有显著差异, F(1, 31) = 0.15, p = 0.70。每对高频-低频词对搭配一个单字词, 并编在同一个句子框架内, 共选取32个单字词作为目标词(副中央凹词)。所有句子均有较高通顺性, 前目标词与目标词均为低预测, 如表2所示。

表2   不同中央凹加工负荷下的前目标词与句子的基本信息(括号内为标准差)

中央凹加工负荷词频(次/百万)笔画数句子通顺性前目标词预测性(%)目标词预测性(%)
低负荷242.9 (295.7)16.8 (1.8)4.0 (0.3)1.3 (3.7)2.3 (4.9)
高负荷0.4 (0.3)16.6 (1.9)3.9 (0.3)0.6 (2.5)4.5 (7.7)

新窗口打开| 下载CSV


实验使用边界范式(boundary paradigm; Rayner, 1975)来操纵目标词的预视。具体过程为, 在紧邻目标词前设置一个隐形边界, 在眼睛越过隐形边界前, 对目标词的预视是相同或假字预视(如图1), 当眼睛越过边界时, 预视内容变为目标词。其中, 假字与目标词的笔画数相互匹配。共有32组句子, 每组有4种实验条件, 即中央凹低负荷-相同预视、中央凹低负荷-假字预视、中央凹高负荷-相同预视和中央凹高负荷-假字预视。根据拉丁方设计, 把每组中不同条件的句子分配到4个组块中。除了实验句以外, 每个组块还包括6个练习句和24个填充句。每个被试只阅读其中一个组块的句子。另外, 实验中有46%的句子后设有阅读理解判断题。

图1

图1   眼睛越过边界前后4种实验条件下的句子示例

注:“挑战/诱捕”为前目标词, “熊”为目标词, 虚线示意隐形边界所在位置, *代表边界前后的两个连续注视点


2.3 实验设计

实验为2(阅读组别:快速组、慢速组) × 2(中央凹加工负荷:高、低) × 2(副中央凹预视:相同、假字)的混合实验设计。其中, 阅读组别为被试间变量, 中央凹加工负荷和副中央凹预视为被试内变量。

2.4 实验仪器

实验使用了加拿大SR Research公司生产的EyeLink 1000眼动仪, 采样率为1000 HZ, 刺激呈现屏的刷新率为150 HZ。实验材料以宋体形式在白色背景下呈现。每个汉字约占1.1°视角。

2.5 实验程序

在眼动实验中, 每个被试单独实测。实验前, 主试引导被试坐在被试机前, 告知被试将下巴放在下巴托上, 在实验中尽可能避免头动。随后, 在被试机屏幕上呈现指导语:“下面将在屏幕中逐个呈现一些汉语句子。每次呈现一句, 请你认真阅读并理解每句话的意思。在这些句子中, 有的句子后会有判断题。请你根据原句意思进行‘是'或‘否'的判断。手柄中的左键为‘是', 右键为‘否'。”主试确保每个被试理解实验任务和要求后, 对被试的眼睛进行三点校准。校准成功后, 被试开始练习。在熟悉实验流程后, 被试进入正式实验。正式实验中的句子随机呈现。被试的按键反应和眼动轨迹由眼动仪自动记录。在实验中, 主试观察被试的注视情况, 在必要时会对被试眼睛进行再校准, 以保证眼动仪记录数据的精准性。整个实验约持续20分钟。

3 结果

快速组与慢速组的阅读理解正确率均为92%, 表明两组被试均能很好地理解句子, 且没有显著差异, F(1, 54) = 0.27, p = 0.61。在筛选原始眼动数据时, 首先去除注视时间小于80 ms或大于1200 ms的注视点。然后对项目进行筛选:(1)删除由于被试按键失误或头动导致的追踪丢失的句子(约占总数据的0.06%)。(2)针对句子整体分析, 删除各指标3个标准差以外的句子(1.20%); (3)针对前目标词分析, 删除3个标准差之外的句子(1.23%); (4)针对目标词分析, 删除眼睛第一次通过边界或注视目标词时眨眼, 以及文本呈现变化发生过早或延迟的句子(14.79%), 再删除3个标准差之外的句子(0.38%)。

首先以句子为单元进行整体分析, 检验快速组与慢速组在整体句子阅读上的差异。具体分析指标包括时间维度上的句子总阅读时间、平均注视时间和阅读速度, 以及空间维度上的总注视次数、向前眼跳次数、向前眼跳长度和回视眼跳次数(闫国利 等, 2013)。总阅读时间反映了句子的总体加工情况, 随句子难度增大而变长。总注视次数与总阅读时间密切关联, 一般来说, 总注视次数多时, 总阅读时间也越长。平均注视时间是从整体上反映句子加工中每次注视的情况, 随句子难度增大而增长。阅读速度综合考虑了句子总阅读时间与句子长度, 是相对稳定且能有效反映总体阅读情况的一个指标。向前眼跳长度主要反映了在眼跳发生前, 对句子下文内容的加工情况, 如果句子容易或提取的下文信息较多, 那么向前眼跳会更长。向前眼跳次数与向前眼跳长度相对立, 一般来说, 向前眼跳次数越多, 对应的向前眼跳长度越短。回视眼跳次数反映了后期句子语义整合情况, 回视次数越多说明句子语义整合越困难。

之后, 把前目标词与目标词分别作为兴趣区进行局部分析(如图2)。局部分析指标选用了第一遍阅读过程中的常用指标(闫国利 等, 2013)。具体包括:(1)首次注视时间, 指在第一遍阅读中, 第一次落在目标词上的注视时间, 有效反映了最早期的词汇加工特征; (2)单次注视时间, 指在第一遍阅读中, 在目标词上有且仅有一次时的注视时间, 反映了早期在一次注视中进行词汇识别的过程; (3)凝视时间, 指在第一遍阅读中, 落在目标词上的所有注视时间之和, 综合反映了在一次或多次注视情况下的词汇识别过程; (4)跳读率, 指在第一遍阅读中, 目标词被跳读的概率, 反映了目标词提前被加工的情况, 容易加工的词更容易被跳读; (5)向前眼跳长度, 这里指眼睛从前目标词上起跳的位置到落在边界后某位置之间的距离, 能反映当前加工的难易程度, 加工内容越容易, 向前眼跳越长。其中, 前三个指标从时间维度揭示早期词汇识别过程, 当目标词上有且仅有一次注视时, 三个指标数值相同。跳读率和向前眼跳长度是空间维度指标, 揭示下一次眼跳目标选择情况。

图2

图2   局部分析时对前目标词与目标词的兴趣区划分


数据分析是在R语言环境下(R Development Core Team, 2018)使用lme4数据处理包(Bates, Maechler, Bolker, & Walker, 2015)建立线性混合模型(Linear Mixed Model)进行的。使用马尔可夫链蒙特卡罗(Markov-Chain Monte Carlo)的算法得出事后分布的模型参数来作为显著性的估计值(b), 可以同时反映被试和项目中的变异(Baayen, Davidson & Bates, 2008)。在运行线性混合模型前, 对注视时间、注视次数、眼跳长度和阅读速度指标进行了对数转换。对跳读率的分析使用了广义线性混合模型(Generalized Linear Mixed Model)。在模型中, 中央凹加工负荷和预视为固定因素。被试和项目被指定为交叉随机效应, 同时考虑被试和项目的随机截距和随机斜率(Barr, Levy, Scheepers, & Tily, 2013)。

3.1 整体分析

整体分析的描述结果见表3, 统计检验结果见表4。结果显示, 阅读组别效应在各个指标上, 都非常显著(|t|s > 3.20, ps < 0.01):与快速组相比, 慢速组对句子的总阅读时间更长、注视次数更多, 平均注视时间更长, 向前眼跳更多且距离更短, 向后回视的次数更多。这些表明了慢速组的阅读速度显著低于快速组, 说明本研究对快速与慢速读者的筛选非常有效。

表3   快速组与慢速组对句子的整体注视情况(括号内为标准差)

眼动指标快速组慢速组
句子总阅读时间(ms)3013 (881)4911 (1977)
平均注视时间(ms)221 (23)239 (20)
总注视次数13.5 (3.6)20.6 (8.3)
向前眼跳次数9.3 (2.4)13.6 (5.1)
回视眼跳次数3.4 (1.1)5.5 (3.1)
向前眼跳长度(字)2.5 (0.6)2.0 (0.6)
阅读速度(字/分)458 (139)299 (114)

