心理学报 ›› 2025, Vol. 57 ›› Issue (5): 762-774.doi: 10.3724/SP.J.1041.2025.0762
收稿日期:
2024-02-22
发布日期:
2025-03-06
出版日期:
2025-05-25
通讯作者:
买晓琴, E-mail: maixq@ruc.edu.cn;基金资助:
CHEN Jiwen1, MAI Xiaoqin1(), LI Fuhong2(
)
Received:
2024-02-22
Online:
2025-03-06
Published:
2025-05-25
摘要:
个体在不同任务间进行灵活切换时, 不仅需要抑制任务无关信息, 也需要在适当的时候解除先前的抑制, 即去抑制, 该过程产生的代价称为去抑制代价。尽管研究者采用多种范式研究了去抑制的认知过程, 但其神经机制并不清楚。本研究采用ERP残差迭代分解技术考察了41名大学生被试在改编的停止信号任务中去抑制的认知神经机制, 该技术可以减少个体内差异和噪声影响, 更清晰地揭示不同认知过程的脑电特征。在任务中, 当N−1试次出现停止信号时, N试次在刺激重复条件下的反应时长于刺激切换条件, 反映了去抑制代价。脑电结果显示, 去抑制效应最早出现于P1和N1成分, 反映了注意门控机制在去抑制中的作用; 去抑制过程也诱发了较小的N2/P3波幅以及较长的P3/R-cluster潜伏期, 反映了自上而下的认知控制以及运动反应过程。
中图分类号:
陈霁雯, 买晓琴, 李富洪. (2025). 去抑制的认知神经机制: 一项事件相关电位研究. 心理学报, 57(5), 762-774.
CHEN Jiwen, MAI Xiaoqin, LI Fuhong. (2025). The cognitive neural mechanism of deinhibition: An ERP study. Acta Psychologica Sinica, 57(5), 762-774.
条件 | 反应时(M ± SD) | 正确率(M ± SD) |
---|---|---|
N−1 无抑制切换 | 611 ± 73 | 98.9 ± 1.3 |
N−1 无抑制重复 | 616 ± 76 | 98.8 ± 1.5 |
N−1 抑制后切换 | 559 ± 68 | 98.5 ± 1.9 |
N−1 抑制后重复 | 574 ± 69 | 98.8 ± 1.6 |
表1 不同条件下的反应时(ms)和正确率(%)
条件 | 反应时(M ± SD) | 正确率(M ± SD) |
---|---|---|
N−1 无抑制切换 | 611 ± 73 | 98.9 ± 1.3 |
N−1 无抑制重复 | 616 ± 76 | 98.8 ± 1.5 |
N−1 抑制后切换 | 559 ± 68 | 98.5 ± 1.9 |
N−1 抑制后重复 | 574 ± 69 | 98.8 ± 1.6 |
图6 行为与脑电指标数据分布特征及相关结果图(去抑制代价: 抑制后重复RT−抑制后切换RT; 去抑制速度: 去抑制代价持续的试次数; P3潜伏期去抑制代价: 抑制后重复P3潜伏期−抑制后切换P3潜伏期; R-簇潜伏期去抑制代价: 抑制后重复R-簇潜伏期−抑制后切换R-簇潜伏期)。注: ***p < 0.001, **p < 0.01, *p < 0.05
[1] |
Allen, T. A., & Hallquist, M. N. (2020). Disinhibition and detachment in adolescence: A developmental cognitive neuroscience perspective on the alternative model for personality disorders. Psychopathology, 53(3-4), 205-212. https://doi.org/10.1159/000509984
doi: 10.1159/000509984 URL pmid: 32777787 |
[2] |
Allison, B. Z., & Polich, J. (2008). Workload assessment of computer gaming using a single-stimulus event-related potential paradigm. Biological Psychology, 77(3), 277-283. https://doi.org/10.1016/j.biopsycho.2007.10.014
doi: 10.1016/j.biopsycho.2007.10.014 URL pmid: 18093717 |
[3] | Allport, A., Styles, E. A., & Hsieh, S. (1994). Shifting intentional set: Exploring the dynamic control of tasks. In C. Umiltá & M. Moscovitch (Eds.), Attention and performance (pp. 421-452). MIT Press. |
[4] | Berger, A., Koch, I., & Kiefer, M. (2024). Inhibition of cued but not executed task sets depends on cue-task compatibility and practice. Psychological Research-Psychologische Forschung, 88(7), 2036-2058. https://doi.org/10.1007/s00426-024-02013-z |
[5] |
Berti, S., & Schröger, E. (2003). Working memory controls involuntary attention switching: Evidence from an auditory distraction paradigm. European Journal of Neuroscience, 17(5), 1119-1122. https://doi.org/10.1046/j.1460-9568.2003.02527.x
URL pmid: 12653989 |
[6] | Botvinick, M., Nystrom, L. E., Fissell, K., Carter, C. S., & Cohen, J. D. (1999). Conflict monitoring versus selection- for-action in anterior cingulate cortex. Nature, 402(6758), 179-181. https://doi.org/10.1038/46035 |
