心理学报 ›› 2025, Vol. 57 ›› Issue (6): 967-986.doi: 10.3724/SP.J.1041.2025.0967 cstr: 32110.14.2025.0967
收稿日期:
2024-02-01
发布日期:
2025-04-15
出版日期:
2025-06-25
通讯作者:
余胜泉, E-mail: yusq@bnu.edu.cn作者简介:
汪凡淙、汤筱玙为共同第一作者
基金资助:
WANG Fancong, TANG Xiaoyu, YU Shengquan()
Received:
2024-02-01
Online:
2025-04-15
Published:
2025-06-25
摘要:
人类通过外包部分认知任务给外部生成式人工智能技术来提升任务完成的效率和质量, 但认知外包的效果因人而异。为了揭示有效认知外包的关键特征和内在要求, 研究设计了一个面向研究生的认知外包活动, 参与者在生成式人工智能系统的协助下撰写开放性主题文章, 并依据文章得分被划分为高绩效组和低绩效组。通过对知识前测的差异性分析发现高绩效组的先前领域知识水平显著高于低绩效组。通过对交互过程数据进行滞后序列分析和认知网络分析, 发现两组群体在交互行为模式和认知结构特征上存在差异: 高绩效组的行为转换更加多元, 形成“快速自主的任务理解与规划——高效精准的人机互动——选择性提取与深度加工”的行为模式; 高绩效组的认知结构较为均衡和完整, 表现为交互中各认知元素间相对多样且紧密的关联, 而低绩效组的认知结构相对失衡和松散, 表现为对低层次认知元素的偏向和各元素间相对单一且微弱的关联。综合来看, 有效认知外包是个体在认知活动中积极参与、深入加工的复杂过程, 需要内外部认知网络的平衡与有效连接的建立。
中图分类号:
汪凡淙, 汤筱玙, 余胜泉. (2025). 基于生成式人工智能的认知外包: 交互行为模式与认知结构特征分析. 心理学报, 57(6), 967-986.
WANG Fancong, TANG Xiaoyu, YU Shengquan. (2025). Cognitive outsourcing based on generative artificial intelligence: An Analysis of interactive behavioral patterns and cognitive structural features. Acta Psychologica Sinica, 57(6), 967-986.
维度 | 描述 | 评分标准 |
---|---|---|
概念节点 | 与主题相关的概念 | 正确: 得分S = 1 + 0.5 × (L - 1), 其中L表示概念节点在概念图中的层级, 且L≥1; 无关: 0分; 错误: -1分; |
交叉连接 | 以连接线表示非父子节点的两个概念之间的意义关系 | 正确: 2分; 无关: 0分; 错误: -2分; |
文字标注 | 对节点上的概念、不同节点上概念的关系的详细阐述, 以及对整幅概念图的说明。 | 正确: 1分; 无关: 0分; 错误: -1分; |
表1 概念图评分框架
维度 | 描述 | 评分标准 |
---|---|---|
概念节点 | 与主题相关的概念 | 正确: 得分S = 1 + 0.5 × (L - 1), 其中L表示概念节点在概念图中的层级, 且L≥1; 无关: 0分; 错误: -1分; |
交叉连接 | 以连接线表示非父子节点的两个概念之间的意义关系 | 正确: 2分; 无关: 0分; 错误: -2分; |
文字标注 | 对节点上的概念、不同节点上概念的关系的详细阐述, 以及对整幅概念图的说明。 | 正确: 1分; 无关: 0分; 错误: -1分; |
编码 | 交互行为类别 | 描述 |
---|---|---|
TR | 任务审视 | 审视写作任务的要求和目标。 |
AQ | 提问 | 向系统提出问题以获取信息、解释或观点等。 |
FQ | 追问 | 在收到系统的回答后, 用户基于回答的内容提出进一步的问题。 |
EF | 评价反馈 | 在收到系统的回答后, 对回答内容进行评价, 包括对信息准确性、有用性的评估, 或对回答方式的反馈等。 |
CCP | 复制粘贴内容 | 从系统的回答中选择部分或全部内容复制粘贴至文章中。 |
CPC | 内容规划与构思 | 拟定主题大纲或核心要点, 以及规划内容架构。 |
CC | 内容删减 | 对已有内容进行删减, 去除不必要或不相关的部分, 保留核心信息。 |
CR | 内容改写 | 对已有内容的某些部分或句子进行重写。 |
ACC | 自主内容创作 | 独立产生或在现有信息基础上进行文章内容的写作。 |
表2 交互行为编码框架
编码 | 交互行为类别 | 描述 |
---|---|---|
TR | 任务审视 | 审视写作任务的要求和目标。 |
AQ | 提问 | 向系统提出问题以获取信息、解释或观点等。 |
FQ | 追问 | 在收到系统的回答后, 用户基于回答的内容提出进一步的问题。 |
EF | 评价反馈 | 在收到系统的回答后, 对回答内容进行评价, 包括对信息准确性、有用性的评估, 或对回答方式的反馈等。 |
CCP | 复制粘贴内容 | 从系统的回答中选择部分或全部内容复制粘贴至文章中。 |
CPC | 内容规划与构思 | 拟定主题大纲或核心要点, 以及规划内容架构。 |
CC | 内容删减 | 对已有内容进行删减, 去除不必要或不相关的部分, 保留核心信息。 |
CR | 内容改写 | 对已有内容的某些部分或句子进行重写。 |
ACC | 自主内容创作 | 独立产生或在现有信息基础上进行文章内容的写作。 |
认知元素 类别 | 描述 | 举例 |
---|---|---|
记忆 | 回忆、验证基本概念与事实信息。 | 什么是生成式人工智能? 请介绍“教育”的定义。 |
理解 | 解释、概括信息。 | 人工智能对于生产实践有哪些帮助? |
应用 | 在新情境中应用信息。 | 生成式人工智能时代下如何促进教师专业发展和学习? |
分析 | 明确各概念间的相互关系。 | 分析一下当前的人工智能趋势及其对教师教育的影响。 |
评价 | 评价和判断信息的价值。 | 你怎么看待人工智能在隐私保护方面的挑战? |
创造 | 产生新的或原创的作品。 | 制定一个使用人工智能提升课堂教学效果的方案。 |
表3 认知元素编码框架
认知元素 类别 | 描述 | 举例 |
---|---|---|
记忆 | 回忆、验证基本概念与事实信息。 | 什么是生成式人工智能? 请介绍“教育”的定义。 |
理解 | 解释、概括信息。 | 人工智能对于生产实践有哪些帮助? |
应用 | 在新情境中应用信息。 | 生成式人工智能时代下如何促进教师专业发展和学习? |
