[1] Auerswald, M., & Moshagen, M. (2019). How to determine the number of factors to retain in exploratory factor analysis: A comparison of extraction methods under realistic conditions.Psychological Methods, 24(4), 468-491. [2] Bergstra, J., & Bengio, Y. (2012). Random search for hyper- arameter optimization.Journal of Machine Learning Research, 13, 281-305. [3] Braeken, J., & van Assen, M. A. (2017). An empirical Kaiser criterion.Psychological Methods, 22(3), 450-466. [4] Brownlee, J. (2018). Deep Learning for Time Series Forecasting: Predict the Future with MLPs, CNNs and LSTMs in Python. Machine Learning Mastery. [5] Chen S., Abhinav S., Saurabh S., & Abhinav G. (2017). Revisiting unreasonable effectiveness of data in deep learning era.arXiv preprint:1707.02968. [6] DeepSeek-AI, Liu A., Feng B., Xue B., Wang B., Wu B., .. Pan Z. (2024). DeepSeek-V3 technical report.arXiv preprint: 2412.19437. [7] Deng Y., Gao X., Xu C., Sun Z., Yue Y., & Liu X. (2019). Reliability and validity test of Dependency-Oriented and Achievement-Oriented Psychological Control Scale in Chinese adolescents.Chinese Journal of Clinical Psychology, 27(2), 253-257. [邓衍鹤, 高芯芸, 徐陈晰, 孙治英, 岳艳春, 刘翔平. (2019). 依赖导向与成就导向心理控制量表修订版在我国青少年中的信效度检验.中国临床心理学杂志, 27(2), 253-257.] [8] de Winter, J. C., & Dodou, D. (2012). Factor recovery by principal axis factoring and maximum likelihood factor analysis as a function of factor pattern and sample size. Journal of Applied Statistics, 39(4), 695-710. [9] Dinno, A. (2009). Exploring the sensitivity of Horn’s parallel analysis to the distributional form of random data. Multivariate Behavioral Research, 44(3), 362-388. [10] Fava, J. L., & Velicer, W. F. (1996). The effects of underextraction in factor and component analyses. Educational and Psychological Measurement, 56(6), 907-929. [11] Goodfellow I., Bengio Y., & Courville, A. (2016). Deep learning. MIT Press.. [12] Goretzko, D. (2025). How many factors to retain in exploratory factor analysis? A critical overview of factor retention methods. Psychological Methods, https://doi.org/0.1037/met0000733. [13] Goretzko, D., & Bühner, M. (2020). One model to rule them all? Using machine learning algorithms to determine the number of factors in exploratory factor analysis.Psychological Methods, 25(6), 776-786. [14] Goretzko, D., & Bühner, M. (2022). Factor retention using machine learning with ordinal data.Applied Psychological Measurement, 46(5), 406-421. [15] Goretzko, D., & Ruscio, J. (2024). The comparison data forest: A new comparison data approach to determine the number of factors in exploratory factor analysis.Behavior Research Methods, 56(3), 1838-1851. [16] Heaton, J. (2008). Introduction to neural networks with Java (2nd ed., pp. 143-172). Heaton Research, Inc. [17] Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory.Neural Computation, 9(8), 1735-1780. [18] Horn, J. L. (1965). A rationale and test for the number of factors in factor analysis.Psychometrika, 30(2), 179-185. [19] Humphreys, L. G., & Montanelli, R. G. (1975). An investigation of the parallel analysis criterion for determining the number of common factors. Multivariate Behavioral Research, 10(2), 193-205. [20] Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing internal covariate shift.arXiv preprint:1502.03167. [21] Kaiser, H. F. (1960). The application of electronic computers to factor analysis.Educational and Psychological Measurement, 20, 141-151. [22] Kalinowski T., Ushey K., Allaire J. J., RStudio, Tang Y., Eddelbuettel D., .. Geelnard M. (2025). reticulate: Interface to Python. R package version 1.42.0. https://ran.r-project.org/web/packages/reticulate/index.html [23] Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization.arXiv preprint: 1412.6980. [24] Lange S., Helfrich K., & Ye Q. (2022). Batch normalization preconditioning for neural network training.Journal of Machine Learning Research, 23(1), 3118-3158. [25] LeCun Y., Bengio Y., & Hinton G. (2015). Deep learning.Nature, 521, 436-444. [26] Li Y., Wen Z., Hau K.-T., Yuan K.-H., & Peng Y. (2020). Effects of cross-loadings on determining the number of factors to retain.Structural Equation Modeling: A Multidisciplinary Journal, 27(6), 841-863. [27] Lorenzo-Seva U., Timmerman M. E., & Kiers H. A. (2011). The Hull method for selecting the number of common factors.Multivariate Behavioral Research, 46(2), 340-364. [28] Marčenko, V. A., & Pastur, L. A. (1967). Distribution of eigenvalues for some sets of random matrices.Mathematics of the USSR-Sbornik, 1, 457-483. [29] Nair, V., & Hinton, G. E. (2010). Rectified linear units improve restricted Boltzmann machines. In Proceedings of the 27th International Conference on Machine Learning (ICML-10)(pp. 807-814). Omnipress. [30] Peres-Neto P. R., Jackson D. A., & Somers K. M. (2005). How many principal components? Stopping rules for determining the number of non-trivial axes revisited. Computational Statistics & Data Analysis, 49(4), 974-997. [31] Qin, H., & Guo, L. (2024). Using machine learning to improve Q-matrix validation.Behavior Research Methods, 56(3), 1916-1935. [32] Qin, H., & Guo, L. (2025a). EFAfactors: Determining the number of factors in exploratory factor analysis.R package version 1.2.1. [33] Qin, H., & Guo, L. (2025b). LSTMfactors: Determining the number of factors in exploratory factor analysis by LSTM.R package version 1.0.0. [34] Paszke A., Gross S., Massa F., Lerer A., Bradbury J., Chanan G., .. Chintala S. (2019). PyTorch: An imperative style, high-performance deep learning library. In Proceedings of the 33rd International Conference on Neural Information Processing Systems(pp. Article 721). Curran Associates Inc. [35] Pedregosa F., Varoquaux G., Gramfort A., Michel V., Thirion B., Grisel O., .. Duchesnay É. (2011). Scikit-learn: Machine learning in Python.Journal of Machine Learning Research, 12, 2825-2830. [36] R Core Team. (2025). R: A Language and Environment for Statistical Computing. R Foun dation for Statistical Computing, Vienna, Austria. https://www.R-project.org [37] Ruscio, J., & Kaczetow, W. (2008). Simulating multivariate nonnormal data using an iterative algorithm.Multivariate Behavioral Research, 43(3), 355-381. [38] Ruscio, J., & Roche, B. (2012). Determining the number of factors to retain in an exploratory factor analysis using comparison data of known factorial structure.Psychological Assessment, 24(2), 282-292. [39] Soenens, B., & Vansteenkiste, M. (2010). A theoretical upgrade of the concept of parental psychological control: Proposing new insights on the basis of self-determination theory.Developmental Review, 30(1), 74-99. [40] Velicer, W. F. (1976). Determining the number of components from the matrix of partial correlations.Psychometrika, 41(3), 321-327. [41] Wood J. M., Tataryn D. J., & Gorsuch R. L. (1996). Effects of under- and overextraction on principal axis factor analysis with varimax rotation. Psychological Methods, 1(4), 354-365. [42] Zwick, W. R., & Velicer, W. F. (1986). Comparison of five rules for determining the number of components to retain.Psychological Bulletin, 99(3), 432-442. |