Acta Psychologica Sinica ›› 2020, Vol. 52 ›› Issue (10): 1189-1198.doi: 10.3724/SP.J.1041.2020.01189
• Reports of Empirical Studies • Previous Articles Next Articles
WANG Lijun, SUO Tao(), ZHAO Guoxiang()
Received:
2019-11-25
Published:
2020-10-25
Online:
2020-08-24
Contact:
SUO Tao,ZHAO Guoxiang
E-mail:suotao810815@163.com;zhaogx@henu.edu.cn
Supported by:
WANG Lijun, SUO Tao, ZHAO Guoxiang. (2020). The influence of unaware errors on post-error adjustment: Evidence from electrophysiological analysis. Acta Psychologica Sinica, 52(10), 1189-1198.
Figure 2. The results of post-error adjustment on reaction time (a) and accuracy (b) Note. Panels a and b represent mean reaction time and mean accuracy results, respectively. Black bar indicates the results for trials following aware errors, gray bar indicates the results for trials following unaware errors, and white bar indicates the results for trials following correct hit trials. ms means milliseconds. Error bars denote standard error. Significant differences are indicated by asterisks (* p < 0.05, ** p < 0.01).
Figure 3. Time-frequency results of aware and unaware errors. Note. Panel a shows the grand-average time-frequency representations for aware and unaware errors, the difference time-frequency representations (aware errors minus unaware errors), and the corresponding difference p value (p < 0.05, FDR corrected) within the occipital-parietal region (Pz, P3, P4, POz, PO3 and PO4). The white rectangle shows the time-frequency region of interest alpha band (8-14 Hz, -500 to 500 ms). Panel b shows the top maps of aware and unaware errors, and the different top map between aware and unaware errors. Panel c shows the mean ERSP magnitudes for aware and unaware errors in the alpha band. **p < 0.01.
[1] |
Aston-Jones, G., & Cohen, J. D. (2005). An integrative theory of locus coeruleus-norepinephrine function: Adaptive gain and optimal performance. Annual Review of Neuroscience, 28(1), 403-450.
doi: 10.1146/annurev.neuro.28.061604.135709 URL |
[2] |
Braboszcz, C., & Delorme, A. (2011). Lost in thoughts: Neural markers of low alertness during mind wandering. Neuroimage, 54(4), 3040-3047.
doi: 10.1016/j.neuroimage.2010.10.008 URL |
[3] |
Braver, T. S. (2012). The variable nature of cognitive control: A dual mechanisms framework. Trends in Cognitive Sciences, 16(2), 106-113.
doi: 10.1016/j.tics.2011.12.010 URL |
[4] |
Carp, J., & Compton, R. J. (2009). Alpha power is influenced by performance errors. Psychophysiology, 46(2), 336-343.
doi: 10.1111/j.1469-8986.2008.00773.x URL pmid: 19207203 |
[5] |
Cavanagh, J. F., & Frank, M. J. (2014). Frontal theta as a mechanism for cognitive control. Trends in Cognitive Sciences, 18(8), 414-421.
doi: 10.1016/j.tics.2014.04.012 URL |
[6] |
Chang, A., Ide, J. S., Li, H.-H., Chen, C.-C., & Li, C.-S. R. (2017). Proactive control: Neural oscillatory correlates of conflict anticipation and response slowing. Eneuro, 4(3).
doi: 10.1523/ENEURO.0385-16.2017 URL pmid: 28630892 |
[7] |
Cheyne, J. A., Carriere, J. S. A., Solman, G. J. F., & Smilek, D. (2011). Challenge and error: Critical events and attention- related errors. Cognition, 121(3), 437-446.
doi: 10.1016/j.cognition.2011.07.010 URL |
[8] |
Cohen, M. X., & Cavanagh, J. F. (2011). Single-Trial Regression Elucidates the Role of Prefrontal Theta Oscillations in Response Conflict. Frontiers in Psychology, 2, 30.
doi: 10.3389/fpsyg.2011.00030 URL pmid: 21713190 |
[9] |
Coleman, J. R., Watson, J. M., & Strayer, D. L. (2018). Working memory capacity and task goals modulate error-related ERPs. Psychophysiology, 55(3), e12805.