分析 | 明确各概念间的相互关系。 | 分析一下当前的人工智能趋势及其对教师教育的影响。 |
评价 | 评价和判断信息的价值。 | 你怎么看待人工智能在隐私保护方面的挑战? |
创造 | 产生新的或原创的作品。 | 制定一个使用人工智能提升课堂教学效果的方案。 |
Z | TR | AQ | FQ | EF | CCP | CPC | CC | CR | ACC |
---|---|---|---|---|---|---|---|---|---|
TR | -0.34 | 5.68* | -1.62 | -1.46 | -2.80 | -0.85 | -1.53 | -2.03 | 2.45* |
AQ | 1.33 | 0.13 | 4.82* | 3.81* | 1.40 | -0.16 | -4.75 | -4.95 | -0.44 |
FQ | -0.72 | -3.26 | 4.86* | 2.58* | 2.86* | 1.31 | -2.16 | -3.73 | -0.51 |
EF | -0.65 | -0.56 | 2.97* | 5.51* | 0.47 | 2.48* | -2.12 | -3.24 | -2.84 |
CCP | -0.51 | -3.49 | -4.47 | -2.86 | -3.16 | -1.64 | 5.22* | 11.62* | -0.11 |
CPC | -0.38 | 1.72 | -0.57 | -0.95 | 1.40 | -0.94 | -1.71 | -1.76 | 0.70 |
CC | -0.68 | 1.12 | -1.43 | -2.52 | -2.17 | -0.39 | -3.07 | 5.28* | 2.14* |
CR | 0.36 | 1.79 | -3.12 | -2.59 | -1.14 | -0.68 | 5.63* | -3.69 | 3.40* |
ACC | 0.53 | 1.94 | -1.74 | -2.16 | 3.23* | 1.30 | 1.17 | -2.33 | -3.36 |
表4 高绩效组调整后的残差值
Z | TR | AQ | FQ | EF | CCP | CPC | CC | CR | ACC |
---|---|---|---|---|---|---|---|---|---|
TR | -0.34 | 5.68* | -1.62 | -1.46 | -2.80 | -0.85 | -1.53 | -2.03 | 2.45* |
AQ | 1.33 | 0.13 | 4.82* | 3.81* | 1.40 | -0.16 | -4.75 | -4.95 | -0.44 |
FQ | -0.72 | -3.26 | 4.86* | 2.58* | 2.86* | 1.31 | -2.16 | -3.73 | -0.51 |
EF | -0.65 | -0.56 | 2.97* | 5.51* | 0.47 | 2.48* | -2.12 | -3.24 | -2.84 |
CCP | -0.51 | -3.49 | -4.47 | -2.86 | -3.16 | -1.64 | 5.22* | 11.62* | -0.11 |
CPC | -0.38 | 1.72 | -0.57 | -0.95 | 1.40 | -0.94 | -1.71 | -1.76 | 0.70 |
CC | -0.68 | 1.12 | -1.43 | -2.52 | -2.17 | -0.39 | -3.07 | 5.28* | 2.14* |
CR | 0.36 | 1.79 | -3.12 | -2.59 | -1.14 | -0.68 | 5.63* | -3.69 | 3.40* |
ACC | 0.53 | 1.94 | -1.74 | -2.16 | 3.23* | 1.30 | 1.17 | -2.33 | -3.36 |
Z | TR | AQ | FQ | EF | CCP | CPC | CC | CR | ACC |
---|---|---|---|---|---|---|---|---|---|
TR | -1.02 | 5.10* | -1.16 | -1.22 | -3.05 | -0.95 | -2.02 | -1.29 | 2.51* |
AQ | 1.35 | 3.19* | 0.30 | 3.56* | 1.20 | -0.91 | -4.63 | -4.54 | -1.37 |
FQ | -0.89 | -3.36 | 9.99* | 1.05 | 0.21 | -1.49 | -0.89 | -2.97 | -1.19 |
EF | 0.32 | 3.73* | 1.08 | 0.95 | -2.87 | -0.82 | -0.47 | -1.64 | -1.58 |
CCP | -0.74 | -5.14 | -2.45 | -2.45 | 0.89 | 4.35* | 4.16* | 4.52* | 1.53 |
CPC | -0.69 | 0.50 | -0.75 | -0.83 | -1.01 | -0.65 | 3.48* | -0.43 | -0.36 |
CC | 0.03 | 0.35 | -2.84 | -1.15 | -0.77 | 0.24 | -2.53 | 5.43* | 1.80 |
CR | 0.28 | 0.51 | -2.12 | -1.63 | -1.63 | -1.26 | 6.08* | -1.58 | 0.94 |
ACC | 0.43 | -1.23 | -2.35 | -0.11 | 3.57* | -1.19 | -0.70 | 2.49* | -2.29 |
表5 低绩效组调整后的残差值
Z | TR | AQ | FQ | EF | CCP | CPC | CC | CR | ACC |
---|---|---|---|---|---|---|---|---|---|
TR | -1.02 | 5.10* | -1.16 | -1.22 | -3.05 | -0.95 | -2.02 | -1.29 | 2.51* |
AQ | 1.35 | 3.19* | 0.30 | 3.56* | 1.20 | -0.91 | -4.63 | -4.54 | -1.37 |
FQ | -0.89 | -3.36 | 9.99* | 1.05 | 0.21 | -1.49 | -0.89 | -2.97 | -1.19 |
EF | 0.32 | 3.73* | 1.08 | 0.95 | -2.87 | -0.82 | -0.47 | -1.64 | -1.58 |
