[1] |
Allen, R. J., & Ueno, T. (2018). Multiple high-reward items can be prioritized in working memory but with greater vulnerability to interference. Attention Perception & Psychophysics, 80(7), 1731-1743.
|
[2] |
Bae, G. Y., & Luck, S. J. (2019). What happens to an individual visual working memory representation when it is interrupted? British Journal of Psychology, 110(2), 268-287.
|
[3] |
Bonnefond, M., & Jensen, O. (2012). Alpha oscillations serve to protect working memory maintenance against anticipated distracters. Current Biology, 22(20), 1969-1974.
doi: 10.1016/j.cub.2012.08.029
pmid: 23041197
|
[4] |
Buschman, T. J., & Miller, E. K. (2022). Working memory is complex and dynamic, like your thoughts. Journal of Cognitive Neuroscience, 35(1), 17-23.
doi: 10.1162/jocn_a_01940
pmid: 36322832
|
[5] |
Chota, S., & Van der Stigchel, S. (2021). Dynamic and flexible transformation and reallocation of visual working memory representations. Visual Cognition, 29(7), 409-415.
|
[6] |
Cowan, N. (1999). An embedded-processes model of working memory. In A. Miyake & P. Shah (Eds.), Models of working memory: Mechanisms of active maintenance and executive control (pp. 62-101). Cambridge University Press.
|
[7] |
Delvenne, J. F., & Holt, J. L. (2012). Splitting attention across the two visual fields in visual short-term memory. Cognition, 122(2), 258-263.
|
[8] |
D'Esposito, M., & Postle, B. R. (2015). The cognitive neuroscience of working memory. Annual Review of Psychology, 66(1), 115-142.
|
[9] |
Griffin, I. C., & Nobre, A. C. (2003). Orienting attention to locations in internal representations. Journal of Cognitive Neuroscience, 15(8), 1176-1194.
doi: 10.1162/089892903322598139
pmid: 14709235
|
[10] |
Hakim, N., Feldmann-Wüstefeld, T., Awh, E., & Vogel, E. K. (2020). Perturbing neural representations of working memory with task-irrelevant interruption. Journal of Cognitive Neuroscience, 32(3), 558-569.
doi: 10.1162/jocn_a_01481
pmid: 31617823
|
[11] |
Hakim, N., Feldmann-Wüstefeld, T., Awh, E., & Vogel, E. K. (2021). Controlling the flow of distracting information in working memory. Cerebral Cortex, 31(7), 3323-3337.
|
[12] |
Heuer, A., & Schubö, A. (2016). Feature-based and spatial attentional selection in visual working memory. Memory & Cognition, 44(4), 621-632.
|
[13] |
Hu, Y., Allen, R. J., Baddeley, A. D., & Hitch, G. J. (2016). Executive control of stimulus-driven and goal-directed attention in visual working memory. Attention, Perception, & Psychophysics, 78(7), 2164-2175.
|
[14] |
Hu, Y., Hitch, G. J., Baddeley, A. D., Zhang, M., & Allen, R. J. (2014). Executive and perceptual attention play different roles in visual working memory: Evidence from suffix and strategy effects. Journal of Experimental Psychology: Human Perception and Performance, 40(4), 1665-1678.
doi: 10.1037/a0037163
pmid: 24933616
|
[15] |
Kozachkov, L., Tauber, J., Lundqvist, M., Brincat, S. L., Slotine, J. J., & Miller, E. K. (2022). Robust and brain-like working memory through short-term synaptic plasticity. PLoS Computational Biology, 18(12), e1010776.
|
[16] |
Kreither, J., Papaioannou, O., & Luck, S. J. (2022). Active working memory and simple cognitive operations. Journal of Cognitive Neuroscience, 34(2), 313-331.
|
[17] |
Landman, R., Spekreijse, H., & Lamme, V. A. (2003). Large capacity storage of integrated objects before change blindness. Vision Research, 43(2), 149-164.
pmid: 12536137
|
[18] |
Li, Z., Liang, T., & Liu, Q. (2021). The storage resources of the active and passive states are independent in visual working memory. Cognition, 217, 104911.
|
[19] |
Li, Z., Zhang, J., Liang, T., Ye, C., & Liu, Q. (2020). Interval between two sequential arrays determines their storage state in visual working memory. Science Reports, 10(1), 7706.