[7] |
Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D. (2001). Conflict monitoring and cognitive control. Psychological Review, 108(3), 624-652. https://doi.org/10.1037//0033-295x.108.3.624
doi: 10.1037/0033-295x.108.3.624 URL pmid: 11488380 |
[8] | Chen, J., Cao, B., & Li, F. (2023). Do after “not to do”: Deinhibition in cognitive control. Memory & Cognition, 51(6), 1388-1403. https://doi.org/10.3758/s13421-023-01403-9 |
[9] | Chen, J., Wu, S., & Li, F. (2022). Cognitive neural mechanism of backward inhibition and deinhibition: A review. Frontiers in Behavioral Neuroscience, 16, Article 846369. https://doi.org/10.3389/fnbeh.2022.846369 |
[10] | Dreher, J. C., & Berman, K. F. (2002). Fractionating the neural substrate of cognitive control processes. Proceedings of the National Academy of Sciences of the United States of America, 99(22), 14595-14600. https://doi.org/10.1073/pnas.222193299 |
[11] |
Emmelin, N., & Muren, A. (1950). Acetylcholine release at parasympathetic synapses. Acta Physiol Scand, 20(1), 13-32. https://doi.org/10.1111/j.1748-1716.1950.tb00677.x
URL pmid: 15413504 |
[12] | Fu, M., Li, F., & Xie, L. (2022). New evidence for different views of task switching. Journal of Psychological Science, 45(5), 1085-1091. https://doi.org/10.16719/j.cnki.1671-6981.20220508 |
[付美玲, 李富洪, 谢流芳. (2022). 任务切换理论争议新证据. 心理科学, 45(5), 1085-1091. https://doi.org/10.16719/j.cnki.1671-6981.20220508.] | |
[13] | Giller, F., & Beste, C. (2019). Effects of aging on sequential cognitive flexibility are associated with fronto-parietal processing deficits. Brain Structure & Function, 224(7), 2343-2355. https://doi.org/10.1007/s00429-019-01910-z |
[14] | Giller, F., Mückschel, M., Ziemssen, T., & Beste, C. (2020). A possible role of the norepinephrine system during sequential cognitive flexibility-Evidence from EEG and pupil diameter data. Cortex, 128, 22-34. https://doi.org/10.1016/j.cortex.2020.03.008 |
[15] |
Giller, F., Zhang, R., Roessner, V., & Beste, C. (2019). The neurophysiological basis of developmental changes during sequential cognitive flexibility between adolescents and adults. Human Brain Mapping, 40(2), 552-565. https://doi.org/10.1002/hbm.24394
doi: 10.1002/hbm.24394 URL pmid: 30240511 |
[16] |
Grange, J. A., Kedra, P., & Walker, A. (2019). The effect of practice on inhibition in task switching: Controlling for episodic retrieval. Acta Psychologica, 192, 59-72. https://doi.org/10.1016/j.actpsy.2018.10.006
doi: S0001-6918(18)30360-3 URL pmid: 30448522 |
[17] |
Grange, J. A., Kowalczyk, A. W., & O'Loughlin, R. (2017). The effect of episodic retrieval on inhibition in task switching. Journal of Experimental Psychology: Human Perception and Performance, 43(8), 1568-1583. https://doi.org/10.1037/xhp0000411
doi: 10.1037/xhp0000411 URL pmid: 28383961 |
[18] | Handy, T. C., & Mangun, G. R. (2000). Attention and spatial selection: Electrophysiological evidence for modulation by perceptual load. Perception & Psychophysics, 62(1), 175-186. https://doi.org/10.3758/bf03212070 |
[19] |
Hommel, B. (2004). Event files: feature binding in and across perception and action. Trends in Cognitive Sciences, 8(11), 494-500. https://doi.org/10.1016/j.tics.2004.08.007
doi: 10.1016/j.tics.2004.08.007 URL pmid: 15491903 |
[20] |
Hopfinger, J. B., Buonocore, M. H., & Mangun, G. R. (2000). The neural mechanisms of top-down attentional control. Nature Neuroscience, 3(3), 284-291. https://doi.org/10.1038/72999
doi: 10.1038/72999 URL pmid: 10700262 |
[21] | Kan, Y. C., Xue, W. L., Zhao, H. X., Wang, X. W., Guo, X. Y., & Duan, H. J. (2021). The discrepant effect of acute stress on cognitive inhibition and response inhibition. Consciousness and Cognition, 91, Article 103131. https://doi.org/10.1016/j.concog.2021.103131 |
[22] |
Kathmann, N., Bogdahn, B., & Endrass, T. (2006). Event- related brain potential variations during location and identity negative priming. Neuroscience Letters, 394(1), 53-56. https://doi.org/10.1016/j.neulet.2005.10.001
URL pmid: 16263217 |
[23] |
Klimesch, W. (2011). Evoked alpha and early access to the knowledge system: The P1 inhibition timing hypothesis. Brain Research, 1408, 52-71. https://doi.org/10.1016/j.brainres.2011.06.003
doi: 10.1016/j.brainres.2011.06.003 URL pmid: 21774917 |
[24] |
Klimesch, W., Freunberger, R., & Sauseng, P. (2010). Oscillatory mechanisms of process binding in memory. Neuroscience and Biobehavioral Reviews, 34(7), 1002-1014. https://doi.org/10.1016/j.neubiorev.2009.10.004
doi: 10.1016/j.neubiorev.2009.10.004 URL pmid: 19837109 |
[25] |
Koch, I., Gade, M., & Philipp, A. M. (2004). Inhibition of response mode in task switching. Experimental Psychology, 51(1), 52-58. https://doi.org/10.1027/1618-3169.51.1.52
URL pmid: 14959506 |
[26] | Koch, I., Gade, M., Schuch, S., & Philipp, A. M. (2010). The role of inhibition in task switching: A review. Psychonomic Bulletin & Review, 17(1), 1-14. https://doi.org/10.3758/pbr.17.1.1 |
[27] | Kowalczyk, A. W., & Grange, J. A. (2020). The effect of episodic retrieval on inhibition in task switching: A diffusion model analysis. Psychological Research-Psychologische Forschung, 84(7), 1965-1999. https://doi.org/10.1007/s00426-019-01206-1 |
[28] |
Lange, K., & Schnuerch, R. (2014). Challenging perceptual tasks require more attention: The influence of task difficulty on the N1 effect of temporal orienting. Brain and Cognition, 84(1), 153-163. https://doi.org/10.1016/j.bandc.2013.12.001
doi: 10.1016/j.bandc.2013.12.001 URL pmid: 24384088 |
[29] | Logan, G. D. (1994). On the ability to inhibit thought and action: A users' guide to the stop signal paradigm. In D. Dagenbach & T. H. Carr (Eds.), Inhibitory processes in attention, memory, and language (pp. 189-239). Academic Press. |
[30] |
Logan, G. D. (2002). An instance theory of attention and memory. Psychological Review, 109(2), 376-400. https://doi.org/10.1037//0033-295x.109.2.376
URL pmid: 11990323 |