新窗口打开| 下载CSV


表4   快速组与慢速组在句子指标上的固定效应估计值

眼动指标阅读组别效应(慢速vs. 快速)
bSEtp95% CI
句子总阅读时间0.450.094.96<0.001[0.27, 0.63]
平均注视时间0.080.033.21<0.01[0.03, 0.13]
总注视次数0.370.094.28<0.001[0.20, 0.54]
向前眼跳次数0.340.093.91<0.001[0.17, 0.52]
向前眼跳长度-0.230.07-3.48<0.01[-0.36, -0.10]
回视眼跳次数0.390.123.30<0.01[0.16, 0.62]
阅读速度-0.460.09-4.98<0.001[-0.64, -0.28]

注:CI = Confidence Interval (置信区间)。

新窗口打开| 下载CSV


3.2 局部分析

3.2.1 前目标词分析

在前目标词上, 快速组与慢速组的注视情况如表5所示。被试对前目标词的注视概率达到84%, 说明本研究选择双字词作为中央凹词非常有效地使被试对目标词的预视发生在前目标词上。阅读组别主效应在首次注视时间(b = 0.11, SE = 0.04, t = 2.67, p = 0.01, 95% CI = [0.03, 0.20])、单次注视时间(b = 0.13, SE = 0.04, t = 2.85, p = 0.006, 95% CI = [0.04, 0.21])、凝视时间(b = 0.30, SE = 0.05, t = 5.73, p < 0.001, 95% CI = [0.20, 0.40])和向前眼跳长度(b = -0.26, SE = 0.07, t = -3.58, p < 0.001, 95% CI = [-0.40, -0.12])指标上非常显著:与快速组相比, 慢速组对前目标词的首次注视、单次注视和凝视时间更长, 从前目标词起跳的向前眼跳更短。

表5   不同条件下快速组与慢速组对前目标词的注视时间和向前眼跳长度(括号内为标准差)

眼动指标组别低负荷-相同低负荷-假字高负荷-相同高负荷-假字
首次注视时间(ms)快速219 (47)207 (33)229 (42)245 (68)
慢速245 (36)250 (39)258 (44)253 (41)
单次注视时间(ms)快速216 (47)202 (36)231 (46)248 (70)
慢速248 (43)257 (44)263 (55)246 (54)
凝视时间(ms)快速237 (52)243 (62)258 (68)283 (90)
慢速317 (78)329 (66)387 (108)379 (102)
向前眼跳长度(字)快速2.62 (0.97)2.29 (0.72)2.40 (0.82)2.14 (0.75)
慢速1.99 (0.54)1.73 (0.56)1.82 (0.82)1.57 (0.60)

新窗口打开| 下载CSV


词频主效应也非常显著(首次注视时间: b = 0.05, SE = 0.01, t = 3.68, p < 0.001, 95% CI = [0.03, 0.08]; 单次注视时间: b = 0.05, SE = 0.02, t = 2.93, p = 0.004, 95% CI = [0.02, 0.08]; 凝视时间: b = 0.12, SE = 0.02, t = 4.90, p < 0.001, 95% CI = [0.07, 0.16]; 向前眼跳长度: b = -0.10, SE = 0.02, t = -4.16, p < 0.001, 95% CI = [-0.15, -0.05]):两组被试对低频词的首次注视、单次注视和凝视时间均长于高频词, 从低频词跳出的向前眼跳短于高频词。这与以往研究中获得的词频效应非常一致(Clifton et al., 2016; Rayner, 2009), 表明了本研究对中央凹加工负荷的操纵非常有效。

副中央凹预视的主效应在第一遍阅读时间指标上均不显著, 即无论是相同预视还是假字预视, 都不影响对前目标词的注视(|t|s < 1.15, ps > 0.05), 没有发现预视类型的副中央凹-中央凹效应。预视类型显著影响向前眼跳长度(b = -0.14, SE = 0.02, t = -5.95, p < 0.001, 95% CI = [-0.18, -0.09]), 即假字预视条件下的向前眼跳显著短于相同预视条件。预视在向前眼跳长度上的效应反映了下一次眼跳目标选择的情况。

阅读组别与词频的交互作用在首次注视时间(b = -0.06, SE = 0.03, t = -2.14, p = 0.03, 95% CI = [-0.12, -0.01])和单次注视时间上显著(b = -0.12, SE = 0.03, t = -3.46, p < 0.001, 95% CI = [-0.18, -0.05]), 在凝视时间和向前眼跳长度上不显著(|t|s < 1.81, ps > 0.05)。简单效应分析表明, 快速组有显著的词频效应(首次注视时间: b = -0.09, SE = 0.02, t = -4.16, p < 0.001; 单次注视时间: b = -0.11, SE = 0.02, t = -4.77, p < 0.001), 快速组对高频词的首次注视和单次注视分别比低频词短24 ms和29 ms; 而慢速组对高频词和低频词的首次注视时间(词频效应值为-9 ms, b = -0.02, SE = 0.02, t = -1.18, p = 0.24)和单次注视时间(词频效应值为-4 ms, b = 0.01, SE = 0.02, t = 0.31, p = 0.76)无显著差异, 即无论高频词还是低频词, 慢速组都需要更长的时间来加工。图3呈现了两组被试对高频词和低频词的单次注视时间。

图3

图3   快速组与慢速组对高频和低频前目标词的单次注视时间(注:***表示p < 0.001)


阅读组别与预视的交互作用以及词频与预视的交互作用在第一遍阅读时间和向前眼跳长度上都不显著(|b|s < 0.04, |t|s < 0.80, ps > 0.05)。阅读组别、词频和预视的三阶交互作用在首次注视时间(b =-0.15, SE = 0.07, t = -2.29, p = 0.02, 95% CI = [-0.28, -0.02])和单次注视时间(b = -0.22, SE = 0.07, t = -3.02, p = 0.003, 95% CI = [-0.37, -0.08])上显著, 在凝视时间上边缘显著(b = -0.15, SE = 0.09, t = -1.74, p = 0.08, 95% CI = [-0.32, 0.02])。对首次注视和单次注视时间的简单效应分析表明, 在相同预视下快速组与慢速组有类似的词频效应(|t|s < 0.37, ps > 0.05), 但是在假字预视条件下, 快速组与慢速组的词频效应有差异(|t|s > 3.52, ps < 0.001)。简单简单效应分析显示, 快速组的词频效应非常显著(|t|s > 4.53, ps < 0.001), 而慢速组的词频效应不显著(|t|s < 1.52, ps > 0.05)。这表明, 与快速组相比, 慢速组对中央凹高频词的加工更易受假字预视的干扰。假字预视与目标词之间的区别在于字形正字法的差异, 因此, 该结果实际是正字法副中央凹-中央凹效应, 以往一些研究也发现了该效应(Drieghe, 2011)。

3.2.2 目标词分析

快速组与慢速组在目标词上各眼动指标的平均数和标准差如表6所示。在目标词的首次注视时间(b = 0.09, SE = 0.04, t = 2.11, p = 0.04, 95% CI = [0.01, 0.17])、单次注视(b = 0.10, SE = 0.04, t = 2.35, p = 0.02, 95% CI = [0.02, 0.18])、凝视时间(b = 0.11, SE = 0.04, t = 2.67, p = 0.01, 95% CI = [0.03, 0.20])和跳读率(b = -0.78, SE = 0.24, z = -3.24, p = 0.001)上均有非常显著的阅读组别主效应:与快速组相比, 慢速组对目标词的首次注视、单次注视和凝视时间更长, 对目标词的跳读更少。

表6   不同条件下快速组与慢速组对目标词的注视时间和跳读率(括号内为标准差)

眼动指标组别低负荷-相同低负荷-假字高负荷-相同高负荷-假字
跳读率快速0.60 (0.27)0.44 (0.22)0.52 (0.23)0.45 (0.25)
慢速0.44 (0.24)0.32 (0.25)0.38 (0.22)0.23 (0.28)
首次注视时间(ms)快速245 (72)272 (53)234 (57)269 (78)
慢速250 (51)312 (65)260 (53)292 (78)
单次注视时间(ms)快速249 (73)286 (74)231 (56)272 (78)
慢速262 (51)315 (75)252 (58)316 (76)
凝视时间(ms)快速252 (73)296 (70)235 (61)288 (72)
慢速267 (53)326 (70)273 (80)336 (84)

