Please wait a minute...
心理学报  2019, Vol. 51 Issue (11): 1187-1197    DOI: 10.3724/SP.J.1041.2019.01187
  研究报告 本期目录 | 过刊浏览 | 高级检索 |
掩蔽刺激对目标识别加工的作用:来自fNIRS的证据
杨海波1,2,3,刘和珺2,章鹏2,李量4()
1. 教育部人文社会科学重点研究基地天津师范大学心理与行为研究院, 天津 30074
2. 天津师范大学心理学部, 天津 30387
3. 国民心理健康评估与促进协同创新中心, 天津 30074
4. 北京大学心理与认知科学学院, 北京 100080
The role of masking stimulation in target recognition processing: Evidence from fNIRS
YANG Haibo1,2,3,LIU Hejun2,ZHANG Peng2,LI Liang4()
1. Key Research Base of Humanities and Social Sciences of the Ministry of Education, Academy of Psychology and Behavior, Tianjin Normal University, Tianjin 300074, China
2. Faculty of Psychology, Tianjin Normal University, Tianjin 300387, China
3. Center of Collaborative Innovation for Assessment and Promotion of Mental Health, Tianjin 300074, China
4. School of Psychological and Cognitive Sciences, Peking University, Beijing 100080, China
全文: PDF(8556 KB)   HTML 评审附件 (1 KB) 
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 

信息掩蔽刺激(如随机字母群)对字母视觉搜索的干扰大于能量掩蔽刺激(如将字母群像素随机化后的散点), 但相应的中枢机理还不清楚。本研究采用记录脑代谢激活模式的功能性近红外光学脑成像技术(fNIRS), 考察年轻成年被试分别在字母掩蔽、字母碎片掩蔽、像素掩蔽条件下判断上、下、左、右四个目标字母是否相同时的大脑皮层氧合血红蛋白浓度的变化。结果显示, 依字母、字母碎片、随机散点掩蔽条件顺序, 被试的搜索任务成绩显著递增, 而顶-枕皮层的激活范围与程度显著递减, 表明信息掩蔽较匹配的能量掩蔽对视觉搜索有更大的干扰作用, 并在初级和联合视觉皮层引发更大的激活。在字母碎片掩蔽条件下, 视觉初级皮层部分区域的激活水平与搜索行为绩效的相关显著, 而在字母掩蔽条件下, 视觉联合皮层部分区域的激活水平与搜索行为绩效的相关显著。这进一步说明信息掩蔽中的字母掩蔽和字母碎片掩蔽的掩蔽作用在大脑皮层上所造成的加工负载存在差异。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词 视觉掩蔽视觉搜索近红外脑功能成像顶枕叶    
Abstract

When our visual system processes target signals, it usually receives large amounts of irrelevant information from the target, leading to a reduction in the visibility of the target. A wealth of research has shown that visual search for target letters against a masking background is largely determined by the masker type. Informational maskers, such as either randomly positioned and oriented letters or randomly distributed letter fragments, induce stronger masking effects on recognition of target letters than the energetic maskers do, such as the random-phase masker (same spectral amplitude composition as the letter masker but with the phase spectrum randomized) or the random-pixel masker (the locations of the letter maskers’ pixel amplitudes being randomized). However, the mechanisms under informational masking and those under energetic masking are still unknown.

The current study examined both cortical activities and behavioral performances in the visual search task, which is determined by whether one of four letters presented at four symmetrically-located positions differs from the others under three masking conditions (random pixels, letter fragments, and random letters). Both the oxygenated hemoglobin concentration (HbO) responses in the primary visual cortex (V1) and secondary visual cortex (V2) with a functional near infrared spectroscopy (fNIRS) were recorded. Twenty (4 males, 16 females) healthy adults (mean age: 22.5 ± 1.67 years) participated in the experiment. Each masking condition contained 5 blocks, and each block contained 8 trails. There was a resting phase of 20 seconds between the two blocks. Spatial registration methods were applied to localize the cortical regions underneath each channel and to define two regions of interest (ROIs), which are the primary visual cortex (V1) and secondary visual cortex (V2).