doi: 10.1111/psyp.2018.55.issue-3 URL |
[10] |
Cooper, P. S., Wong, A. S. W., Fulham, W. R., Thienel, R., Mansfield, E., Michie, P. T., & Karayanidis, F. (2015). Theta frontoparietal connectivity associated with proactive and reactive cognitive control processes. Neuroimage, 108, 354-363.
doi: 10.1016/j.neuroimage.2014.12.028 URL pmid: 25528657 |
[11] |
Di Gregorio, F., Steinhauser, M., & Maier, M. E. (2016). Error-related brain activity and error awareness in an error classification paradigm. Neuroimage, 139, 202-210.
doi: 10.1016/j.neuroimage.2016.05.074 URL pmid: 27296011 |
[12] |
Endrass, T., Reuter, B., & Kathmann, N. (2007). ERP correlates of conscious error recognition: Aware and unaware errors in an antisaccade task. European Journal of Neuroscience, 26(6), 1714-1720.
doi: 10.1111/j.1460-9568.2007.05785.x URL pmid: 17880402 |
[13] |
Godefroid, E., Pourtois, G., & Wiersema, J. R. (2015). Joint effects of sensory feedback and interoceptive awareness on conscious error detection: Evidence from event related brain potentials. Biological Psychology, 114, 49-60.
doi: 10.1016/j.biopsycho.2015.12.005 URL pmid: 26738634 |
[14] |
Hajcak, G., McDonald, N., & Simons, R. F. (2003). To err is autonomic: Error‐related brain potentials, ANS activity, and post‐error compensatory behavior. Psychophysiology, 40(6), 895-903.
doi: 10.1111/1469-8986.00107 URL pmid: 14986842 |
[15] |
Hester, R., Foxe, J. J., Molholm, S., Shpaner, M., & Garavan, H. (2005). Neural mechanisms involved in error processing: A comparison of errors made with and without awareness. Neuroimage, 27(3), 602-608.
doi: 10.1016/j.neuroimage.2005.04.035 URL pmid: 16024258 |
[16] |
Hoonakker, M., Doignon-Camus, N., & Bonnefond, A. (2016). Performance monitoring mechanisms activated before and after a response: A comparison of aware and unaware errors. Biological Psychology, 120, 53-60.
URL pmid: 27568326 |
[17] |
Hwang, K., Ghuman, A. S., Manoach, D. S., Jones, S. R., & Luna, B. (2016). Frontal preparatory neural oscillations associated with cognitive control: A developmental study comparing young adults and adolescents. Neuroimage, 136, 139-148.
doi: 10.1016/j.neuroimage.2016.05.017 URL pmid: 27173759 |
[18] |
Leunissen, I., Coxon, J. P., & Swinnen, S. P. (2016). A proactive task set influences how response inhibition is implemented in the basal ganglia. Human Brain Mapping, 37(12), 4706-4717.
doi: 10.1002/hbm.23338 URL pmid: 27489078 |
[19] |
Liu, P. D., Yang, W. J., Chen, J., Huang, X. T., & Chen, A. (2013). Alertness modulates conflict adaptation and feature integration in an opposite way. PloS One, 8(11), e79146.
doi: 10.1371/journal.pone.0079146 URL pmid: 24250824 |
[20] |
Maier, M. E., Ernst, B., & Steinhauser, M. (2019). Error-related pupil dilation is sensitive to the evaluation of different error types. Biological Psychology, 141, 25-34.
doi: 10.1016/j.biopsycho.2018.12.013 URL pmid: 30597189 |
[21] |
Makeig, S., Debener, S., Onton, J., & Delorme, A. (2004). Mining event-related brain dynamics. Trends in Cognitive Sciences, 8(5), 204-210.
doi: 10.1016/j.tics.2004.03.008 URL |
[22] |
Mouraux, A., & Iannetti, G. D. (2008). Across-trial averaging of event-related EEG responses and beyond. Magnetic Resonance Imaging, 26(7), 1041-1054.
doi: 10.1016/j.mri.2008.01.011 URL |
[23] |
Murphy, P. R., Robertson, I. H., Allen, D., Hester, R., & O'Connell, R. G. (2012). An electrophysiological signal that precisely tracks the emergence of error awareness. Frontiers in Human Neuroscience, 6, 65.
doi: 10.3389/fnhum.2012.00065 URL pmid: 22470332 |
[24] |
Murphy, P. R., Robertson, I. H., Harty, S., & O'Connell, R. G. (2015). Neural evidence accumulation persists after choice to inform metacognitive judgments. eLife, 4, e11946.