新窗口打开| 下载CSV


副中央凹预视的主效应非常显著(首次注视时间: b = 0.12, SE = 0.03, t = 4.47, p < 0.001, 95% CI = [0.07, 0.17]; 单次注视时间: b = 0.16, SE = 0.03, t = 5.60, p < 0.001, 95% CI = [0.10, 0.21]; 凝视时间: b = 0.18, SE = 0.03, t = 6.81, p < 0.001, 95% CI = [0.13, 0.23]; 跳读率: b = -0.61, SE = 0.12, z = -5.29, p < 0.001, 95% CI = [-0.84, -0.39]), 具体表现为, 与假字预视相比, 在相同预视下, 两组被试对目标词的首次注视、单次注视和凝视时间更短, 跳读更多。

中央凹负荷对目标词的影响(即词频溢出效应)显著表现在单次注视时间上, 且是反向的词频溢出效应(b = -0.05, SE = 0.03; t = -2.03, p = 0.046, 95% CI = [-0.10, -0.00]):高频条件下两组被试对目标词的单次注视时间比低频条件下的多10 ms。在首次注视和凝视时间上则没有发现溢出效应(|b|s < 0.04, |t|s < 1.45, ps > 0.05)。中央凹负荷也显著影响目标词的跳读率(b = -0.34, SE = 0.13, z = -2.59, p = 0.01, 95% CI = [-0.59, -0.08]), 即低负荷条件下两组被试对目标词的跳读率高于高负荷条件, 这与前目标词的向前眼跳长度的结果保持一致。

更重要的是, 在注视时间和跳读率指标上, 没有出现阅读组别、中央凹负荷与预视的三阶交互作用(注视时间: |b|s < 0.10, |t|s < 0.99, ps > 0.05; 跳读率: b = -0.69, SE = 0.46, z = -1.51, p = 0.13, 95% CI = [-1.60, 0.21]), 也没有发现其他二阶交互作用(注视时间: |b|s < 0.08, |t|s <1.32, ps > 0.05; 跳读率: |b|s < 0.33, |z|s < 1.26, ps > 0.05)。

3.2.3 贝叶斯分析

针对目标词上阅读组别、中央凹负荷与预视的无交互效应, 使用BayesFactor数据处理包, 分别对向前眼跳长度、首次注视时间、单次注视时间、凝视时间和跳读率进行线性混合模型的贝叶斯分析(Morey et al., 2018)。首先计算全模型(即包含阅读组别主效应、中央凹负荷主效应、副中央凹预视主效应和三因素的交互作用)的贝叶斯因子(BFFull), 以及主效应模型的贝叶斯因子(BFMain)。通过比较两个模型的贝叶斯因子(BF = BFFull/BFMain), 可以评价阅读组别、中央凹负荷与预视是否存在交互作用。如果BF值小于1, 表示支持虚无假设, 即三因素交互作用不显著; 如果BF值大于1, 则支持备择假设, 即三因素交互作用显著存在。在贝叶斯分析中, 选用默认的先验概率值0.5, 蒙特卡罗迭代次数(Monte Carlo iterations)为100000。对上述指标的贝叶斯分析结果显示, BF均小于1 (向前眼跳长度:BF = 0.12; 首次注视时间:BF = 0.36; 单次注视时间:BF = 0.18; 凝视时间:BF = 0.17; 跳读率:BF = 0.28), 支持了虚无假设。进一步使用不同先验概率值(即0.2、0.3、0.4、0.5、0.6、0.7和0.8)进行的敏感性分析结果也支持虚无假设(BFs < 0.75)。

4 讨论

本研究主要探讨了快速与慢速读者的副中央凹预视的差异及其如何受中央凹加工负荷的调节。研究结果显示, 在阅读理解正确率相同时, 快速与慢速读者在阅读过程中的整体差异表现在, 快速读者比慢速读者的总句子阅读时间更短, 平均每次注视更短, 注视次数更少, 向前眼跳更长, 阅读速度更快, 与以往研究(Rayner et al., 2010; Risse, 2014)保持一致。一方面, 这说明快速读者比慢速读者的阅读效率更高, 另一方面, 这显示了本研究对快速读者与慢速读者的筛选方法非常有效。下面分别探讨快速读者与慢速读者的中央凹加工与副中央凹加工。

4.1 快速与慢速读者的中央凹词汇加工

对前目标词的第一遍阅读时间的分析显示, 阅读组别主效应非常显著, 快速读者对中央凹词的加工时间明显短于慢速读者, 与以往研究结果一致(Ashby et al., 2005; Kuperman & Van Dyke, 2011; Taylor & Perfetti, 2016), 说明快速读者整体的词汇加工速度更快。更重要的是, 在首次注视和单次注视时间上, 快速读者表现出非常显著的词频效应, 他们对高频词的注视显著地短于低频词; 而慢速读者则没有表现出词频效应, 他们对高频词与低频词的加工一样, 都需要较长的注视时间。也就是说, 快速读者对高频词的加工效率比慢速读者高。在凝视时间上, 慢速读者与快速读者一样有非常显著的词频效应。这些结果表明, 与拼音文字阅读研究结果相似, 中文阅读中的快速与慢速读者的词汇加工不仅表现在“度”上, 还体现在“质”上(Ashby et al., 2005)。但是两类文字阅读中的词汇加工个体差异模式不同。在中文阅读词汇加工的非常早期阶段, 快速读者一旦开始注视, 词频信息就被激活, 并开始作用于他们的词汇加工过程; 而慢速读者对词频信息的利用相对较晚。在拼音文字阅读中, 与阅读能力低的读者相比, 阅读能力高的读者对低频词的加工效率更高(Ashby et al., 2005; Taylor & Perfetti, 2016)。

造成本研究词频效应的个体差异模式不同于以往研究的一个原因可能是不同研究间筛选被试的标准有差异。Ashby等人(2005)从44名被试中划分了一般熟练和高熟练被试两组, Taylor和Perfetti则把35名被试的阅读分数作为连续变量考察不同阅读能力读者的词汇加工情况。相比而言, 本研究从较大的样本范围(有效被试234名)中筛选了快速与慢速两组被试, 被试的区分度相对较高, 可能使本研究选取的慢速读者的阅读水平比以往研究的更低, 从而表现出对高频词的早期加工更困难, 与低频词的注视时间一样长。另一个原因可能是, 与快速读者相比, 慢速读者在加工词汇时对语境的依赖更大(Ashby et al., 2005)。本研究选取的前目标词在句子语境中均为低预测, 这意味着两组被试无法利用语境信息进行词汇加工。这可能会导致, 在词汇加工早期, 对慢速读者来说, 无论中央凹词频是高或是低, 词汇加工都非常困难; 而对快速读者来说, 只是当中央凹词为低频时, 才出现加工困难。此外, 中文独特的书写方式(例如, 汉字间排列紧密, 缺少明确的词边界信息, 单位空间内信息分布密集)也可能决定了不同阅读速度的中文读者对词汇加工的模式或策略不同于拼音文字读者(Liversedge et al., 2016; Zang et al., 2016)。日后需要更多的研究来验证上述的可能原因。

4.2 快速与慢速读者的副中央凹预视

在第一遍阅读中, 前目标词被注视的概率达到84%, 这说明本研究对前目标词的选取是有效的, 在较大程度上保证了对副中央凹词的预视发生在中央凹词上。对目标词的分析显示, 快速与慢速读者都能从有效的副中央凹预视中提取信息, 而且提取的信息量没有显著差异。尽管慢速读者对中央凹词的加工更慢, 特别是对高频词的早期加工更慢, 但是这没有影响他们提取与快速读者相同的预视量。事实上, 本研究也没有发现中央凹负荷对预视的显著调节作用, 与一些拼音文字阅读研究结果类似(Drieghe, Rayner, & Pollatsek, 2005; Marx, Hawelka, Schuster, & Hutzler, 2017; Vasilev, Slattery, Kirkby, & Angele, 2018; Veldre & Andrews, 2018; Zhang et al., 2019)。

与以往大多数研究类似, 本研究也使用词频来衡量中央凹词汇加工负荷。在中文阅读研究中, 不同研究间选取的高频和低频范围不同, 例如, Liu等人(2015)选用的高频为120.5次/百万, 低频为2.17次/百万; 王永胜等人(2018)选用的高频为405.08次/百万, 低频为7.64次/百万; 本研究选用的高频为242.9次/百万, 低频为0.4次/百万。尽管如此, 本研究与Liu等人和王永胜等人一样, 在注视时间上没有发现中央凹负荷与预视的显著交互作用。这说明不同范围的中央凹负荷对中央凹负荷效应造成影响的可能性很小。