The behavioral results showed that the performance of recognizing target letters improved when the masker type shifted from random letters to letter fragments and to random pixels, suggesting that the letter masker interfered the most with performance than the letter fragment and random-pixel maskers. The random-pixel masker caused the least masking effect. The fNIRS results showed that both letter masker and letter-fragment masker produced an increase in cortical oxygen level. Many regions of interest (ROIs), particularly the visual cortex (including V1 and V2), were more activated under the letter or the letter-fragment masking condition compared to the random-pixel masking condition. Moreover, the differences in cortical activation between the masking conditions further suggested that the V1 and V2 are the critical brain regions involved in visual letter search and informational masking of letter recognition.

To summarize, this study used fNIRS to explore the cortex activation patterns of different types of masking on target recognition. The results showed that information masking had much more interference on visual search and caused greater processing loads in primary and secondary visual cortex, compared with energy masking under the same conditions. Furthermore, the differences between letter fragments masking and letters masking are reflected in the activation mode of V1 and V2 regions.

Key wordsvisual masking    visual research    functional near infrared spectroscopy (fNIRS)    parietal-occipital cortices
收稿日期: 2018-10-08      出版日期: 2019-09-24
中图分类号:  B842  
基金资助:*全国教育科学规划教育部重点课题“创伤后应激障碍中学生注意偏向的心理机制研究”(DBA150235)
通讯作者: 李量     E-mail: liangli@pku.edu.cn
引用本文:   
杨海波,刘和珺,章鹏,李量. (2019). 掩蔽刺激对目标识别加工的作用:来自fNIRS的证据. 心理学报, 51(11): 1187-1197.
YANG Haibo,LIU Hejun,ZHANG Peng,LI Liang. (2019). The role of masking stimulation in target recognition processing: Evidence from fNIRS. Acta Psychologica Sinica, 51(11), 1187-1197.
链接本文:  
http://journal.psych.ac.cn/xlxb/CN/10.3724/SP.J.1041.2019.01187      或      http://journal.psych.ac.cn/xlxb/CN/Y2019/V51/I11/1187
[1] Breitmeyer, B. G . (2008). Visual masking: Past accomplishments, present status, future developments. Advances in Cognitive Psychology, 3(1-2), 9-20. doi: 10. 2478/v10053-008-0010-7
[2] Brigadoi, S., Ceccherini, L., Cutini, S., Scarpa, F., Scatturin, P., Selb, J., … Cooper, R. J . (2014). Motion artifacts in functional near-infrared spectroscopy: A comparison of motion correction techniques applied to real cognitive data. Neuroimage, 85(1), 181-191. doi: 10.1016/j.neuroimage.2013.04.082
[3] Bonner, M. F., Vesely, L., Price, C., Anderson, C., Richmond, L., Farag, C., .. Grossman, M . (2009). Reversal of the concreteness effect in semantic dementia. Cognitive Neuropsychology, 26(6), 568-579. doi: 10.1080/02643290903512305
[4] Cai, T. T., Zhu, H. L., Xu, J., Wu, S. J., Li, X. G., & He, S. L . (2017). Human cortical neural correlates of visual fatigue during binocular depth perception: An fNIRS study. PLoS One, 12(2), 1-16. doi: 10.1371/journal.pone.0172426
[5] Calvert, G. A., & Thesen, T. (2004). Multisensory integration: methodological approaches and emerging principles in the human brain. Journal of Physiology-Paris, 98(1-3), 191-205. doi: 10.1016/j.jphysparis.2004.03.018
[6] Chen, M. L . (2012). Disparity-based binocular unmasking effect in complex visual scenes (Unpublished master's thesis). Peking University.
[7] [ 陈明立 . (2012). 复杂环境下基于立体视觉的双眼去掩蔽效应 (硕士学位论文). 北京大学.]