doi: 10.7554/eLife.11946 URL pmid: 26687008 |
[25] |
Navarro-Cebrian, A., Knight, R. T., & Kayser, A. S. (2013). Error-monitoring and post-error compensations: Dissociation between perceptual failures and motor errors with and without awareness. The Journal of Neuroscience, 33(30), 12375-12383.
doi: 10.1523/JNEUROSCI.0447-13.2013 URL pmid: 23884943 |
[26] |
Nieuwenhuis, S., Ridderinkhof, K. R., Blom, J., Band, G. P. H, & Kok, A. (2001). Error‐related brain potentials are differentially related to awareness of response errors: Evidence from an antisaccade task. Psychophysiology, 38(5), 752-760.
URL pmid: 11577898 |
[27] |
O'Connell, R. G., Dockree, P. M., Bellgrove, M. A., Kelly, S. P., Hester, R., Garavan, H., ... Foxe, J. J. (2007). The role of cingulate cortex in the detection of errors with and without awareness: A high-density electrical mapping study. European Journal of Neuroscience, 25(8), 2571-2579.
doi: 10.1111/j.1460-9568.2007.05477.x URL pmid: 17445253 |
[28] |
Pfurtscheller, G., & Lopes da Silva, F. (1999). Event-related EEG/MEG synchronization and desynchronization: Basic principles. Clinical Neurophysiology, 110(11), 1842-1857.
URL pmid: 10576479 |
[29] |
Rabbitt, P. M. A. (1966). Errors and error correction in choice-response tasks. Journal of Experimental Psychology, 71(2), 264-272.
doi: 10.1037/h0022853 URL pmid: 5948188 |
[30] |
Regev, S., & Meiran, N. (2014). Post-error slowing is influenced by cognitive control demand. Acta Psychologica, 152, 10-18.
doi: 10.1016/j.actpsy.2014.07.006 URL |
[31] |
Sadaghiani, S., & Kleinschmidt, A. (2016). Brain networks and α-oscillations: Structural and functional foundations of cognitive control. Trends in Cognitive Sciences, 20(11), 805-817.
doi: 10.1016/j.tics.2016.09.004 URL pmid: 27707588 |
[32] |
Shalgi, S., Barkan, I., & Deouell, L. Y. (2009). On the positive side of error processing: Error‐awareness positivity revisited. European Journal of Neuroscience, 29(7), 1522-1532.
doi: 10.1111/j.1460-9568.2009.06690.x URL pmid: 19519632 |
[33] |
Shalgi, S., O’connell, R. G., Deouell, L. Y., & Robertson, I. H. (2007). Absent minded but accurate: Delaying responses increases accuracy but decreases error awareness. Experimental Brain Research, 182(1), 119-124.
doi: 10.1007/s00221-007-1054-5 URL |
[34] |
Steinhauser, M., & Yeung, N. (2010). Decision processes in human performance monitoring. The Journal of Neuroscience, 30(46), 15643-15653.
doi: 10.1523/JNEUROSCI.1899-10.2010 URL pmid: 21084620 |
[35] |
Steinhauser, M., & Yeung, N. (2012). Error awareness as evidence accumulation: Effects of speed-accuracy trade-off on error signaling. Frontiers in Human Neuroscience, 6, 240.
doi: 10.3389/fnhum.2012.00240 URL pmid: 22905027 |
[36] |
Tang, D. D., Hu, L., & Chen, A. (2013). The neural oscillations of conflict adaptation in the human frontal region. Biological Psychology, 93(3), 364-372.
doi: 10.1016/j.biopsycho.2013.03.004 URL |
[37] |
Ullsperger, M., Danielmeier, C., & Jocham, G. (2014). Neurophysiology of performance monitoring and adaptive behavior. Physiological Reviews, 94(1), 35-79.
doi: 10.1152/physrev.00041.2012 URL |
[38] |
van der Wel, P., & van Steenbergen, H. (2018). Pupil dilation as an index of effort in cognitive control tasks: A review. Psychonomic Bulletin & Review, 25(6), 2005-2015.
doi: 10.3758/s13423-018-1432-y URL pmid: 29435963 |
[39] |
Wang, L. J., Gu, Y., Zhao, G. X., & Chen, A. (2020). Error-related negativity and error awareness in a Go/No-go task. Scientific Reports, 10(1), 4026.