CCP | -0.74 | -5.14 | -2.45 | -2.45 | 0.89 | 4.35* | 4.16* | 4.52* | 1.53 |
CPC | -0.69 | 0.50 | -0.75 | -0.83 | -1.01 | -0.65 | 3.48* | -0.43 | -0.36 |
CC | 0.03 | 0.35 | -2.84 | -1.15 | -0.77 | 0.24 | -2.53 | 5.43* | 1.80 |
CR | 0.28 | 0.51 | -2.12 | -1.63 | -1.63 | -1.26 | 6.08* | -1.58 | 0.94 |
ACC | 0.43 | -1.23 | -2.35 | -0.11 | 3.57* | -1.19 | -0.70 | 2.49* | -2.29 |
[54] | Sweller J., Ayres P., & Kalyuga S. (2011). Cognitive load theory. New York: Springer. |
[55] | Terry C. A., Mishra P., & Roseth C. J. (2016). Preference for multitasking, technological dependency, student metacognition, & pervasive technology use: An experimental intervention. Computers in Human Behavior, 65, 241-251. |
[56] | Tsai C. Y., Lin Y. T., & Brown I. K. (2024). Impacts of ChatGPT-assisted writing for EFL English majors: Feasibility and challenges. Education and Information Technologies, 29, 22427-22445. |
[57] |
Voinea C., Vică C., Mihailov E., & Savulescu J. (2020). The internet as cognitive enhancement. Science and Engineering Ethics, 26(4), 2345-2362.
doi: 10.1007/s11948-020-00210-8 pmid: 32253711 |
[58] | Wang X., Liu Q., Pang H., Tan S. C., Lei J., Wallace M. P., & Li L. (2023). What matters in AI-supported learning: A study of human-AI interactions in language learning using cluster analysis and epistemic network analysis. Computers & Education, 194, 104703. https://doi.org/10.1016/j. compedu.2022.104703 |
[59] | White J., Fu Q., Hays S., Sandborn M., Olea C., Gilbert H., … Schmidt D. C. (2023). A prompt pattern catalog to enhance prompt engineering with ChatGPT. arXiv:2302. 11382 [Preprint]. https://doi.org/10.48550/arXiv.2302.11382 |
[60] | Witherby A. E., & Carpenter S. K. (2022). The rich-get- richer effect: Prior knowledge predicts new learning of domain-relevant information. Journal of Experimental Psychology: Learning, Memory, and Cognition, 48(4), 483-498. |
[61] | Xia Q., Chiu T. K., Chai C. S., & Xie K. (2023). The mediating effects of needs satisfaction on the relationships between prior knowledge and self-regulated learning through artificial intelligence chatbot. British Journal of Educational Technology, 54(4), 967-986. |
[62] | Yilmaz R., & Yilmaz F. G. K. (2023). The effect of generative artificial intelligence (AI)-based tool use on students’ computational thinking skills, programming self-efficacy and motivation. Computers and Education: Artificial Intelligence, 4, 100147. https://doi.org/10.1016/j.caeai.2023.100147 |
[63] | Yu S., & Wang F. (2023). Cognitive outsourcing pitfalls of artificial intelligence for educational applications and their crossing. e-Education Research, (12), 5-13. |
[余胜泉, 汪凡淙. (2023). 人工智能教育应用的认知外包陷阱及其跨越. 电化教育研究, (12), 5-13.] | |
[64] | Yu S., & Wang Q. (2019). Analysis of collaborative path development of "AI+teachers". e-Education Research, (4), 14-22+29. |