[8] Chen, M. L., Zhang, C. X., Yang, S. J., Mao, L. H., Tian, Y. H., Huang, T. J., … Li, L . (2012). Stereopsis-based binocular unmasking. Advances in Psychological Science, 20(9), 1355-1363.
[9] [ 陈明立, 张畅芯, 杨少娟, 毛利华, 田永鸿, 黄铁军, …李量 . (2012). 基于双眼视差的立体视觉去掩蔽效应. 心理科学进展, 20(9), 1355-1363.]
[10] Chubb, C., Olzak, L., & Derrington, A . (2001). Second-order processes in vision: Introduction. Journal of the Optical Society of America A, 18(9), 2175-2178. doi: 10.1364/josaa. 18.002175
[11] Durantin, G., Gagnon, J. -F., Tremblay, S., & Dehais, F . (2014). Using near infrared spectroscopy and heart rate variability to detect mental overload. Behavioural Brain Research, 259, 16-23. doi: 10.1016/j.bbr.2013.10.042
[12] Durantin, G., Scannella, S., Gateau, T., Delorme, A., & Dehais, F . (2016). Processing functional near infrared spectroscopy signal with a Kalman filter to assess working memory during simulated flight. Frontiers in human neuroscience, 9, 707. doi: 10.3389/fnhum.2015.00707
[13] Fahrenfort, J. J., Scholte, H. S., & Lamme, V.. A. F .(2007). Masking disrupts reentrant processing in human visual cortex. Journal of Cognitive Neuroscience, 19(9), 1488-1497. doi: 10.1162/jocn.2007.19.9.1488
[14] Gao, Y. Y., Schneider, B., & Li, L . (2017). The effects of the binocular disparity differences between targets and maskers on visual search. Attention, Perception, & Psychophysics, 79(2), 459-472. doi: 10.3758/s13414-016-1252-y
[15] Herrmann, M. J., Neueder, D., Troeller, A. K., & Schulz, S. M . (2016). Simultaneous recording of EEG and fNIRS during visuo-spatial and facial expression processing in a dual task paradigm. International Journal of Psychophysiology, 109, 21-28. doi: 10.1016/j.ijpsycho.2016.09.013
[16] Hoshi, Y., Kobayashi, N., & Tamura, M . (2001). Interpretation of near-infrared spectroscopy signals: A study with a newly developed perfused rat brain model. Journal of Applied Physiology, 90(5), 1657-1662. doi: 10.1152/jappl.2001. 90.5.1657
[17] Jang, K. E., Tak, S., Jung, J., Jang, J., Yong, J., & Ye, J. C . (2009). Wavelet minimum description length detrending for near-infrared spectroscopy. Journal of Biomedical Optics, 14(3), 1-13. doi: 10.1117/1.3127204
[18] Kok, P., & de, Lange, Floris, P . (2014). Shape perception simultaneously up- and downregulates neural activity in the primary visual cortex. Current Biology, 24(13), 1531-1535. doi: https://doi.org/10.1016/j.cub.2014.05.042
[19] Lane, C., Kanjlia, S., Richardson, H., Fulton, A., Omaki, A., & Bedny, M . (2017). Reduced left lateralization of language in congenitally blind individuals. Journal of Cognitive Neuroscience, 29(1), 65-78. doi: 10.1162/jocn_a_01045
[20] Lavie, N., Hirst, A., de Fockert, J. W., & Viding, E . (2004). Load theory of selective attention and cognitive control. Journal of Experimental Psychology: General, 133(3), 339-354. doi: 10.1037/0096-3445.133.3.339
[21] Liu, B. G., Zhou, J., & Li, F. F . (2011). Functional near-infrared spectroscopy: An emerging functional neuroimaging technology. Journal of Psychological Science, 34(4), 943-949.
[22] [ 刘宝根, 周兢, 李菲菲 . (2011). 脑功能成像的新方法——功能性近红外光谱技术(fNIRS). 心理科学, 34(4), 943-949.]