如前所述, 词长可能会影响中央凹负荷对预视的作用。Veldre和Andrews (2015b)的研究证明, 与阅读能力低的读者相比, 阅读能力高的读者可以充分利用副中央凹词长信息来提取更多的预视, 说明阅读能力高的读者对副中央凹词的视觉空间信息加工更占优势。而且, 知觉广度的研究结果显示, 阅读能力高的读者可以提取的预视范围更广、预视量更大(Rayner et al., 2010; Veldre & Andrews, 2014)。结合以上两个证据可推测, 快速与慢速读者的预视差异可能只发生在预视空间维度上, 并可能会受中央凹加工的调节。基于该观点本研究结果可以解释为:由于预视信息限定在单字词内时, 预视词紧邻中央凹词, 无论阅读速度如何或者中央凹加工负荷如何, 都能从预视词上获得可观的预视量。

此外, 由于本研究关注一个预视单元内的预视量的个体差异, 因此, 预视类型仅包含相同和假字两种。根据Chace等人(2005)的研究, 阅读能力高的读者可以提取的语音预视更大, 这提示我们, 不同阅读速度读者的预视差异或者中央凹加工负荷的调节效应可能表现在某个具体预视类型上(如正字法、语音或语义预视)。这需要未来的研究进一步探讨。

4.3 副中央凹预视的个体差异对阅读眼动控制理论的启示

根据E-Z读者模型, 随着中央凹加工负荷变小, 从副中央凹提取的预视量更大, 副中央凹词被跳读的概率也越大(Reichle, 2011; Reichle & Drieghe, 2013)。据此推测, 由于快速读者的中央凹加工速度更快, 那么快速读者提取的预视量更大, 因而跳读的目标词更多。虽然本研究发现快速读者对中央凹词的加工快于慢速读者, 但是两组读者的预视量并没有受到影响, 也没有差异。而且, 中央凹加工负荷或阅读速度对向前眼跳长度和跳读率的影响没有通过调节预视量来实现类似结果也见, (王永胜 等, 2018; Liu et al., 2015)。这些结果表明中央凹加工负荷对预视和眼跳目标选择的作用机制可能并不完全如E-Z读者模型预期的那样(Drieghe et al., 2005), 对拼音文字阅读的研究也提供了类似证据(如, Drieghe et al., 2005; Vasilev et al., 2018; Veldre & Andrews, 2018)。这提示E-Z读者模型在解释中央凹负荷对预视以及预视的个体差异的作用机制时, 关于预视和眼跳计划发生阶段的假设还有待于改进或完善。

与E-Z读者模型最大的区别在于, SWIFT模型认为知觉广度内的词汇加工是平行的, 因此, 读者对中央凹加工的时间越长, 同时可以从副中央凹词上提取的预视量也越大, 越容易跳读副中央凹词。据此推测, 在个体差异上, 由于慢速读者对中央凹的注视更长, 因而会获得更多的预视。本研究发现, 尽管慢速读者对中央凹词的注视时间更长, 但他们并没有获得更大的预视量; 而且高负荷词被注视得更长, 也没有促使读者获得更大的预视量。这些结果显然不支持SWIFT模型对预视量个体差异的预测。

SWIFT模型与E-Z读者模型一个最大的争议内容是副中央凹-中央凹效应。SWIFT模型认为中央凹与副中央凹的词汇加工同时进行, 因而副中央凹信息(特别是词汇因素)会影响中央凹词的信息加工, 产生副中央凹-中央凹效应(Engbert & Kliegl, 2011)。而E-Z读者模型认为当中央凹词汇加工完成后, 注意才转移到副中央凹词上, 因而, 副中央凹词汇加工不会影响中央凹的词汇加工(Reichle, 2011)。值得注意的是, 两个模型对词汇加工是序列的还是平行的争论指词汇水平。而在视觉信息加工水平, E-Z读者模型也假设在早期前注意阶段(pre- attentive processes), 多个词的视觉信息(如词长、正字法字形信息)可以被同时提取(Angele, Slattery, & Rayner, 2016; Drieghe, 2011)。本研究发现, 在前目标词上存在阅读组别、中央凹负荷与预视类型的交互作用:在相同预视下, 两组被试对中央凹词的加工没有差异; 在假字预视下, 快速组的中央凹词汇加工不受影响, 但是慢速组对中央凹词的加工受到干扰, 产生了视觉正字法的副中央凹-中央凹效应。该效应在以往一些研究中也出现过(Brothers, Hoversten, & Traxler, 2017; Drieghe, 2011; Schotter et al., 2012)。两种模型都可以接受并解释这种效应:在非常早期的视觉信息提取过程, 快速与慢速读者平行加工了来自中央凹和副中央凹的视觉信息。而且, 与快速读者相比, 当副中央凹呈现了无效预视时, 慢速读者更易受到这类视觉信息的干扰, 进而影响了他们的中央凹词汇加工, 这支持了阅读能力较低的读者对文本视觉信息的依赖程度更大的观点(如, Rayner, Yang, Schuett, & Slattery, 2013; Zang et al., 2016)。

5 结论

在本研究条件下得出如下结论:(1)与慢速读者相比, 快速读者可以更早地利用词汇特征加工中央凹词汇, 且更快完成词汇识别; (2)在单字预视范围内, 快速与慢速读者可以提取等量的预视, 且不受中央凹加工的调节。该结果初步揭示了中文成人读者的阅读速度与中央凹词汇和副中央凹预视之间的关系, 为检验“中央凹负荷假说”进一步提供了个体差异方面的证据, 也为当前阅读眼动控制模型在解释中央凹负荷对预视的作用及其个体差异方面提供中文阅读的证据, 这对日后修订模型及拓展模型范围可以提供一些启示。

参考文献

Angele, B., Slattery, T. J., & Rayner, K. (2016).

Two stages of parafoveal processing during reading: Evidence from a display change detection task

Psychonomic Bulletin & Review, 23, 1241-1249.

DOI:10.3758/s13423-015-0995-0      URL     PMID:26769246      [本文引用: 2]

We used a display change detection paradigm (Slattery, Angele, & Rayner Human Perception and Performance, 37, 1924-1938 2011) to investigate whether display change detection uses orthographic regularity and whether detection is affected by the processing difficulty of the word preceding the boundary that triggers the display change. Subjects were significantly more sensitive to display changes when the change was from a nonwordlike preview than when the change was from a wordlike preview, but the preview benefit effect on the target word was not affected by whether the preview was wordlike or nonwordlike. Additionally, we did not find any influence of preboundary word frequency on display change detection performance. Our results suggest that display change detection and lexical processing do not use the same cognitive mechanisms. We propose that parafoveal processing takes place in two stages: an early, orthography-based, preattentional stage, and a late, attention-dependent lexical access stage.

Ashby, J., Rayner, K., & Clifton, C. (2005).

Eye movements of highly skilled and average readers: Differential effects of frequency and predictability

Quarterly Journal of Experimental Psychology Section A, 58(6), 1065-1086.

[本文引用: 10]

Ashby, J., Yang, J. M., Evans, K. H., & Rayner, K. (2012).

Eye movements and the perceptual span in silent and oral reading

Attention, Perception, & Psychophysics, 74(4), 634-640.

[本文引用: 2]

Baayen, R. H., Davidson, D. J., & Bates, D. M. (2008).

Mixed-effects modeling with crossed random effects for subjects and items

Journal of Memory and Language, 59(4), 390-412.

[本文引用: 1]

Bai, X. J., Liu, J., Zang, C. L., Zhang, M. M., Guo, X. F., & Yan, G. L. (2011).

The advance of parafoveal preview effects in Chinese reading

Advances in Psychological Science, 19(12), 1721-1729.

[本文引用: 1]

[ 白学军, 刘娟, 臧传丽, 张慢慢, 郭晓峰, 闫国利. (2011).

中文阅读过程中的副中央凹预视效应

心理科学进展, 19(12), 1721-1729.]

[本文引用: 1]

Barr, D. J., Levy, R., Scheepers, C., & Tily, H. J. (2013).

Random effects structure for confirmatory hypothesis testing: Keep it maximal

Journal of Memory and Language, 68(3), 255-278.

[本文引用: 1]

Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015).

Fitting linear mixed-effects models using lme4

Journal of Statistical Software, 67, 1-48.

[本文引用: 1]

Brothers, T., Hoversten, L. J., & Traxler, M. J. (2017).

Looking back on reading ahead: No evidence for lexical parafoveal-on-foveal effects

Journal of Memory and Language, 96, 9-22.

DOI:10.1016/j.jml.2017.04.001      URL     [本文引用: 1]

Chace, K. H., Rayner, K., & Well, A. D. (2005).

Eye movements and phonological parafoveal preview: Effects of reading skill

Canadian Journal of Experimental Psychology, 59(3), 209-217.

DOI:10.1037/h0087476      URL     PMID:16248500      [本文引用: 4]

Eye movements of skilled and less skilled readers were monitored as they read sentences containing a target word. The boundary paradigm was used such that when their eyes crossed an invisible boundary location, a preview word changed to the target word. The preview could either be identical to the target word (beach as a preview for beach), a homophone of the target word (beech as a preview for beach), an orthographic control (bench as a preview for beach), or an unrelated consonant string (jfzrp as a preview for beach). Consistent with prior research, skilled readers obtained more preview benefit from the homophone preview than from the orthographic preview. The less skilled readers, however, did not show such an effect. The results indicate that less skilled readers do not use phonological codes to integrate information across eye movements. Indeed, the results also indicate that less skilled readers do not show normal preview benefit effects.

Clifton, C., Ferreira, F., Henderson, J. M., Inhoff, A. W., Liversedge, S. P., Reichle, E. D., & Schotter, E. R. (2016).

Eye movements in reading and information processing: Keith Rayner's 40 year legacy

Journal of Memory and Language, 86, 1-19.

[本文引用: 2]

Drieghe, D.(2011).

Parafoveal-on-foveal effects in eye movements during reading

In S. P. Liversedge, I. D. Gilchrist, & S. Everling (Eds.), Oxford library of psychology(pp. 839-855). The Oxford handbook on eye movements New York, NY, US: Oxford University Press.

[本文引用: 3]

Drieghe, D., Rayner, K., & Pollatsek, A. (2005).

Eye movements and word skipping during reading revisited

Journal of Experimental Psychology: Human Perception and Performance, 31, 954-969.

DOI:10.1037/0096-1523.31.5.954      URL     PMID:16262491      [本文引用: 3]

The authors examined word skipping in reading in 2 experiments. In Experiment 1, skipping rates were higher for a preview of a predictable word than for a visually similar nonword, indicating there is full recognition in parafoveal vision. In Experiment 2, foveal load was manipulated by varying the frequency of the word preceding either a 3-letter target word or a misspelled preview. There was again a higher skipping rate for a correct preview and a lower skipping rate when there was a high foveal load, but there was no interaction, and the pattern of effects in fixation times was the same as in the skipping data. Experiment 2 also showed significant skipping of nonwords similar to the target word, indicating skipping based on partial information.

Engbert, R & Kliegl, R. (2011).

Parallel graded attention models of reading

In S. P. Liversedge, I. D. Gilchrist, & S. Everling (Eds.), Oxford library of psychology.The Oxford handbook of eye movements (pp.787-800). New York, NY, US: Oxford University Press.

[本文引用: 2]

Engbert, R., Nuthmann, A., Richter, E. M., & Kliegl, R. (2005).

SWIFT: A dynamical model of saccade generation during reading

Psychological Review, 112, 777-813.

DOI:10.1037/0033-295X.112.4.777      URL     PMID:16262468      [本文引用: 1]

Mathematical models have become an important tool for understanding the control of eye movements during reading. Main goals of the development of the SWIFT model (R. Engbert, A. Longtin, & R. Kliegl, 2002) were to investigate the possibility of spatially distributed processing and to implement a general mechanism for all types of eye movements observed in reading experiments. The authors present an advanced version of SWIFT that integrates properties of the oculomotor system and effects of word recognition to explain many of the experimental phenomena faced in reading research. They propose new procedures for the estimation of model parameters and for the test of the model's performance. They also present a mathematical analysis of the dynamics of the SWIFT model. Finally, within this framework, they present an analysis of the transition from parallel to serial processing.

Frömer, R., Dimigen, O., Niefind, F., Krause, N., Kliegl, R., & Sommer, W. (2015).

Are individual differences in reading speed related to extrafoveal visual acuity and crowding?

PloS One, 10(3), e0121986.

DOI:10.1371/journal.pone.0121986      URL     PMID:25789812      [本文引用: 1]

Readers differ considerably in their speed of self-paced reading. One factor known to influence fixation durations in reading is the preprocessing of words in parafoveal vision. Here we investigated whether individual differences in reading speed or the amount of information extracted from upcoming words (the preview benefit) can be explained by basic differences in extrafoveal vision--i.e., the ability to recognize peripheral letters with or without the presence of flanking letters. Forty participants were given an adaptive test to determine their eccentricity thresholds for the identification of letters presented either in isolation (extrafoveal acuity) or flanked by other letters (crowded letter recognition). In a separate eye-tracking experiment, the same participants read lists of words from left to right, while the preview of the upcoming words was manipulated with the gaze-contingent moving window technique. Relationships between dependent measures were analyzed on the observational level and with linear mixed models. We obtained highly reliable estimates both for extrafoveal letter identification (acuity and crowding) and measures of reading speed (overall reading speed, size of preview benefit). Reading speed was higher in participants with larger uncrowded windows. However, the strength of this relationship was moderate and it was only observed if other sources of variance in reading speed (e.g., the occurrence of regressive saccades) were eliminated. Moreover, the size of the preview benefit--an important factor in normal reading--was larger in participants with better extrafoveal acuity. Together, these results indicate a significant albeit moderate contribution of extrafoveal vision to individual differences in reading speed.

Hawelka, S., Schuster, S., Gagl, B., & Hutzler, F. (2015).

On forward inferences of fast and slow readers: An eye movement study

Scientific Reports, 58432.

DOI:10.1038/srep08432      URL     PMID:25678030      [本文引用: 2]

Unimpaired readers process words incredibly fast and hence it was assumed that top-down processing, such as predicting upcoming words, would be too slow to play an appreciable role in reading. This runs counter the major postulate of the predictive coding framework that our brain continually predicts probable upcoming sensory events. This means, it may generate predictions about the probable upcoming word during reading (dubbed forward inferences). Trying to asses these contradictory assumptions, we evaluated the effect of the predictability of words in sentences on eye movement control during silent reading. Participants were a group of fluent (i.e., fast) and a group of speed-impaired (i.e., slow) readers. The findings indicate that fast readers generate forward inferences, whereas speed-impaired readers do so to a reduced extent - indicating a significant role of predictive coding for fluent reading.

Henderson, J. M., & Ferreira, F. (1990).

Effects of foveal processing difficulty on the perceptual span in reading: Implications for attention and eye movement control

Journal of Experimental Psychology: Learning, Memory, and Cognition, 16(3), 417-429.

DOI:10.1037//0278-7393.16.3.417      URL     PMID:2140401      [本文引用: 3]

Two experiments were conducted to examine the effects of foveal processing difficulty on the perceptual span in reading. Subjects read sentences while their eye movements were recorded. By changing the text contingent on the reader's current point of fixation, foveal processing difficulty and the availability of parafoveal word information were independently manipulated. In Experiment 1, foveal processing difficulty was manipulated by lexical frequency, and in Experiment 2 foveal difficulty was manipulated by syntactic complexity. In both experiments, less parafoveal information was acquired when processing in the fovea was difficult. We conclude that the perceptual span is variable and attentionally constrained. We also discuss the implications of the results for current models of the relation between covert visual-spatial attention and eye movement control in reading.

Kuperman, V., & Van, Dyke, J., A. (2011).

Effects of individual differences in verbal skills on eye-movement patterns during sentence reading

Journal of Memory and Language, 65(1), 42-73.

DOI:10.1016/j.jml.2011.03.002      URL     PMID:21709808      [本文引用: 2]

This study is a large-scale exploration of the influence that individual reading skills exert on eye-movement behavior in sentence reading. Seventy one non-college-bound 16-24 year-old speakers of English completed a battery of 18 verbal and cognitive skill assessments, and read a series of sentences as their eye movements were monitored. Statistical analyses were performed to establish what tests of reading abilities were predictive of eye-movement patterns across this population and how strong the effects were. We found that individual scores in rapid automatized naming and word identification tests (i) were the only participant variables with reliable predictivity throughout the time-course of reading; (ii) elicited effects that superceded in magnitude the effects of established predictors like word length or frequency; and (iii) strongly modulated the influence of word length and frequency on fixation times. We discuss implications of our findings for testing reading ability, as well as for research of eye-movements in reading.

Li, X. S., Zang, C. L., Liversedge, S.P. 2015).

The role of words in Chinese reading. In Pollatsek, A., & Treiman, R. (Eds), Oxford library of psychology

The Oxford handbook of reading (pp. 232-244). New York, NY, US: Oxford University Press.

[本文引用: 1]

Li, Y. G., Huang, R., Hua, H. M., & Li, X. S. (2017).

How do readers select the saccade targets?

Advances in Psychological Science, 25(3), 404-412.

[本文引用: 1]

[ 李玉刚, 黄忍, 滑慧敏, 李兴珊. (2017).

阅读中的眼跳目标选择问题

心理科学进展, 25(3), 404-412.]

[本文引用: 1]

Liu, Y. P., Reichle, E. D., & Li, X. S. (2015).

Parafoveal processing affects outgoing saccade length during the reading of Chinese

Journal of Experimental Psychology: Learning, Memory, and Cognition, 41(4), 1229-1236.

DOI:10.1037/xlm0000057      URL     PMID:25181495      [本文引用: 5]

Participants' eye movements were measured while reading Chinese sentences in which target-word frequency and the availability of parafoveal processing were manipulated using a gaze-contingent boundary paradigm. The results of this study indicate that preview availability and its interaction with word frequency modulated the length of the saccades exiting the target words, suggesting important functional roles for parafoveal processing in determining where the eyes move during reading. The theoretical significance of these findings is discussed in relation to 2 current models of eye-movement control during reading, both of which assume that saccades are directed toward default targets (e.g., the center of the next unidentified word). A possible method for addressing these limitations (i.e., dynamic attention allocation) is also discussed.

Liversedge, S. P., Drieghe, D., Li, X., Yan, G. L., Bai, X. J., & Hyönä, J. (2016).

Universality in eye movements and reading: A trilingual investigation

Cognition, 147, 1-20.

DOI:10.1016/j.cognition.2015.10.013      URL     PMID:26605961      [本文引用: 1]

Universality in language has been a core issue in the fields of linguistics and psycholinguistics for many years (e.g., Chomsky, 1965). Recently, Frost (2012) has argued that establishing universals of process is critical to the development of meaningful, theoretically motivated, cross-linguistic models of reading. In contrast, other researchers argue that there is no such thing as universals of reading (e.g., Coltheart & Crain, 2012). Reading is a complex, visually mediated psychological process, and eye movements are the behavioural means by which we encode the visual information required for linguistic processing. To investigate universality of representation and process across languages we examined eye movement behaviour during reading of very comparable stimuli in three languages, Chinese, English and Finnish. These languages differ in numerous respects (character based vs. alphabetic, visual density, informational density, word spacing, orthographic depth, agglutination, etc.). We used linear mixed modelling techniques to identify variables that captured common variance across languages. Despite fundamental visual and linguistic differences in the orthographies, statistical models of reading behaviour were strikingly similar in a number of respects, and thus, we argue that their composition might reflect universality of representation and process in reading.

Marx, C., Hawelka, S., Schuster, S., & Hutzler, F. (2017).

Foveal processing difficulty does not affect parafoveal preprocessing in young readers

Scientific Reports, 7, 41602.

DOI:10.1038/srep41602      URL     PMID:28139718      [本文引用: 1]

Recent evidence suggested that parafoveal preprocessing develops early during reading acquisition, that is, young readers profit from valid parafoveal information and exhibit a resultant preview benefit. For young readers, however, it is unknown whether the processing demands of the currently fixated word modulate the extent to which the upcoming word is parafoveally preprocessed - as it has been postulated (for adult readers) by the foveal load hypothesis. The present study used the novel incremental boundary technique to assess whether 4(th) and 6(th) Graders exhibit an effect of foveal load. Furthermore, we attempted to distinguish the foveal load effect from the spillover effect. These effects are hard to differentiate with respect to the expected pattern of results, but are conceptually different. The foveal load effect is supposed to reflect modulations of the extent of parafoveal preprocessing, whereas the spillover effect reflects the ongoing processing of the previous word whilst the reader's fixation is already on the next word. The findings revealed that the young readers did not exhibit an effect of foveal load, but a substantial spillover effect. The implications for previous studies with adult readers and for models of eye movement control in reading are discussed.

Morey, R. D., Rouder, J. N., Jamil, T., Urbanek, S., Forner, K., & Ly, A. (2018).

BayesFactor: Computation of Bayes factors for common designs

Retrieved from https://CRAN.R-project.org/package=BayesFactor

URL     [本文引用: 1]

R Core, Team. (2018).

R: A language and environment for statistical computing

Vienna, Austria: R foundation for statistical computing. Retrieved from https://www.r-project.org/

URL     [本文引用: 1]

Rayner, K. (1975).

The perceptual span and peripheral cues in reading

Cognitive Psychology, 7(1), 65-81.

[本文引用: 2]

Rayner, K. (1986).

Eye movements and the perceptual span in beginning and skilled readers

Journal of Experimental Child Psychology, 41(2), 211-236.

DOI:10.1016/0022-0965(86)90037-8      URL     PMID:3701249      [本文引用: 2]

Four experiments are reported which examined the size of the perceptual span in second-, fourth-, and sixth-grade children, as well as adult skilled readers. The results indicated that the perceptual span in beginning readers is slightly smaller than the perceptual span of skilled readers. Using a moving window technique, it was found that the perceptual span of beginning readers extends about 11 character spaces to the right of fixation; for skilled readers, the span extends 14-15 spaces to the right of fixation. Beginning readers apparently devote more of their processing to the foveally fixated word than more proficient readers, but their perceptual span appears to be asymmetric to the right of fixation as is the case for skilled readers. The results of the experiments also indicated that the size of the perceptual span is variable and can be influenced by the difficulty of the text. It is concluded that the size of the perceptual span does not cause beginning readers' slow reading rates.

Rayner, K. (2009).

The Thirty-fifth Sir Frederick Bartlett Lecture: Eye movements and attention in reading, scene perception, and visual search

Quarterly Journal of Experimental Psychology, 62(8), 1457-1506.

[本文引用: 5]

Rayner, K., Schotter, E. R., Masson, M. E., Potter, M. C., & Treiman, R. (2016).

So much to read, so little time: How do we read, and can speed reading help?

Psychological Science in the Public Interest, 17(1), 4-34.

DOI:10.1177/1529100615623267      URL     PMID:26769745      [本文引用: 1]

The prospect of speed reading--reading at an increased speed without any loss of comprehension--has undeniable appeal. Speed reading has been an intriguing concept for decades, at least since Evelyn Wood introduced her Reading Dynamics training program in 1959. It has recently increased in popularity, with speed-reading apps and technologies being introduced for smartphones and digital devices. The current article reviews what the scientific community knows about the reading process--a great deal--and discusses the implications of the research findings for potential students of speed-reading training programs or purchasers of speed-reading apps. The research shows that there is a trade-off between speed and accuracy. It is unlikely that readers will be able to double or triple their reading speeds (e.g., from around 250 to 500-750 words per minute) while still being able to understand the text as well as if they read at normal speed. If a thorough understanding of the text is not the reader's goal, then speed reading or skimming the text will allow the reader to get through it faster with moderate comprehension. The way to maintain high comprehension and get through text faster is to practice reading and to become a more skilled language user (e.g., through increased vocabulary). This is because language skill is at the heart of reading speed.

Rayner, K., Slattery, T. J., & Bélanger, N. N. (2010).

Eye movements, the perceptual span, and reading speed

Psychonomic Bulletin & Review, 17(6), 834-839.

DOI:10.3758/PBR.17.6.834      URL     PMID:21169577      [本文引用: 6]

The perceptual span or region of effective vision during eye fixations in reading was examined as a function of reading speed (fast readers were compared with slow readers), font characteristics (fixed width vs. proportional width), and intraword spacing (normal or reduced). The main findings were that fast readers (reading at about 330 wpm) had a larger perceptual span than did slow readers (reading about 200 wpm) and that the span was not affected by whether or not the text was fixed width or proportional width. In addition, there were interesting font and intraword spacing effects that have important implications for the optimal use of space in a line of text.

Rayner, K., Yang, J. M., Schuett, S., & Slattery, T. J. (2013).

Eye movements of older and younger readers when reading unspaced text

Experimental Psychology, 60, 354-361.

DOI:10.1027/1618-3169/a000207      URL     PMID:23681016      [本文引用: 1]

Older and younger readers read normal and unspaced text as their eye movements were monitored. A high or low frequency word was embedded in each sentence. Global analyses yielded large effects of spacing with unspaced text leading to much longer reading times for both groups, but the older readers had much more difficulty with unspaced text than younger readers. Local analyses of the target word revealed large main effects due to age, spacing, and frequency. In general, the older readers had more difficulty with the unspaced text than younger readers and some reasons why they did so are suggested.

Reichle, E. D.. (2011).

Serial-attention models of reading

In S. P. Liversedge, I. D. Gilchrist, & S. Everling (Eds.), Oxford library of psychology.The Oxford handbook of eye movements (pp. 767-786). New York, NY, US: Oxford University Press.

[本文引用: 4]

Reichle, E. D., & Drieghe, D. (2013).

Using E-Z Reader to examine word skipping during reading

Journal of Experimental Psychology: Learning, Memory, and Cognition, 39(4), 1311-1320.

DOI:10.1037/a0030910      URL     PMID:23206168      [本文引用: 1]

The question of why readers sometimes skip words has important theoretical implications for our understanding of perception, cognition, and oculomotor control during reading (Drieghe, Rayner, & Pollatsek, 2005). In this article, the E-Z Reader model of eye-movement control in reading (Reichle, 2011) was used to examine the behavioral consequences of word skipping on fixation durations. The simulations suggest that skipping

Reichle, E. D., Pollatsek, A., Fisher, D. L., & Rayner, K. (1998).

Toward a model of eye movement control in reading

Psychological Review, 105 (1), 125-157.

DOI:10.1037/0033-295x.105.1.125      URL     PMID:9450374      [本文引用: 1]

The authors present several versions of a general model, titled the E-Z Reader model, of eye movement control in reading. The major goal of the modeling is to relate cognitive processing (specifically aspects of lexical access) to eye movements in reading. The earliest and simplest versions of the model (E-Z Readers 1 and 2) merely attempt to explain the total time spent on a word before moving forward (the gaze duration) and the probability of fixating a word; later versions (E-Z Readers 3-5) also attempt to explain the durations of individual fixations on individual words and the number of fixations on individual words. The final version (E-Z Reader 5) appears to be psychologically plausible and gives a good account of many phenomena in reading. It is also a good tool for analyzing eye movement data in reading. Limitations of the model and directions for future research are also discussed.

Risse, S. (2014).

Effects of visual span on reading speed and parafoveal processing in eye movements during sentence reading

Journal of Vision, 14(8), 1-13.

DOI:10.1167/14.8.1      URL     PMID:24986186      [本文引用: 3]

The motor system is tightly linked with perception and cognition. Recent studies have shown that even anticipated biophysical action costs associated with competing response options can be incorporated into decision-making processes. As a result, choices associated with high energy costs are less likely to be selected. However, some action costs may be harder to predict. For example, a person choosing among apples at a grocery store may change his or her mind suddenly about which apple to put into the cart. This change of mind may be reflected in motor output as the initial decision triggers a motor response toward a Granny Smith that is subsequently redirected toward a Red Delicious. In the present study, to examine how motor costs associated with changes of mind affect perceptual decision making, participants performed a difficult random dot-motion discrimination task in which they had to indicate the direction of motion by reaching to one of two response options. Although each response box was always equidistant from the starting position, the physical distance between the two response options was varied. We found that when the boxes were far apart from one another, and thus changes of mind incurred greater redirection motor costs, change-of-mind frequency decreased while latency to initiate movement increased. This occurred even when response box distance varied randomly from trial to trial and was cued only 1 s before each trial began. Thus, we demonstrated that observers can dynamically adjust perceptual decision-making processes to avoid high motor costs incurred by a change of mind.

Schotter, E. R., Angele, B., & Rayner, K. (2012).

Parafoveal processing in reading

Attention, Perception, & Psychophysics, 74(1), 5-35.

[本文引用: 3]

Taylor, J. N., & Perfetti, C. A. (2016).

Eye movements reveal readers' lexical quality and reading experience

Reading and Writing, 29(6), 1069-1103.

[本文引用: 3]

Vasilev, M. R., Slattery, T. J., Kirkby, J. A., & Angele, B. (2018).

What are the costs of degraded parafoveal previews during silent reading?

Journal of Experimental Psychology: Learning, Memory, and Cognition, 44(3), 371-386.

DOI:10.1037/xlm0000433      URL     PMID:28661179      [本文引用: 2]

It has been suggested that the preview benefit effect is actually a combination of preview benefit and preview costs. Marx et al. (2015) proposed that visually degrading the parafoveal preview reduces the costs associated with traditional parafoveal letter masks used in the boundary paradigm (Rayner, 1975), thus leading to a more neutral baseline. We report 2 experiments of skilled adults reading silently. In Experiment 1, we found no compelling evidence that degraded previews reduced processing costs associated with traditional letter masks. Moreover, participants were highly sensitive to detecting degraded display changes. Experiment 2 used the boundary detection paradigm (Slattery, Angele, & Rayner, 2011) to explore whether participants were capable of detecting actual letter changes or if they were responding purely to changes in degradation. Half of the participants were instructed to respond to any noticed display changes; the other half were instructed to respond only to changes in letter identities. Participants were highly sensitive to degraded changes. In fact, these changes were so apparent that they reduced the sensitivity to letter masks. In the context of the model proposed by Angele, Slattery, and Rayner (2016), we suggest that degraded previews interfere with the attentional stage, as evidenced by the general lack of foveal load effects. In summary, we found that increasingly degrading parafoveal letter masks does not reduce their processing costs in adults, but that both degraded valid and invalid previews introduce additional costs in terms of greater display change awareness. (PsycINFO Database Record

Veldre, A., & Andrews, S. (2014).

Lexical quality and eye movements: Individual differences in the perceptual span of skilled adult readers

Quarterly Journal of Experimental Psychology, 67(4), 703-727.

[本文引用: 2]

Veldre, A., & Andrews, S. (2015a).

Parafoveal lexical activation depends on skilled reading proficiency

Journal of Experimental Psychology: Learning, Memory, and Cognition, 41(2), 586-595.

DOI:10.1037/xlm0000039      URL     PMID:25068856      [本文引用: 2]

The boundary paradigm was used to investigate individual differences in the extraction of lexical information from the parafovea in sentence reading. The preview of a target word was manipulated so that it was identical (e.g., sped), a higher frequency orthographic neighbor (seed), a nonword neighbor (sted), or an all-letter-different nonword (glat). Ninety-four skilled adult readers were assessed on measures of reading and spelling ability. The results showed that null effects of preview lexical status in the average data obscured systematic differences on the basis of proficiency and target neighborhood density. For targets from dense neighborhoods, inhibition from a higher frequency neighbor preview occurred among highly proficient readers, and particularly those with superior spelling ability, in early fixation measures. Poorer readers showed inhibition only in second-pass reading of the target. These data suggest that readers with precise lexical representations are more likely to extract lexical information from a word before it is fixated. The implications for computational models of eye movements in reading are discussed.

Veldre, A., & Andrews, S. (2015b).

Parafoveal preview benefit is modulated by the precision of skilled readers' lexical representations

Journal of Experimental Psychology: Human Perception and Performance, 41(1), 219-232.

DOI:10.1037/xhp0000017      URL     PMID:25384238      [本文引用: 6]

In skilled reading, the processing of an upcoming word often begins in the parafovea, that is, before the word is fixated. This study investigated whether the extraction and use of multiple sources of information about an upcoming word depends on reading skill. The eye movements of 107 skilled adult readers, assessed on measures of reading and spelling ability, were recorded. The gaze-contingent boundary paradigm was used to manipulate the preview of a target word's identity and length in sentences with low- or high-frequency pretarget words. Across all first-pass reading measures, superior reading ability was associated with a larger preview benefit, but only among readers with high spelling ability, suggesting that the orthographic precision of a reader's stored lexical representations influences the extraction of parafoveal information. There was also evidence that the highly skilled reader/spellers' parafoveal processing advantage derived partly from their efficient foveal processing. Finally, in first fixations on the target, increased preview benefit for highly skilled reader/spellers was restricted to accurate length previews, suggesting that readers with precise lexical representations use upcoming word length in combination with parafoveal orthographic information to narrow down potential lexical candidates. The implications of these results for computational models of eye movements are discussed.

Veldre, A., & Andrews, S. (2018).

How does foveal processing difficulty affect parafoveal processing during reading?

Journal of Memory and Language, 103, 74-90.

DOI:10.1016/j.jml.2018.08.001      URL     [本文引用: 4]

Wang, A. P., Zhou, W., Shu, H., & Yan, M. (2014).

Reading proficiency modulates parafoveal processing efficiency: Evidence from reading Chinese as a second language

Acta Psychologica, 152, 29-33.

DOI:10.1016/j.actpsy.2014.07.010      URL     [本文引用: 2]

In the present study, we manipulated different types of information available in the parafovea during the reading of Chinese sentences and examined how native Korean readers who learned Chinese as a second language make use of the parafoveal information. Results clearly indicate that, only identical and orthographically similar previews facilitated processing of the target words when they were subsequently fixated. More critically, more parafoveal information was obtained by subjects with higher reading proficiency. These results suggest that, mainly low-level features of the parafoveal words are obtained by the non-native Chinese readers and less attentional resources are available for the readers with lower reading proficiency, thereby causing a reduction of the perceptual span. (C) 2014 Elsevier B.V.

Wang, Y. S., Zhao, B. J., Chen, M. J., Li, X., Yan, G. L., & Bai, X. J. (2018).

Influence of the frequency of fixated words and the number of strokes of parafoveal words on saccadic target selection in Chinese reading

Acta Psychologica Sinica, 50(12), 1336-1345.

[本文引用: 5]

[ 王永胜, 赵冰洁, 陈茗静, 李馨, 闫国利, 白学军. (2018).

中央凹加工负荷与副中央凹信息在汉语阅读眼跳目标选择中的作用

心理学报, 50(12), 1336-1345.]

[本文引用: 5]

White, S. J., Rayner, K., & Liversedge, S. P. (2005).

Eye movements and the modulation of parafoveal processing by foveal processing difficulty: A reexamination

Psychonomic Bulletin & Review, 12, 891-896.

DOI:10.3758/bf03196782      URL     PMID:16524007      [本文引用: 2]

Henderson and Ferreira (1990) found that foveal load (manipulated via word frequency) modulates parafoveal processing, thereby affecting the amount of preview benefit obtained from the word to the right of fixation. The present experiment used the eye-contingent boundary paradigm and, consistent with Henderson and Ferreira, showed that foveal load modulated preview benefit for participants who were not aware of the display changes during reading. Also, for these participants, foveal load modulated preview benefit regardless of fixation durations on the foveal word. For participants who were aware of the display change, preview benefits occurred regardless of foveal processing difficulty. These results have important implications for understanding the way in which foveal load influences parafoveal processing during reading.

Yan, G. L., Li, S. N., Wang, Y. L., Liu, M., & Wang, L. H. (2018).

The perceptual span of Chinese second graders

Journal of Psychological Science, 41(4), 849-855.

[本文引用: 1]

[ 闫国利, 李赛男, 王亚丽, 刘敏, 王丽红. (2018).

小学二年级学生汉语阅读知觉广度的眼动研究

心理科学, 41(4), 849-855.]

[本文引用: 1]

Yan, G. L., Wang, L. H., Wu, J. G., & Bai, X. J. (2011).

The perceptual span and parafoveal preview effect of fifth graders and college students: An eye movement study

Acta Psychologica Sinica, 43(3), 249-263.

[本文引用: 1]

[ 闫国利, 王丽红, 巫金根, 白学军. (2011).

不同年级学生阅读知觉广度及预视效益的眼动研究

心理学报, 43(3), 249-263.]

[本文引用: 1]

Yan, G. L., Xiong, J. P., & Bai, X. J. (2008).

Eye movement studies on the perceptual span of Chinese reading by fifth graders

Psychological Development and Education, 24(1), 72-77.

[本文引用: 1]

[ 闫国利, 熊建萍, 白学军. (2008).

小学五年级学生汉语阅读知觉广度的眼动研究

心理发展与教育, 24(1), 72-77.]

[本文引用: 1]

Yan, G. L., Xiong, J. P., Zang, C. L., Yu, L. L., Cui, L., & Bai, X. J. (2013).

Review of eye-movement measures in reading research

Advances in Psychological Science, 21(4), 589-605.

[本文引用: 2]

[ 闫国利, 熊建萍, 臧传丽, 余莉莉, 崔磊, 白学军. (2013).

阅读研究中的主要眼动指标评述

心理科学进展, 21(4), 589-605.]

[本文引用: 2]

Yan, M. (2015).

Visually complex foveal words increase the amount of parafoveal information acquired

Vision research, 111, 91-96.

DOI:10.1016/j.visres.2015.03.025      URL     PMID:25911574      [本文引用: 1]

This study investigates the effect of foveal load (i.e., processing difficulty of currently fixated words) on parafoveal information processing. Contrary to the commonly accepted view that high foveal load leads to reduced parafoveal processing efficiency, results of the present study showed that increasing foveal visual (but not linguistic) processing load actually increased the amount of parafoveal information acquired, presumably due to the fact that longer fixation duration on the pretarget word provided more time for parafoveal processing of the target word. It is therefore proposed in the present study that foveal linguistic processing load is not the only factor that determines parafoveal processing; preview time (afforded by foveal word visual processing load) may jointly influence parafoveal processing.

Zang, C. L., Fu, Y., Bai, X. J., Yan, G. L., & Liversedge, S. P. (2018).

Investigating word length effects in Chinese reading

Journal of Experimental Psychology: Human Perception and Performance, 44(12), 1831-1841.

DOI:10.1037/xhp0000589      URL     PMID:30475051      [本文引用: 1]

A word's length in English is fundamental in determining whether readers fixate it, and how long they spend processing it during reading. Chinese is unspaced, and most words are two characters long: Is word length an important cue to eye guidance in Chinese reading? Eye movements were recorded as participants read sentences containing a one-, two-, or three-character word matched for frequency. Results showed that longer words took longer to process (primarily driven by refixations). Furthermore, skips were fewer, incoming saccades longer, and landing positions further to the right of long than short words. Additional analyses of a three-character region (matched stroke number) showed an incremental processing cost when character(s) belonged to different, rather than the same, word. These results demonstrate that word length affects both lexical identification and saccade target selection in Chinese reading. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

Zang, C. L., Zhang, M. M., Bai, X. J., Yan, G. L., Paterson, K. B., & Liversedge, S. P. (2016).

Effects of word frequency and visual complexity on eye movements of young and older Chinese readers

Quarterly Journal of Experimental Psychology, 69(7), 1409-1425.

[本文引用: 2]

Zhang, M. M., Liversedge, S. P., Bai, X. J., Yan, G. L., & Zang, C. L. (2019).

The influence of foveal lexical processing load on parafoveal preview and saccadic targeting during Chinese reading

Journal of Experimental Psychology: Human Perception and Performance, 45(6), 812-825.

DOI:10.1037/xhp0000644      URL     PMID:31120302      [本文引用: 5]

Whether increased foveal load causes a reduction of parafoveal processing remains equivocal. The present study examined foveal load effects on parafoveal processing in natural Chinese reading. Parafoveal preview of a single-character parafoveal target word was manipulated by using the boundary paradigm (Rayner, 1975; pseudocharacter or identity previews) under high foveal load (low-frequency pretarget word) compared with low foveal load (high-frequency pretarget word) conditions. Despite an effective manipulation of foveal processing load, we obtained no evidence of any modulatory influence on parafoveal processing in first-pass reading times. However, our results clearly showed that saccadic targeting, in relation to forward saccade length from the pretarget word and in relation to target word skipping, was influenced by foveal load and this influence occurred independent of parafoveal preview. Given the optimal experimental conditions, these results provide very strong evidence that preview benefit is not modulated by foveal lexical load during Chinese reading. (PsycINFO Database Record (c) 2019 APA, all rights reserved).

/


版权所有 © 《心理学报》编辑部
地址:北京市朝阳区林萃路16号院 
邮编:100101 
电话:010-64850861 
E-mail:xuebao@psych.ac.cn
备案编号:京ICP备10049795号-1 京公网安备110402500018号

本系统由北京玛格泰克科技发展有限公司设计开发