[1] | Abdelhalim S. M. (2024). Using ChatGPT to promote research competency: English as a foreign language undergraduates’ perceptions and practices across varied metacognitive awareness levels. Journal of Computer Assisted Learning, 40(3), 1261-1275. |
[2] | Alexander P. A., & Judy J. E. (1988). The interaction of domain-specific and strategic knowledge in academic performance. Review of Educational Research, 58(4), 375-404. |
[3] | Alkaissi H., & McFarlane S. I. (2023). Artificial hallucinations in ChatGPT: Implications in scientific writing. Cureus, 15(2), Article e35179. https://doi.org/10.7759/cureus.35179 |
[4] | Anderson L. W., & Krathwohl D. R. (2001). A taxonomy for learning, teaching, and assessing: A revision of Bloom's taxonomy of educational objectives: Complete edition. Addison Wesley Longman, Inc. |
[5] | Anderson R. C. (1984). Some reflections on the acquisition of knowledge. Educational Researcher, 13(9), 5-10. |
[6] | Baidoo-Anu D., & Ansah L. O. (2023). Education in the era of generative artificial intelligence (AI): Understanding the potential benefits of ChatGPT in promoting teaching and learning. Journal of AI, 7(1), 52-62. |
[7] | Bakeman R., & Gottman J. M. (1997). Observing interaction: An introduction to sequential analysis. Cambridge University Press. |
[8] | Barr N., Pennycook G., Stolz J. A., & Fugelsang J. A. (2015). The brain in your pocket: Evidence that smartphones are used to supplant thinking. Computers in Human Behavior, 48, 473-480. |
[9] | Bašić Ž., Banovac A., Kružić I., & Jerković I. (2023). ChatGPT-3.5 as writing assistance in students’ essays. Humanities and Social Sciences Communications, 10, 750. https://doi.org/10.1057/s41599-023-02269-7 |
[10] |
Beier M. E., & Ackerman P. L. (2005). Age, ability, and the role of prior knowledge on the acquisition of new domain knowledge: Promising results in a real-world learning environment. Psychology and Aging, 20(2), 341-355.
doi: 10.1037/0882-7974.20.2.341 pmid: 16029097 |
[11] | Bittermann A., McNamara D., Simonsmeier B. A., & Schneider M. (2023). The landscape of research on prior knowledge and learning: A bibliometric analysis. Educational Psychology Review, 35, 58. https://doi.org/10.1007/s10648-023-09775-9 |
[12] |
Bostrom N., & Sandberg A. (2009). Cognitive enhancement: Methods, ethics, regulatory challenges. Science and Engineering Ethics, 15(3), 311-341.
doi: 10.1007/s11948-009-9142-5 pmid: 19543814 |
[64] | [余胜泉, 王琦. (2019). “AI+教师”的协作路径发展分析. 电化教育研究, (4), 14-22+29.] |
[65] | Zamfirescu-Pereira J. D., Wong R. Y., Hartmann B., & Yang Q. (2023, April). Why Johnny can’t prompt: How non-AI experts try (and fail) to design LLM prompts. Paper presented at the meeting of the 2023 CHI Conference on Human Factors in Computing Systems, Hamburg, Germany. |
[66] | Zhang J., Bao K., Zhang Y., Wang W., Feng F., & He X. (2023, September). Is ChatGPT fair for recommendation? evaluating fairness in large language model recommendation. Paper presented at the meeting of the 17th ACM Conference on Recommender Systems, Singapore. |