[23] Mattys, S. L., Brooks, J., & Cooke, M . (2009). Recognizing speech under a processing load: Dissociating energetic from informational factors. Cognitive Psychology, 59(3), 203-243. doi: 10.1016/j.cogpsych.2009.04.001
[24] McIntosh, M. A., Shahani, U., Boulton, R. G., & McCulloch, D. L . (2010). Absolute quantification of oxygenated hemoglobin within the visual cortex with functional near infrared spectroscopy (fNIRS). Investigative Ophthalmology & Visual Science, 51, 4856-4860. doi: 10.1167/iovs.09-4940
[25] Noble, W. S . (2009). How does multiple testing correction work? Nature Biotechnology, 27, 1135-1137. doi: 10.1038/nbt1209-1135
[26] Paas, F.,., & Sweller, J. (2012). An evolutionary upgrade of cognitive load theory: Using the human motor system and collaboration to support the learning of complex cognitive tasks. Educational Psychology Review, 24(1), 27-45. doi: 10.1007/s10648-011-9179-2
[27] Pelli, D. G., Palomares, M., & Majaj, N. J . (2004). Crowding is unlike ordinary masking: Distinguishing feature integration from detection. Journal of Vision, 4(12), 1136-1169. doi: 10.1167/4.12.12
[28] Rabaglia, C. D., & Schneider, B. A . (2016). Age-related inhibitory deficit, or lack of familiarity benefit? Evidence from letter identification among visual distractors. Attention, Perception, & Psychophysics, 78(2), 542-565. doi: 10.3758/s13414-015-1009-z
[29] Rowland, S. C., Hartley, D. E. H., & Wiggins, I. M . (2018). Listening in naturalistic scenes: What can functional near-infrared spectroscopy and intersubject correlation analysis tell us about the underlying brain activity? Trends in Hearing, 22 . doi: 10.1177/2331216518804116
[30] Simons, J. S., Koutstaal, W., Prince, S., Wagner, A. D., & Schacter, D. L . (2003). Neural mechanisms of visual object priming: Evidence for perceptual and semantic distinctions in fusiform cortex. Neuroimage, 19(3), 613-626. doi: 10.1016/s1053-8119(03)00096-x
[31] Tse, P. U., Martinez-Conde, S., Schlegel, A. A., & Macknik, S. L . (2005). Visibility, visual awareness, and visual masking of simple unattended targets are confined to areas in the occipital cortex beyond human V1/V2. Proceedings of the National Academy of Sciences of the United States of America, 102(47), 17178-17183. doi: 10.1073/pnas. 0508010102
[32] Tsubomi, H., Ikeda, T., Hanakawa, T., Hirose, N., Fukuyama, H., & Osaka, N . (2009). Connectivity and signal intensity in the parieto-occipital cortex predicts top-down attentional effect in visual masking: An fMRI study based on individual differences. Neuroimage, 45(2), 587-597. doi: https://doi.org/10.1016/j.neuroimage.2008.11.028
[33] Ward, L. M., Aitchison, R. T., Tawse, M., Simmers, A. J., & Shahani, U . (2015). Reduced haemodynamic response in the ageing visual cortex measured by absolute fNIRS. PLoS One, 10, 1-16. doi: 10.1371/journal.pone.0125012
[34] Wardle, S. G., Cass, J., Brooks, K. R., & Alais, D . (2010). Breaking camouflage: Binocular disparity reduces contrast masking in natural images. Journal of Vision, 10(14), 1-12. doi: 10.1167/10.14.38
[35] Wijeakumar, S., Shahani, U., McCulloch, D. L., & Simpson, W. A . (2012). Neural and vascular responses to fused binocular stimuli: A VEP and fNIRS study. Investigative Ophthalmology & Visual Science, 53(9), 5881-5889. doi: 10.1167/iovs.12-10399
[36] Wijeakumar, S., Shahani, U., Simpson, W. A., & McCulloch, D. L . (2012). Localization of hemodynamic responses to simple visual stimulation: An fNIRS study. Investigative Ophthalmology & Visual Science, 53(4), 2266-2273. doi: 10.1167/iovs.11-8680
[37] Worsley, K. J., Friston, K. J . (1995). Analysis of fMRI time-series revisited - Again. Neuroimage, 2(3), 173-181. doi: 10.1006/nimg.1995.1023
[38] Yan, G. L., Bai, X. J., Zang, C. L., Bian, Q., Cui, L., Wei, Q., … Liversedge, S. P . (2012). Using stroke removal to investigate Chinese character identification during reading: Evidence from eye movemwnts. Reading and Writing, 25(5), 951-979. doi: 10.1007/s11145-011-9295-x
[39] Yang, Z. G., Zhang, T. T., Song, Y. W., & Li, L . (2014). The subcomponents of informational masking: Evidence from behavioral and neural imaging studies. Advances in Psychological Science, 22(3), 400-408.