[31] |
Luck, S. J., Woodman, G. F., & Vogel, E. K. (2000). Event-related potential studies of attention. Trends in Cognitive Sciences, 4(11), 432-440. https://doi.org/10.1016/s1364-6613(00)01545-x
doi: 10.1016/s1364-6613(00)01545-x URL pmid: 11058821 |
[32] |
MacQueen, G. M., Galway, T., Goldberg, J. O., & Tipper, S. P. (2003). Impaired distractor inhibition in patients with schizophrenia on a negative priming task. Psychological Medicine, 33(1), 121-129. https://doi.org/10.1017/s0033291702006918
URL pmid: 12537043 |
[33] | Mayr, S., Niedeggen, M., Buchner, A., & Orgs, G. (2006). The level of reaction time determines the ERP correlates of auditory negative priming. Journal of Psychophysiology, 20(3), 186-194. https://doi.org/10.1027/0269-8803.20.3.186 |
[34] |
Mayr, S., Niedeggen, M., Buchner, A., & Pietrowsky, R. (2003). ERP correlates of auditory negative priming. Cognition, 90(2), B11-B21. https://doi.org/10.1016/s0010-0277(03)00142-2
doi: 10.1016/s0010-0277(03)00142-2 URL pmid: 14599757 |
[35] | Mayr, U. (2002). Inhibition of action rules. Psychonomic Bulletin & Review, 9(1), 93-99. https://doi.org/10.3758/bf03196261 |
[36] |
Mayr, U., & Keele, S. W. (2000). Changing internal constraints on action: The role of backward inhibition. Journal of Experimental Psychology-General, 129(1), 4-26. https://doi.org/10.1037/0096-3445.129.1.4
URL pmid: 10756484 |
[37] |
Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24, 167-202. https://doi.org/10.1146/annurev.neuro.24.1.167
URL pmid: 11283309 |
[38] |
Miller, M. W., Rietschel, J. C., McDonald, C. G., & Hatfield, B. D. (2011). A novel approach to the physiological measurement of mental workload. International Journal of Psychophysiology, 80(1), 75-78. https://doi.org/10.1016/j.ijpsycho.2011.02.003
doi: 10.1016/j.ijpsycho.2011.02.003 URL pmid: 21320552 |
[39] |
Mostofsky, S. H., & Simmonds, D. J. (2008). Response inhibition and response selection: Two sides of the same coin. Journal of Cognitive Neuroscience, 20(5), 751-761. https://doi.org/10.1162/jocn.2008.20500
doi: 10.1162/jocn.2008.20500 URL pmid: 18201122 |
[40] | Notebaert, W., & Verguts, T. (2006). Stimulus conflict predicts conflict adaptation in a numerical flanker task. Psychonomic Bulletin & Review, 13(6), 1078-1084. https://doi.org/10.3758/bf03213929 |
[41] |
Oldenburg, J. F. E., Roger, C., Assecondi, S., Verbruggen, F., & Fias, W. (2012). Repetition priming in the stop signal task: The electrophysiology of sequential effects of stopping. Neuropsychologia, 50(12), 2860-2868. https://doi.org/10.1016/j.neuropsychologia.2012.08.014
doi: 10.1016/j.neuropsychologia.2012.08.014 URL pmid: 22940427 |
[42] |
Ouyang, G., Herzmann, G., Zhou, C. S., & Sommer, W. (2011). Residue iteration decomposition (RIDE): A new method to separate ERP components on the basis of latency variability in single trials. Psychophysiology, 48(12), 1631-1647. https://doi.org/10.1111/j.1469-8986.2011.01269.x
doi: 10.1111/j.1469-8986.2011.01269.x URL pmid: 21895682 |
[43] |
Ouyang, G., Sommer, W., & Zhou, C. S. (2015). A toolbox for residue iteration decomposition (RIDE)-A method for the decomposition, reconstruction, and single trial analysis of event related potentials. Journal of Neuroscience Methods, 250, 7-21. https://doi.org/10.1016/j.jneumeth.2014.10.009
doi: 10.1016/j.jneumeth.2014.10.009 URL pmid: 25455337 |
[44] | Paholpak, P., Carr, A. R., Barsuglia, J. P., Barrows, R. J., Jimenez, E., Lee, G. J., & Mendez, M. F. (2016). Person- based versus generalized impulsivity disinhibition in frontotemporal dementia and Alzheimer disease. Journal of Geriatric Psychiatry and Neurology, 29(6), 344-351. https://doi.org/10.1177/0891988716666377 |
[45] |
Picazio, S., Foti, F., Oliveri, M., Koch, G., Petrosini, L., Ferlazzo, F., & Sdoia, S. (2020). Out with the old and in with the new: The contribution of prefrontal and cerebellar areas to backward inhibition. Cerebellum, 19(3), 426-436. https://doi.org/10.1007/s12311-020-01115-9
doi: 10.1007/s12311-020-01115-9 URL pmid: 32140845 |
[46] |
Polich, J. (2007). Updating P300: An integrative theory of P3a and P3b. Clinical Neurophysiology, 118(10), 2128-2148. https://doi.org/10.1016/j.clinph.2007.04.019
doi: 10.1016/j.clinph.2007.04.019 URL pmid: 17573239 |
[47] | Schuch, S., & Koch, I. (2003). The role of response selection for inhibition of task sets in task shifting. Journal of Experimental Psychology: Human Perception and Performance, 29(1), 92-105. https://doi.org/10.1037/0096-1523.29.1.92 |
[48] | Sdoia, S., Zivi, P., & Ferlazzo, F. (2020). Anodal tDCS over the right parietal but not frontal cortex enhances the ability to overcome task set inhibition during task switching. PLoS One, 15(2), Article e0228541. https://doi.org/10.1371/journal.pone.0228541 |
[49] | Sinai, M., Goffaux, P., & Phillips, N. A. (2007). Cue-versus response-locked processes in backward inhibition: Evidence from ERPs. Psychophysiology, 44(4), 596-609. https://doi.org/10.1111/j.1469-8986.2007.00527.x |
[50] | Tipper, S. P. (1985). The negative priming effect: Inhibitory priming by ignored objects. Quarterly Journal of Experimental Psychology Section a-Human Experimental Psychology, 37(4), 571-590. https://doi.org/10.1080/14640748508400920 |
[51] |
Toselli, M., Tosetti, P., & Taglietti, V. (1999). Kinetic study of N-type calcium current modulation by δ-opioid receptor activation in the mammalian cell line NG108-15. Biophysical Journal, 76(5), 2560-2574. https://doi.org/10.1016/s0006-3495(99)77409-6
URL pmid: 10233071 |
[52] |
Twomey, D. M., Murphy, P. R., Kelly, S. P., & O'Connell, R. G. (2015). The classic P300 encodes a build-to-threshold decision variable. European Journal of Neuroscience, 42(1), 1636-1643. https://doi.org/10.1111/ejn.12936
doi: 10.1111/ejn.12936 URL pmid: 25925534 |
[53] |
Upton, D. J., Enticott, P. G., Croft, R. J., Cooper, N. R., & Fitzgerald, P. B. (2010). ERP correlates of response inhibition after-effects in the stop signal task. Experimental Brain Research, 206(4), 351-358. https://doi.org/10.1007/s00221-010-2369-1
doi: 10.1007/s00221-010-2369-1 URL pmid: 20878149 |
[54] |
Verbruggen, F., Liefooghe, B., Szmalec, A., & Vandierendonck, A. (2005). Inhibiting responses when switching: Does it matter? Experimental Psychology, 52(2), 125-130. https://doi.org/10.1027/1618-3169.52.2.125
URL pmid: 15850159 |
[55] |
Verbruggen, F., & Logan, G. D. (2008). Response inhibition in the stop-signal paradigm. Trends in Cognitive Sciences, 12(11), 418-424. https://doi.org/10.1016/j.tics.2008.07.005
doi: 10.1016/j.tics.2008.07.005 URL pmid: 18799345 |
[56] |
Verleger, R., Görgen, S., & Jaskowski, P. (2005). An ERP indicator of processing relevant gestalts in masked priming. Psychophysiology, 42(6), 677-690. https://doi.org/10.1111/j.1469-8986.2005.354.x
URL pmid: 16364063 |
[57] |
Vogel, E. K., & Luck, S. J. (2000). The visual N1 component as an index of a discrimination process. Psychophysiology, 37(2), 190-203. https://doi.org/10.1017/s0048577200981265
URL pmid: 10731769 |
[58] |
Wascher, E., & Beste, C. (2010). Tuning perceptual competition. Journal of Neurophysiology, 103(2), 1057-1065. https://doi.org/10.1152/jn.00376.2009
doi: 10.1152/jn.00376.2009 URL pmid: 20032246 |
[59] | Wolff, N., Giller, F., Buse, J., Roessner, V., & Beste, C. (2018). When repetitive mental sets increase cognitive flexibility in adolescent obsessive-compulsive disorder. Journal of Child Psychology and Psychiatry, 59(9), 1024-1032. https://doi.org/10.1111/jcpp.12901 |
[60] |
Wray, J., Kalkan, T., Gomez-Lopez, S., Eckardt, D., Cook, A., Kemler, R., & Smith, A. (2011). Inhibition of glycogen synthase kinase-3 alleviates Tcf3 repression of the pluripotency network and increases embryonic stem cell resistance to differentiation. Nature Cell Biology, 13(7), 838-845. https://doi.org/10.1038/ncb2267
doi: 10.1038/ncb2267 URL pmid: 21685889 |
[61] |
Wu, J. X., Cao, B. H., Chen, Y., Li, Z. X., & Li, F. H. (2022). Hierarchical control in task switching: Electrophysiological evidence. Acta Psychologica Sinica, 54(10), 1167-1180. https://doi.org/10.3724/sp.J.1041.2022.01167
doi: 10.3724/SP.J.1041.2022.01167 URL |
[吴建校, 曹碧华, 陈云, 李子夏, 李富洪. (2022). 认知控制的层级性: 来自任务切换的脑电证据. 心理学报, 54(10), 1167-1180. https://doi.org/10.3724/SP.J.1041.2022.01167.]
doi: 10.3724/SP.J.1041.2022.01167 URL |
|
[62] | Yu, S. J., Stock, A. K., Münchau, A., Frings, C., & Beste, C. (2023). Neurophysiological principles of inhibitory control processes during cognitive flexibility. Cerebral Cortex, 33(11), 6656-6666. https://doi.org/10.1093/cercor/bhac532 |
[63] |
Zhang, D. D., Lin, Y. Q., Liu, Y. Z., Luo, Y. J., & Jiang, D. H. (2019). Memory encoding, retention and retrieval of disgusting and fearful faces. Acta Psychologica Sinica, 51(1), 36-47. https://doi.org/10.3724/sp.J.1041.2019.00036
doi: 10.3724/SP.J.1041.2019.00036 URL |
[张丹丹, 蔺义芹, 柳昀哲, 罗跃嘉, 蒋冬红. (2019). 厌恶与恐惧面孔的记忆编码、保持、提取. 心理学报, 51(1), 36-47.]