[67] | Zimmerman B. J., & Pons M. M. (1986). Development of a structured interview for assessing student use of self-regulated learning strategies. American Educational Research Journal, 23(4), 614-628. |
[13] | Bouton E., Yosef D., & Asterhan C. S. (2025). Differences between low and high achievers in whole-classroom dialogue participation quality. Learning and Instruction, 96, 102088. https://doi.org/10.1016/j.learninstruc.2025.102088 |
[14] | Chang C. Y., Lin H. C., Yin C., & Yang K. H. (2025). Generative AI-assisted reflective writing for improving students’ higher order thinking: Evidence from quantitative and epistemic network analysis. Educational Technology & Society, 28(1), 270-285. |
[15] | Chang K. E., Sung Y. T., Chang R. B., & Lin S. C. (2005). A new assessment for computer-based concept mapping. Journal of Educational Technology & Society, 8(3), 138-148. |
[16] | Cheng Y. W., Wang Y., Cheng I. L., & Chen N. S. (2019). An in-depth analysis of the interaction transitions in a collaborative Augmented Reality-based mathematic game. Interactive Learning Environments, 27(5-6), 782-796. |
[17] | Chu H. C., Hwang G. J., & Tsai C. C. (2010). A knowledge engineering approach to developing mindtools for context-aware ubiquitous learning. Computers & Education, 54(1), 289-297. |
[18] | Clark A. (2001). Natural-born cyborgs? In Beynon, M., Nehaniv, C. L., & Dautenhahn, K. (Eds.), Lecture notes in computer science: Vol. 2117: Cognitive technology: Instruments of mind (pp. 17-24). Springer, Berlin, Heidelberg. |
[19] | Clark A., & Chalmers D. (1998). The extended mind. Analysis, 58(1), 7-19. |
[20] | Cohen J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20(1), 37-46. |
[21] | Cole M., & Engeström Y. (1993). A cultural-historical approach to distributed cognition. In G. Salomon (Ed.), Distributed cognitions: Psychological and educational considerations (pp. 1-46). Cambridge University Press. |
[22] | Fan Y., Tang L., Le H., Shen K., Tan S., Zhao Y.,... Gašević D. (2025). Beware of metacognitive laziness: Effects of generative artificial intelligence on learning motivation, processes, and performance. British Journal of Educational Technology, 56(2), 489-530. |
[23] | Farina M., & Levin S. (2021). The Extended Mind Thesis and Its Applications. In: Robinson, M. D., & Thomas, L. E. (Eds.), Handbook of embodied psychology (pp. 127-147). Springer, Cham. |
[24] | Farrokhnia M., Banihashem S. K., Noroozi O., & Wals A. (2024). A SWOT analysis of ChatGPT: Implications for educational practice and research. Innovations in Education and Teaching International, 61(3), 460-474. |
[25] | Fisher M., Goddu M. K., & Keil F. C. (2015). Searching for explanations: How the Internet inflates estimates of internal knowledge. Journal of Experimental Psychology: General, 144(3), 674-687. |
[26] | Gilson A., Safranek C. W., Huang T., Socrates V., Chi L., Taylor R. A., & Chartash D. (2023). How does ChatGPT perform on the United States medical licensing examination? The implications of large language models for medical education and knowledge assessment. JMIR Medical Education, 9(1), Article e45312. https://doi.org/10.2196/45312 |
[27] | Greve A., Cooper E., Tibon R., & Henson R. N. (2019). Knowledge is power: Prior knowledge aids memory for both congruent and incongruent events, but in different ways. Journal of Experimental Psychology: General, 148(2), 325-341. |
[28] | Gunawardena C. N., Lowe C. A., & Anderson T. (1997). Analysis of a global online debate and the development of an interaction analysis model for examining social construction of knowledge in computer conferencing. Journal of Educational Computing Research, 17(4), 397-431. |
[29] | Güner H., & Er E. (2025). AI in the classroom: Exploring students’ interaction with ChatGPT in programming learning. Education and Information Technologies. Advance online publication. https://doi.org/10.1007/s10639-025-13337-7 |
[30] | Herbold S., Hautli-Janisz A., Heuer U., Kikteva Z., & Trautsch A. (2023). A large-scale comparison of human-written versus ChatGPT-generated essays. Scientific Reports, 13, 18617. https://doi.org/10.1038/s41598-023-45644-9 |
[31] | Hollan J., Hutchins E., & Kirsh D. (2000). Distributed cognition: Toward a new foundation for human-computer interaction research. ACM Transactions on Computer- Human Interaction, 7(2), 174-196. |
[32] | Hwang G. J., Hung P. H., Chen N. S., & Liu G. Z. (2014). Mindtool-assisted in-field learning (MAIL): An advanced ubiquitous learning project in Taiwan. Journal of Educational Technology & Society, 17(2), 4-16. |
[33] | Kang J., & Liu M. (2022). Investigating navigational behavior patterns of students across at-risk categories within an open-ended serious game. Technology, Knowledge and Learning, 27, 183-205. |
[34] | Kasneci E., Sessler K., Küchemann S., Bannert M., Dementieva D., Fischer F., … Kasneci G. (2023). ChatGPT for good? On opportunities and challenges of large language models for education. Learning and Individual Differences, 103, 102274. https://doi.org/10.1016/j.lindif.2023.102274 |
[35] | Kocoń J., Cichecki I., Kaszyca O., Kochanek M., Szydło D., Baran J.,... Kazienko P. (2023). ChatGPT: Jack of all trades, master of none. Information Fusion, 99, 101861. https://doi.org/10.1016/j.inffus.2023.101861 |
[36] | Lin X. F., Wang Z., Zhou W., Luo G., Hwang G. J., Zhou Y.,... Liang Z. M. (2023). Technological support to foster students’ artificial intelligence ethics: An augmented reality-based contextualized dilemma discussion approach. Computers & Education, 201, 104813. https://doi.org/10.1016/j.compedu.2023.104813 |
[37] |
Lin Z. (2024). How to write effective prompts for large language models. Nature Human Behaviour, 8(4), 611-615.