[40] [ 杨志刚, 张亭亭, 宋耀武, 李量 . (2014). 听觉信息掩蔽的亚成分:基于行为和脑成像研究的证明. 心理科学进展, 22(3), 400-408.]
[41] Ye, J. C., Tak, S., Jang, K. E., Jung, J., & Jang, J . (2009). NIRS-SPM: Statistical parametric mapping for near-infrared spectroscopy. Neuroimage, 44(2), 428-447. doi: 10.1016/j.neuroimage.2008.08.036
[1] 胡晶晶,徐昊骙,曹立人. 感觉记忆中含语义对象的视觉表征[J]. 心理学报, 2019, 51(9): 982-991.
[2] 孙俊才,寻凤娇,刘萍,张文海. 高善良特质在情绪调节行动控制中的内隐优势[J]. 心理学报, 2019, 51(7): 781-794.
[3] 袁小钧, 崔晓霞, 曹正操, 阚红, 王晓, 汪亚珉. 虚拟仿真场景中威胁性视觉刺激搜索的注意偏向效应[J]. 心理学报, 2018, 50(6): 622-636.
[4] 李毕琴, 李玲, 王爱君, 张明.  言语工作记忆内容在语义水平的注意捕获[J]. 心理学报, 2018, 50(5): 483-493.
[5] 谭群,尹月阳,刘燊,韩尚锋,徐强,张林. 自我积极表情加工优势效应:来自ERPs的证据[J]. 心理学报, 2018, 50(10): 1120-1130.
[6] 李杨卓, 钱浩悦, 朱敏, 高湘萍.  自我相关信息对视觉搜索主动抑制的易化作用[J]. 心理学报, 2018, 50(1): 28-35.
[7] 张豹;胡岑楼;黄赛. 认知控制在工作记忆表征引导注意中的作用:来自眼动的证据[J]. 心理学报, 2016, 48(9): 1105-1118.
[8] 牟兵兵;宛小昂. 视觉搜索中的情绪干扰项预习效应[J]. 心理学报, 2014, 46(11): 1603-1612.
[9] 林欧;王正科;孟祥芝. 汉语发展性阅读障碍儿童的视知觉学习[J]. 心理学报, 2013, 45(7): 762-772.
[10] 张豹;黄赛;祁禄. 工作记忆表征引导视觉注意选择的眼动研究[J]. 心理学报, 2013, 45(2): 139-148.
[11] 李富洪,曹碧华,肖风,李红. 抑制控制在极小概率目标搜索任务中的作用[J]. 心理学报, 2011, 43(05): 509-518.
[12] 李彬寅,许百华,崔翔宇,盛,峰,雷婧宇. 图像记忆对动态搜索的影响[J]. 心理学报, 2010, 42(04): 485-495.
[13] 马艳云. 方位维度视觉搜索的影响因素[J]. 心理学报, 2007, 39(02): 209-214.
[14] 胡凤培,葛列众,徐伟丹. 项目突显方式对视觉搜索策略的影响[J]. 心理学报, 2005, 37(03): 314-319.
[15] 许淑莲,吴志平,吴振云,孙长华. 成年人个性特征与某些认知作业的关系[J]. 心理学报, 2000, 32(03): 276-281.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《心理学报》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn