[1] |
Asparouhov, T., Hamaker, E. L., & Muthén, B. (2018). Dynamic structural equation models. Structural Equation Modeling: A Multidisciplinary Journal, 25(3), 359-388.
|
[2] |
Asparouhov, T., & Muthén, B. (2019). Latent variable centering of predictors and mediators in multilevel and time-series models. Structural Equation Modeling: A Multidisciplinary Journal, 26(1), 119-142.
|
[3] |
Asparouhov, T., & Muthén, B. (2020). Comparison of models for the analysis of intensive longitudinal data. Structural Equation Modeling: A Multidisciplinary Journal, 27(2), 275-297.
|
[4] |
Baron, R. M., & Kenny, D. A. (1986). The moderator-mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. Journal of Personality and Social Psychology, 51(6), 1173-1182.
doi: 10.1037//0022-3514.51.6.1173
pmid: 3806354
|
[5] |
Bauer, D. J., Preacher, K. J., & Gil, K. M. (2006). Conceptualizing and testing random indirect effects and moderated mediation in multilevel models: New procedures and recommendations. Psychological Methods, 11(2), 142-163.
doi: 10.1037/1082-989X.11.2.142
pmid: 16784335
|
[6] |
Bradley, J. V. (1978). Robustness? British Journal of Mathematical and Statistical Psychology, 31(2), 144-152.
|
[7] |
Cheung, G. W., & Lau, R. S. (2017). Accuracy of parameter estimates and confidence intervals in moderated mediation models: A comparison of regression and latent moderated structural equation. Organizational Research Methods, 20(4), 746-769.
|
[8] |
Collins, L. M. (2006). Analysis of longitudinal data: The integration of theoretical model, temporal design, and statistical model. Annual Review of Psychology, 57, 505-528.
pmid: 16318605
|
[9] |
Edwards, J. R., & Lambert, L. S. (2007). Methods for integrating moderation and mediation: A general analytic framework using moderated path analysis. Psychological Methods, 12(1), 1-22.
|
[10] |
Fang, J., & Wen, Z. L. (2018). Moderated mediation effects based on structural equation modeling. Journal of Psychological Science, 41(2), 453-458.
|
|
[方杰, 温忠麟. (2018). 基于结构方程模型的有调节的中介效应. 心理科学, 41(2), 453-458.]
|
[11] |
Fang, J., & Wen, Z. (2023a). Analysis of multilevel moderated mediation models. Journal of Psychological Science, 46(1), 221-229.
|
|
[方杰, 温忠麟. (2023a). 有调节的多层中介效应分析. 心理科学, 46(1), 221-229.]
|
[12] |
Fang, J., & Wen, Z. (2023b). Advanced models for analyzing mediation and moderation effects. Education Science Publishing House.
|
|
[方杰, 温忠麟. (2023b). 中介效应和调节效应模型进阶. 教育科学出版社.]
|
[13] |
Fang, J., Wen, Z., & Hau, K-T. (2024). Mediation analyses of intensive longitudinal data with dynamic structural equation modeling. Structural Equation Modeling: A Multidisciplinary Journal, 31(4), 728-741.
|
[14] |
Fang, J., Wen, Z., & He, Z. (2023). Moderated mediation analyses of a frequently-used types of categorical variable. Chinese Journal of Applied Psychology, 29(4), 291-299.
|
|
[方杰, 温忠麟, 何子杰. (2023). 常见的类别变量的有调节的中介模型分析. 应用心理学, 29(4), 291-299.]
|
[15] |
Fang, Y., & Wang, L. (2024). Dynamic structural equation models with missing data: Data requirements on N and T. Structural Equation Modeling: A Multidisciplinary Journal, 31(5), 891-908.
|
[16] |
Gistelinck, F., Loeys, T., & Flamant, N. (2021). Multilevel autoregressive models when the number of time points is small. Structural Equation Modeling: A Multidisciplinary Journal, 28(1), 15-27.
|
[17] |
Hamaker, E. L., & Wichers, M. (2017). No time like the present: Discovering the hidden dynamics in intensive longitudinal data. Current Directions in Psychological Science, 26(1), 10-15.
|
[18] |
Hamilton, J. D. (1994). Time series analysis. Princeton, NJ: Princeton University Press.
|
[19] |
Hayes, A. F. (2015). An index and test of linear moderated mediation. Multivariate Behavioral Research, 50(1), 1-22.
doi: 10.1080/00273171.2014.962683
pmid: 26609740
|
[20] |
Hayes, A. F. (2022). Introduction to mediation, moderation, and conditional process analysis: A regression-based approach (3nd ed.). New York: Guilford Press.
|
[21] |
Kenny, D. A., Korchmaros, J. D., & Bolger, N. (2003). Lower level mediation in multilevel models. Psychological Methods, 8(2), 115-128.