doi: 10.1038/s41562-024-01847-2 pmid: 38438650 |
[38] | Liu M., Zhang L. J., & Biebricher C. (2024). Investigating students’ cognitive processes in generative AI-assisted digital multimodal composing and traditional writing. Computers & Education, 211, 104977. https://doi.org/10.1016/j.compedu.2023.104977 |
[39] | Liu P., Yuan W., Fu J., Jiang Z., Hayashi H., & Neubig G. (2023). Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing. ACM Computing Surveys, 55(9), 1-35. |
[40] | Mao Z., Li X., Li Y., Shao J., & Bao H. (2025). Capturing patterns of argumentation elements, encountered challenges, and social regulation in collaborative argumentation: An epistemic network analysis study. Interactive Learning Environments. Advance online publication. https://doi.org/10.1080/10494820.2025.2460583 |
[41] | Molenaar I., Horvers A., & Baker R. S. J. D. (2021). What can moment-by-moment learning curves tell about students' self-regulated learning? Learning and Instruction, 72, 101206. https://doi.org/10.1016/j.learninstruc.2019.05.003 |
[42] |
Muraven M., & Baumeister R. F. (2000). Self-regulation and depletion of limited resources: Does self-control resemble a muscle? Psychological Bulletin, 126(2), 247-259.
doi: 10.1037/0033-2909.126.2.247 pmid: 10748642 |
[43] |
Noy S., & Zhang W. (2023). Experimental evidence on the productivity effects of generative artificial intelligence. Science, 381(6654), 187-192.
doi: 10.1126/science.adh2586 pmid: 37440646 |
[44] |
Papamitsiou Z., & Economides A. A. (2019). Exploring autonomous learning capacity from a self-regulated learning perspective using learning analytics. British Journal of Educational Technology, 50(6), 3138-3155.
doi: 10.1111/bjet.12747 |
[45] | Pifarre M., & Cobos R. (2010). Promoting metacognitive skills through peer scaffolding in a CSCL environment. International Journal of Computer-Supported Collaborative Learning, 5, 237-253. |
[46] | Shaffer D. W., Collier W., & Ruis A. R. (2016). A tutorial on epistemic network analysis: Analyzing the structure of connections in cognitive, social, and interaction data. Journal of Learning Analytics, 3(3), 9-45. |
[47] | Shapiro A. M. (2004). How including prior knowledge as a subject variable may change outcomes of learning research. American Educational Research Journal, 41(1), 159-189. |
[48] | Shing Y. L., & Brod G. (2016). Effects of prior knowledge on memory: Implications for education. Mind, Brain, and Education, 10(3), 153-161. |
[49] | Shoufan A. (2023). Can students without prior knowledge use ChatGPT to answer test questions? An empirical study. ACM Transactions on Computing Education, 23(4), 1-29. |
[50] | Simonsmeier B. A., Flaig M., Deiglmayr A., Schalk L., & Schneider M. (2022). Domain-specific prior knowledge and learning: A meta-analysis. Educational Psychologist, 57(1), 31-54. |
[51] | Song Y., Huang L., Zheng L., Fan M., & Liu Z. (2025). Interactions with generative AI chatbots: Unveiling dialogic dynamics, students’ perceptions, and practical competencies in creative problem-solving. International Journal of Educational Technology in Higher Education, 22, 12. https://doi.org/10.1186/s41239-025-00508-2 |
[52] |
Sparrow B., Liu J., & Wegner D. M. (2011). Google effects on memory: Cognitive consequences of having information at our fingertips. Science, 333(6043), 776-778.