doi: 10.3724/SP.J.1041.2019.00036 |
|
[64] |
Zhang, R., Stock, A. K., & Beste, C. (2016). The neurophysiological basis of reward effects on backward inhibition processes. Neuroimage, 142, 163-171. https://doi.org/10.1016/j.neuroimage.2016.05.080
doi: S1053-8119(16)30200-2 URL pmid: 27262242 |
[65] | Zhang, R., Stock, A. K., Fischer, R., & Beste, C. (2016). The system neurophysiological basis of backward inhibition. Brain Structure & Function, 221(9), 4575-4587. https://doi.org/10.1007/s00429-016-1186-0 |
[66] |
Zhang, R., Stock, A. K., Rzepus, A., & Beste, C. (2017). Self-Regulatory Capacities Are Depleted in a Domain- Specific Manner. Frontiers in Systems Neuroscience, 11, Article 70. https://doi.org/10.3389/fnsys.2017.00070
doi: 10.3389/fnsys.2017.00070 URL pmid: 29033798 |
[1] | 林爽, 程塨渌, 刘文, 白学军. 初中生认知控制对替代性攻击行为的影响: 激惹和触发的情境边界条件[J]. 心理学报, 2025, 57(1): 36-57. |
[2] | 蔡文琦, 张向阳, 王小娟, 杨剑峰. 汉语复合词语素意义与整词语义整合加工的时间进程[J]. 心理学报, 2023, 55(8): 1207-1219. |
[3] | 钟毅平, 牛娜娜, 范伟, 任梦梦, 李梅. 动作自主性与社会距离对主动控制感的影响:来自行为与ERPs的证据[J]. 心理学报, 2023, 55(12): 1932-1948. |
[4] | 李梅, 李琎, 张冠斐, 钟毅平, 李红. 承诺水平与社会距离对信任投资的影响:来自行为与ERPs的证据[J]. 心理学报, 2023, 55(11): 1859-1871. |
[5] | 潘玥安, 姜云鹏, 郭茂杰, 吴瑕. 不确定性和预期有效性对运动方向感知决策的影响[J]. 心理学报, 2022, 54(6): 595-603. |
[6] | 占友龙, 肖啸, 谭千保, 李琎, 钟毅平. 声誉关注与社会距离对伤害困境中道德决策的影响:来自行为与ERPs的证据[J]. 心理学报, 2022, 54(6): 613-627. |
[7] | 陈莉, 石晓柯, 李维娜, 胡妍. 基于不同冲突水平的认知控制对性别刻板印象表达的影响[J]. 心理学报, 2022, 54(6): 628-645. |
[8] | 李建花, 解佳佳, 庄锦英. 生理周期对情景记忆的影响[J]. 心理学报, 2022, 54(5): 466-480. |
[9] | 吴建校, 曹碧华, 陈云, 李子夏, 李富洪. 认知控制的层级性:来自任务切换的脑电证据*[J]. 心理学报, 2022, 54(10): 1167-1180. |
[10] | 曾红, 郑志灵, 罗晓红, 王鹏飞, 王孟成, 苏得权, 杨文登, 黄海娇, 彭淑娜. 药物成瘾者相关线索反应的自动化用药行为特征及其消退[J]. 心理学报, 2022, 54(10): 1193-1205. |
[11] | 孙天义, 郝晓晓, 何安明, 王财玉, 许远理, 郭春彦, 周蔚. 神经重用假说的汉语情绪词汇加工证据[J]. 心理学报, 2021, 53(9): 933-943. |
[12] | 曹敏, 谢和平, 孙丽君, 张冬静, 孔繁昌, 周宗奎. 网络游戏中化身参照的加工优势:来自行为与ERPs的证据[J]. 心理学报, 2021, 53(6): 639-650. |
[13] | 周文洁, 邓丽群, 丁锦红. 物体颜色对情景记忆的影响[J]. 心理学报, 2021, 53(3): 229-243. |
[14] | 张孟可, 李晴, 尹首航, 陈安涛. 冲突水平的变化诱发冲突适应[J]. 心理学报, 2021, 53(2): 128-138. |
[15] | 黄月胜, 张豹, 范兴华, 黄杰. 无关工作记忆表征的负性情绪信息能否捕获视觉注意?一项眼动研究[J]. 心理学报, 2021, 53(1): 26-37. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||