pmid: 12924810
|
[22] |
Lischetzke, T., Schemer, L., Glombiewski, J. A., In-Albon, T., Karbach, J., & Könen, T. (2021). Negative emotion differentiation attenuates the within-person indirect effect of daily stress on nightly sleep quality through calmness. Frontiers in Psychology, 12, 684117.
|
[23] |
McKellar, S. E., & Wang, M. (2023). Adolescents’ daily sense of school connectedness and academic engagement: Intensive longitudinal mediation study of student differences by remote, hybrid, and in-person learning modality. Learning and Instruction, 83, 101659.
|
[24] |
McNeish, D., & Hamaker, E. L. (2020). A primer on two-level dynamic structural equation models for intensive longitudinal data in Mplus. Psychological Methods, 25(5), 610-635.
|
[25] |
McNeish, D., & MacKinnon, D. P. (2025). Intensive longitudinal mediation in Mplus. Psychological Methods, 30(2), 393-415. https://dx.doi.org/10.1037/met0000536
|
[26] |
McNeish, D., Somers, J. A. & Savord, A. (2024). Dynamic structural equation models with binary and ordinal outcomes in Mplus. Behavior Research Methods, 56(3), 1506-1532.
|
[27] |
Muller, D., Judd, C. M., & Yzerbyt, V. Y. (2005). When moderation is mediated and mediation is moderated. Journal of Personality and Social Psychology, 89(6), 852-863.
doi: 10.1037/0022-3514.89.6.852
pmid: 16393020
|
[28] |
Muthén, L. K., & Muthén, B. O. (2002). How to use a Monte Carlo study to decide on sample size and determine power. Structural Equation Modeling: A Multidisciplinary Journal, 9(4), 599-620.
|
[29] |
Muthén, L. K., & Muthén, B. O. (1998- 2017). Mplus user's guide. Los Angeles, CA: Muthén and Muthén
|
[30] |
Preacher, K. J., Zhang, Z., & Zyphur, M. J. (2016). Multilevel structural equation models for assessing moderation within and across levels of analysis. Psychological Methods, 21(2), 189-205.
doi: 10.1037/met0000052
pmid: 26651982
|
[31] |
Preacher, K. J., Zyphur, M. J., & Zhang, Z. (2010). A general multilevel SEM framework for assessing multilevel mediation. Psychological Methods, 15(3), 209-233.
doi: 10.1037/a0020141
pmid: 20822249
|
[32] |
Speyer, L. G., Murray, A. L., & Kievit, R. (2024). Investigating moderation effects at the within-person level using intensive longitudinal data: A two-level dynamic structural equation modelling approach in Mplus. Multivariate Behavioral Research, 59(3), 620-637.
|
[33] |
Talty, A., Speyer, L. G., Eisner, M. P., Ribeaud, D., Murray, A. L., & Obsuth, I. (2023). The role of student-teacher relationships in the association between negative parenting practices and emotion dynamics - Combining longitudinal and ecological momentary assessment data. Journal of Research on Adolescence, 33(4), 1268-1280.
doi: 10.1111/jora.12874
pmid: 37395433
|
[34] |
Wang, L., & Preacher, K. J. (2015). Moderated mediation analysis using Bayesian methods. Structural Equation Modeling: A Multidisciplinary Journal, 22(2), 249-263.
|
[35] |
Wang, Q., Yan, G., Hu, Y., Ding, G., & Lai, Y. (2024). Stress and emotion in a locked campus: The moderating effects of resilience and loneliness. Frontiers in Psychology, 14, 1168020.
|
[36] |
Wen, Z., & Ye, B. (2014). Different methods for testing moderated mediation models: Competitors or backups? Acta Psychologica Sinica, 46(5), 714-726.
doi: 10.3724/SP.J.1041.2014.00714
|
|
[温忠麟, 叶宝娟. (2014). 有调节的中介模型检验方法: 竞争还是替补? 心理学报, 46(5), 714-726.]
|
[37] |
Zhang, Q., Wang, L. J., & Bergeman, C. S. (2018). Multilevel autoregressive mediation models: Specification, estimation, and applications. Psychological Methods, 23(2), 278-297.
doi: 10.1037/met0000161
pmid: 29172610
|
[38] |
Zheng, S., Zhang, L., Qiao, X., & Pan, J. (2021). Intensive longitudinal data analysis: Models and application. Advances in Psychological Science, 29(11), 1948-1969.
doi: 10.3724/SP.J.1042.2021.01948
|
|
[郑舒方, 张沥今, 乔欣宇, 潘俊豪. (2021). 密集追踪数据分析: 模型及其应用. 心理科学进展, 29(11), 1948-1969.]
doi: 10.3724/SP.J.1042.2021.01948
|
[39] |
Zhou, L., Wang, M., & Zhang, Z. (2021). Intensive longitudinal data analyses with dynamic structural equation modeling. Organizational Research Methods, 24(2), 219-250.
|