doi: 10.1126/science.1207745 pmid: 21764755 |
[53] | Stojanov A., Liu Q., & Koh J. H. L. (2024). University students’ self-reported reliance on ChatGPT for learning: A latent profile analysis. Computers and Education: Artificial Intelligence, 6, 100243. https://doi.org/10.1016/j.caeai.2024.100243 |
[1] | 李馨, 张美, 顾俊娟, 王永胜, 梁菲菲. 双字词识别中首、尾词素位置概率对位置编码灵活程度的影响[J]. 心理学报, 2025, 57(8): 1309-1322. |
[2] | 王俊博, 赵娜, 李子媛, 刘强. 负性面孔的工作记忆离线态存储不影响在线态存储[J]. 心理学报, 2025, 57(8): 1323-1332. |
[3] | 胡伟, 张豹, 贾小飞, 陈辉贤, 袁杰, 方卓, 张学新. 顶中区N200是中文单字字形识别的神经标识[J]. 心理学报, 2025, 57(7): 1127-1138. |
[4] | 陈杰, 蔡佳慧, 兰雅迪, 李雯婕. 生物运动信息对听障个体注意网络功能的影响[J]. 心理学报, 2025, 57(7): 1139-1153. |
[5] | 王慧媛, 高玉林, 张明. 意义关联的同位置成本现象: 基于非靶特征及可能靶子位置的抑制[J]. 心理学报, 2025, 57(7): 1154-1169. |
[6] | 汪俊, 郑峥. 联合行动情境对个体时间知觉的影响[J]. 心理学报, 2025, 57(7): 1170-1186. |
[7] | 晏碧华, 杨静怡, 陆开朗. 事件场景记忆的有限边界扩展——以飞行场景为例[J]. 心理学报, 2025, 57(7): 1187-1200. |
[8] | 龙翼婷, 姜英杰, 袁媛, 张晓靖, 丛佩瑶, 郭彦麟. 公平影响适应性情景记忆:相对奖赏的调节作用[J]. 心理学报, 2025, 57(7): 1201-1215. |
[9] | 高承海, 党宝宝, 王冰洁, 吴胜涛. 人工智能的语言优势和不足:基于大语言模型与真实学生语文能力的比较[J]. 心理学报, 2025, 57(6): 947-966. |
[10] | 周衡, 王爱君, 袁祥勇, 蒋毅. 客体类别差异调节视听跨通道冲突中反应水平的感觉主导效应[J]. 心理学报, 2025, 57(6): 1001-1012. |
[11] | 简尽涵, 张军恒, 晏碧华, 姬鸣. 空间语言交互在不同视角下的多线索影响机制[J]. 心理学报, 2025, 57(6): 1013-1040. |
[12] | 李雨桐, 李璇, 岳泽明, 李亚红, 隋雪. 抑郁倾向个体对言语情绪信息的加工偏向[J]. 心理学报, 2025, 57(6): 1041-1055. |
[13] | 李子媛, 任国防, 袁子昕, 喻青青, 伍越, 刘强. 视觉工作记忆离线态表征具有稳固性优势[J]. 心理学报, 2025, 57(5): 739-748. |
[14] | 王强强, 吴彦文, 石文典, 游旭群. 数量和顺序线索对SNARC效应的影响及其作用机制[J]. 心理学报, 2025, 57(5): 749-761. |
[15] | 陈霁雯, 买晓琴, 李富洪. 去抑制的认知神经机制: 一项事件相关电位研究[J]. 心理学报, 2025, 57(5): 762-774. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||