[1] |
Akbıyık S., Goksun T., & Balcı F. (2020). Cathodal tDCS stimulation of left anterior temporal lobe eliminates cross- category color discrimination response time advantage. Behavioural Brain Research, 391, 112682.
doi: 10.1016/j.bbr.2020.112682
pmid: 32445777
|
[2] |
Amedi A., Hofstetter S., Maidenbaum S., & Heimler B. (2017). Task selectivity as a comprehensive principle for brain organization. Trends in Cognitive Sciences, 21(5), 307-310.
doi: S1364-6613(17)30050-5
pmid: 28385460
|
[3] |
Baddeley A. D., & Hitch G. J. (2017). Is the levels of processing effect language-limited? Journal of Memory and Language, 92, 1-13.
|
[4] |
Bi Y. C., Wang X. Y., & Caramazza A. (2016). Object domain and modality in the ventral visual pathway. Trends in Cognitive Sciences, 20(4), 282-290.
doi: S1364-6613(16)00043-7
pmid: 26944219
|
[5] |
Binney R. J., Ashaie S. A., Zuckerman B. M., Hung J. Y., & Reilly J. (2018). Frontotemporal stimulation modulates semantically-guided visual search during confrontation naming: A combined tDCS and eye tracking investigation. Brain and Language, 180-182, 14-23.
|
[6] |
Butera I. M., Stevenson R. A., Gifford R. H., & Wallace M. T. (2023). Visually biased perception in cochlear implant users: A study of the McGurk and Sound-induced flash illusions. Trends in Hearing, 27, 23312165221076681.
doi: 10.1177/23312165221076681
pmid: 37377212
|
[7] |
Callan A., Callan D., & Ando H. (2015). An fMRI study of the ventriloquism effect. Cerebral Cortex, 25(11), 4248-4258.
|
[8] |
Chen A. T., Liu Q., Chen C. M., & Li H. (2010). The effect of Intermediate processing level on response conflict in Stroop-like tasks. Journal of Psychological Science, 33(3), 569-572.
|
|
[陈安涛, 刘强, 陈昌明, 李红. (2010). 中间模块加工水平对反应冲突的影响及其机制. 心理科学, 33(3), 569-572.]
|
[9] |
Chen Q., & Zhou X. L. (2013). Vision dominates at the preresponse level and audition dominates at the response level in cross-modal interaction: Behavioral and neural evidence. Journal of Neuroscience, 33(17), 7109-7121.
doi: 10.1523/JNEUROSCI.1985-12.2013
pmid: 23616521
|
[10] |
Colavita F. B. (1974). Human sensory dominance. Perception & Psychophysics, 16(2), 409-412.
|
[11] |
Dietze N., & Poth C. H. (2023). Vision rivals audition in alerting humans for fast action. Acta Psychologica, 238, 103991.
|
[12] |
Diez, E., Gomez-Ariza, C. J., Diez-Alamo, A. M., Alonso, M. A., & Fernandez, A. (2023). The processing of semantic relatedness in the brain: Evidence from associative and categorical false recognition effects following transcranial direct current stimulation of the left anterior temporal lobe. Cortex, 93, 133–145.
|
[13] |
Dirani J., & Pylkkänen L. (2023). The time course of cross-modal representations of conceptual categories. NeuroImage, 277, 120254.
|
[14] |
Donohue S. E., Todisco A. E., & Woldorff M. G. (2013). The rapid distraction of attentional resources toward the source of incongruent stimulus input during multisensory conflict. Journal of Cognitive Neuroscience, 25(4), 623-635.
doi: 10.1162/jocn_a_00336
pmid: 23249355
|
[15] |
Faul F., Erdfelder E., Buchner A., & Lang A.-G. (2009). Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behavior Research Methods, 41(4), 1149-1160.
doi: 10.3758/BRM.41.4.1149
pmid: 19897823
|
[16] |
Faul F., Erdfelder E., Lang A.-G., & Buchner A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39, 175-191.
doi: 10.3758/bf03193146
pmid: 17695343
|
[17] |
Haselton M. G., & Buss D. M. (2000). Error management theory: A new perspective on biases in cross-sex mind reading. Journal of Personality and Social Psychology, 78(1), 81-91.
pmid: 10653507
|
[18] |
Hockley W. E., & Bancroft T. (2011). Extensions of the picture superiority effect in as-sociative recognition. Canadian Journal of Experimental Psychology, 65(4), 236-244.
|
[19] |
Higdon K. F., Neath I., Surprenant A. M., & Ensor T. M. (2024). Distinctiveness, not dual coding, explains the picture- superiority effect. Quarterly Journal of Experimental Psychology. https://doi.org/10.1177/17470218241235520
|
[20] |
Hirst R. J., Cragg L., & Allen H. A. (2018). Vision dominates audition in adults but not children: A meta-analysis of the Colavita effect. Neuroscience & Biobehavioral Reviews, 94, 286-301.
|
[21] |
Hirst R. J., McGovern D. P., Setti A., Shams L., & Newell F. N. (2020). What you see is what you hear: Twenty years of research using the sound-induced flash illusion. Neuroscience & Biobehavioral Reviews, 118, 759-774.
|
[22] |
Kang G. L., & Luo X. X. (2020). The integration and conflict control in audiovisual processing. Journal of Psychological Science, 43(5), 1072-1078.
|
|
[康冠兰, 罗霄骁. (2020). 视听跨通道信息的整合与冲突控制. 心理科学, 43(5), 1072-1078.]
|
[23] |
Kato M., & Konishi Y. (2006). Auditory dominance in the error correction process: A synchronized tapping study. Brain Research, 1084(1), 115-122.
pmid: 16556436
|
[24] |
Keil J. (2020). Double flash illusions: Current findings and future directions. Frontiers in Neuroscience, 14, 298-304.
doi: 10.3389/fnins.2020.00298
pmid: 32317920
|
[25] |
Koppen C., Levitan C. A., & Spence C. (2009). A signal detection study of the Colavita visual dominance effect. Experimental Brain Research, 196(3), 353-360.
doi: 10.1007/s00221-009-1853-y
pmid: 19488743
|
[26] |
Lambon Ralph M. A., & Patterson K. (2008). Generalization and differentiation in semantic memory:Insights from semantic dementia. Annals of the New York Academy of Sciences, 1124(1), 61-76.
|
[27] |
Laws K. R. (2000). Category-specific naming errors in normal subjects: The influence of evolution and experience. Brain and Language, 75(1), 123-133.
pmid: 11023642
|
[28] |
Li X., Cai S. Z., Chen Y., Tian X. M., & Wang A. J. (2024). Enhancement of visual dominance effects at the response level in children with attention-deficit/hyperactivity disorder. Journal of Experimental Child Psychology. 242, 105897.
|
[29] |
Li Z., Gu R., Qi M., Cen J., Zhang S., Gu J., Zeng X., & Chen Q. (2019). Loss of vision dominance at the preresponse level in tinnitus patients: Preliminary behavioral evidence. Frontiers in Neuroscience, 13, 482.
doi: 10.3389/fnins.2019.00482
pmid: 31139048
|
[30] |
Martin A. (2007). The representation of object concepts in the brain. Annual Review of Psychology, 58, 25-45.
pmid: 16968210
|
[31] |
Martin A., & Chao L. (2001). Semantic memory and the brain: Structure and processes. Current Opinion in Neurobiology, 11(2), 194-201.
doi: 10.1016/s0959-4388(00)00196-3
pmid: 11301239
|
[32] |
Mayer A. R., Franco A. R., Canive J., & Harrington D. L. (2009). The effects of stimulus modality and frequency of stimulus presentation on cross-modal distraction. Cerebral Cortex, 19(5), 993-1007.
|
[33] |
Mesulam M. M., Wieneke C., Hurley R., Rademaker A., Thompson C. K., Weintraub S., & Rogalski E. J. (2013). Words and objects at the tip of the left temporal lobe in primary progressive aphasia. Brain, 136(2), 601-618.
|
[34] |
Molholm S., Ritter W., Javitt D. C., & Foxe J. J. (2004). Multisensory visual-auditory object recognition in humans: A high-density electrical mapping study. Cerebral Cortex, 14(4), 452-465.
doi: 10.1093/cercor/bhh007
pmid: 15028649
|
[35] |
Morgenstern Y., Storrs K. R., Schmidt F., Hartmann F., Tiedemann H., Wagemans J., & Fleming R. W. (2024). High-level aftereffects reveal the role of statistical features in visual shape encoding. Current Biology, 34(5), 1098-1106.
|
[36] |
Nieznański M. (2020). Levels-of-processing effects on context and target recollection for words and pictures. Acta Psychologica, 209, 103127.
|
[37] |
Odegaard B., Wozny D. R., & Shams L. (2016). The effects of selective and divided attention on sensory precision and integration. Neurosciences Letters, 614, 24-28.
|
[38] |
Potter M. C., & Fox L. F. (2009). Detecting and remembering simultaneous pictures in a rapid serial visual presentation. Journal of Experimental Psychology: Human Perception and Performance, 35(1), 28-38.
|
[39] |
Roberts B. R. T., MacLeod C. M., & Fernandes M. A. (2023). Symbol superiority: Why $ is better remembered than ‘dollar’. Cognition, 238, 105435.