doi: 10.1038/s41598-020-60693-0 URL pmid: 32132619 |
[40] | Wang, L. J., Hu, X. P., Suo, T., Zhao, G. X., & Chen, A. T., (2019). Spontaneous neuronal activity in insula predicts post-error adjustments (in Chinese). Chinese Science Bulletin, 64 (21), 2207-2215. |
[41] | Wang, L. J., Liu, C. P., Hu, X. P., & Chen, A. T. (2016) The alertness level influences post-error adjustments (in Chinese). Chinses Science Bulletin, 61 (34), 3708-3717. |
[42] |
Wang, L. J., Tang, D. D., Zhao, Y. F., Hitchman, G., Wu, S. S., Tan, J. F., & Chen, A. (2015). Disentangling the impacts of outcome valence and outcome frequency on the post-error slowing. Scientific Reports, 5(1), 8708.
doi: 10.1038/srep08708 URL |
[43] |
Wang, L. J., Xu, L., Wu, S. S., Tang, J. F., & Chen, A. T. (2013). Critical review on the theories of post-error slowing (in Chinese). Advances in Psychological Science, 21(3), 418-428.
doi: 10.3724/SP.J.1042.2013.00418 URL |
[44] |
Wessel, J. R. (2012). Error awareness and the error-related negativity: Evaluating the first decade of evidence. Frontiers in Human Neuroscience, 6, 88.
doi: 10.3389/fnhum.2012.00088 URL pmid: 22529791 |
[45] |
Wessel, J. R., Danielmeier, C., & Ullsperger, M. (2011). Error awareness revisited: Accumulation of multimodal evidence from central and autonomic nervous systems. Journal of Cognitive Neuroscience, 23(10), 3021-3036.
doi: 10.1162/jocn.2011.21635 URL |
[1] | CHEN Li, SHI Xiao-ke, LI Wei-na, HU Yan. Influence of cognitive control based on different conflict levels on the expression of gender stereotypes [J]. Acta Psychologica Sinica, 2022, 54(6): 628-645. |
[2] | ZHANG Yin, LIANG Tengfei, YE Chaoxiong, LIU Qiang. The inhibitory effect of long-term associative representation on working memory [J]. Acta Psychologica Sinica, 2020, 52(5): 562-571. |
[3] | HU Na, CHEN Antao, WANG Yanqing, LI Qing, XU Zhenzhen, LONG Quanshan. Acute stress impairs error monitoring and post-error adjustment [J]. Acta Psychologica Sinica, 2020, 52(2): 162-172. |
[4] | ZHAO Huaiyang, JIANG Jun, ZHOU Linshu, JIANG Cunmei. Role of the human mirror system in automatic processing of musical emotion: Evidence from EEG [J]. Acta Psychologica Sinica, 2019, 51(7): 795-804. |
[5] | CUI Yichen, WANG Pei, CUI Yajuan. Cognitive control strategies from the perspective of perceptual conflict: An example of stereotyped information and counterstereotyped information [J]. Acta Psychologica Sinica, 2019, 51(10): 1157-1170. |
[6] | FENG Wenting, WANG Tao. The power of numbers: The influence of number magnitude in brands on consumers’ attitudes [J]. Acta Psychologica Sinica, 2017, 49(12): 1581-1589. |
[7] | GU Chuanhua, WANG Yali, WU Caifu, XIE Xianglong, CUI Chengzhu, WANG Yaxian, WANG Wanzhen, HU Biying, ZHOU Zongkui. Brain Correlates underlying Social Creative Thinking: EEG Alpha Activity in Trait vs. State Creativity [J]. Acta Psychologica Sinica, 2015, 47(6): 765-773. |
[8] | XU Lei;WANG Lijun;ZHAO Yuanfang;TAN Jinfeng;CHEN Antao. Subliminal Reward Modulates the Tradeoff between Proactive and Reactive Cognitive Control [J]. Acta Psychologica Sinica, 2014, 46(4): 459-466. |
[9] | REN Jun;HUANG Lu;ZHANG Zhen-Xin. Meditation Makes A Peaceful State of Mind: People’s Positive and Negative Emotional Response Can Be Reduced by Meditation Training [J]. Acta Psychologica Sinica, 2012, 44(10): 1339-1348. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||