|
[40] |
Robinson C. W., Chandra M., & Sinnett S. (2016). Existence of competing modality dominances. Attention, Perception, & Psychophysics, 78(4), 1104-1114.
|
[41] |
Schubert E. (2021). Creativity is optimal novelty and maximal positive affect: A new definition based on the spreading activation model. Frontiers in Neuroscience, 15, 612379.
|
[42] |
Shams L., Kamitani Y., & Shimojo S. (2000). What you see is what you hear. Nature, 408(6814), 788-788.
|
[43] |
Snodgrass J. G., & Vanderwart M. (1980). A standardized set of 260 picture: Norms for name agreement, image agreement, familiarity, and visual complexity. Journal of Experimental Psychology: Learning, Memory, and Cognition, 6(2), 174-215.
|
[44] |
Stein B. E., & Stanford T. R. (2008). Multisensory integration: Current issues from the perspective of the single neuron. Nature Reviews Neuroscience, 9(4), 255-266.
doi: 10.1038/nrn2331
pmid: 18354398
|
[45] |
Tang X. Y., Wu J. L., & Shen Y. (2016). The interactions of multisensory integration with endogenous and exogenous attention. Neuroscience & Biobehavioral Reviews, 61, 208-224.
|
[46] |
Ubaldi S., & Fairhall S. L. (2021). fMRI response to automatic and purposeful familiar-face processing in perceptual and nonperceptual cortical regions. Journal of Neurophysiology, 125(4), 1058-1067.
doi: 10.1152/jn.00481.2020
pmid: 33596739
|
[47] |
Velasquez A. G., Gazzaley A., Toyoda H., Ziegler D. A., & Morsella E. (2021). The generation of involuntary mental imagery in an ecologically-valid task. Frontiers in Psychology. 12, 759685.
|
[48] |
Visconti di Oleggio Castello M., Haxby J. V., & Gobbini M. I. (2021). Shared neural codes for visual and semantic information about familiar faces in a common representational space. Proceedings of the National Academy of Sciences, 118(45), e2110474118.
|
[49] |
Vogler J. N., & Titchener K. (2011). Cross-modal conflicts in object recognition: Determining the influence of object category. Experimental Brain Research, 214, 597-605.
doi: 10.1007/s00221-011-2858-x
pmid: 21912929
|
[50] |
Wang A. J., Huang J., Lu F. F. He J. Y., Tang X. Y., & Zhang M. (2020). Sound-induced flash illusion in multisensory integration. Advances in Psychological Science, 28(10), 1662-1677.
doi: 10.3724/SP.J.1042.2020.01662
|
|
[王爱君, 黄杰, 陆菲菲, 何嘉滢, 唐晓雨, 张明. (2020). 多感觉整合中的声音诱发闪光错觉效应. 心理科学进展, 28(10), 1662-1677.]
doi: 10.3724/SP.J.1042.2020.01662
|
[51] |
Wang A. J., Sang H. B., He J. Y., Sava-Segal C., Tang X. Y., & Zhang M. (2019). Effects of cognitive expectation on sound-induced flash illusion. Perception, 48(12), 1214-1234.
doi: 10.1177/0301006619885796
pmid: 31808371
|
[52] |
Wang A., Zhou H., Zhang F., Sang H., Yu W., Tang X., Zhang T., & Zhang M. (2021). Repetition suppression in visual and auditory modalities affects the sound-induced flash illusion. Perception, 50(6), 489-507.
|
[53] |
Wang Y. H., Wang Y. F., & Zhou X. L. (2006). Conflict Control at different periods of processing in children with two subtypes of ADHD. Acta Psychologica Sinica, 38(2), 181-188.
|
|
[王勇慧, 王玉凤, 周晓林. (2006). 注意缺陷多动障碍儿童在不同加工阶段的干扰控制. 心理学报, 38(2), 181-188.]
|
[54] |
Wiggett A. T., Pritchard R. C., & Downing P. E. (2009). Animate and inanimate objects in human visual cortex: Evidence for task-independent category effects. Neuropsychologia, 47(14), 3111-3117.
doi: 10.1016/j.neuropsychologia.2009.07.008
pmid: 19631673
|
[55] |
Wong C., & Gallate J. (2012). The function of the anterior temporal lobe: A review of the empirical evidence. Brain Research, 1449, 94-116.
doi: 10.1016/j.brainres.2012.02.017
pmid: 22421014
|
[56] |
Wozny D. R., Beierholm U. R., & Shams L. (2008). Human trimodal perception follows optimal statistical inference. Journal of Vision, 8(3), 1-11.
|
[57] |
Zhou H., Li S., Huang J., Yang J., Wang A., & Zhang M. (2022). Sound-induced flash illusions at different spatial locations were affected by personality traits. Attention, Perception, & Psychophysics, 85(2), 463-473.
|