|
[20] |
Liesefeld, H. R., Liesefeld, A. M., Sauseng, P., Jacob, S. N., & Müller, H. J. (2020). How visual working memory handles distraction: Cognitive mechanisms and electrophysiological correlates. Visual Cognition, 28(5-8), 372-387.
|
[21] |
Lorenc, E. S., Mallett, R., & Lewis-Peacock, J. A. (2021). Distraction in visual working memory: Resistance is not futile. Trends in Cognitive Sciences, 25(3), 228-239.
doi: 10.1016/j.tics.2020.12.004
pmid: 33397602
|
[22] |
Makovski, T., & Jiang, Y. V. (2007). Distributing versus focusing attention in visual short-term memory. Psychonomic Bulletin & Review, 14(6), 1072-1078.
|
[23] |
Mallett, R., & Lewis-Peacock, J. A. (2019). Working memory prioritization impacts neural recovery from distraction. Cortex, 121, 225-238.
doi: S0010-9452(19)30309-0
pmid: 31629945
|
[24] |
Masse, N. Y., Yang, G. R., Song, H. F., Wang, X. J., & Freedman, D. J. (2019). Circuit mechanisms for the maintenance and manipulation of information in working memory. Nature Neuroscience, 22(7), 1159-1167.
doi: 10.1038/s41593-019-0414-3
pmid: 31182866
|
[25] |
Miller, E. K., Lundqvist, M., & Bastos, A. M. (2018). Working memory 2.0. Neuron, 100(2), 463-475.
doi: S0896-6273(18)30825-0
pmid: 30359609
|
[26] |
Mongillo, G., Barak, O., & Tsodyks, M. (2008). Synaptic theory of working memory. Science, 319(5869), 1543-1546.
doi: 10.1126/science.1150769
pmid: 18339943
|
[27] |
Muhle-Karbe, P. S., Myers, N. E., & Stokes, M. G. (2021). A hierarchy of functional states in working memory. Journal of Neuroscience, 41(20), 4461-4475.
doi: 10.1523/JNEUROSCI.3104-20.2021
pmid: 33888611
|
[28] |
Myers, N. E., Chekroud, S. R., Stokes, M. G., & Nobre, A. C. (2018). Benefits of flexible prioritization in working memory can arise without costs. Journal of Experimental Psychology: Human Perception and Performance, 44(3), 398-411.
doi: 10.1037/xhp0000449
pmid: 28816476
|
[29] |
Oberauer, K. (2002). Access to information in working memory: Exploring the focus of attention. Journal of Experimental Psychology: Learning, Memory, and Cognition, 28(3), 411-421.
|
[30] |
Olivers, C. N., Peters, J., Houtkamp, R., & Roelfsema, P. R. (2011). Different states in visual working memory: When it guides attention and when it does not. Trends in Cognitive Science, 15(7), 327-334.
|
[31] |
Olivers, C. N. L., & Roelfsema, P. R. (2020). Attention for action in visual working memory. Cortex, 131, 179-194.
doi: S0010-9452(20)30285-9
pmid: 32892152
|
[32] |
Panichello, M. F., & Buschman, T. J. (2021). Shared mechanisms underlie the control of working memory and attention. Nature, 592(7855), 601-605.
|
[33] |
Postle, B. R. (2006). Working memory as an emergent property of the mind and brain. Neuroscience, 139(1), 23-38.
doi: 10.1016/j.neuroscience.2005.06.005
pmid: 16324795
|
[34] |
Rademaker, R. L., Chunharas, C., & Serences, J. T. (2019). Coexisting representations of sensory and mnemonic information in human visual cortex. Nature Neuroscience, 22(8), 1336-1344.
doi: 10.1038/s41593-019-0428-x
pmid: 31263205
|
[35] |
Rerko, L., & Oberauer, K. (2013). Focused, unfocused, and defocused information in working memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 39(4), 1075-1096.
|
[36] |
Rose, N. S., LaRocque, J. J., Riggall, A. C., Gosseries, O., Starrett, M. J., Meyering, E. E., & Postle, B. R. (2016). Reactivation of latent working memories with transcranial magnetic stimulation. Science, 354(6316), 1136-1139.
pmid: 27934762
|
[37] |
Serences, J. T. (2016). Neural mechanisms of information storage in visual short-term memory. Vision Research, 128, 53-67.
doi: S0042-6989(16)30124-9
pmid: 27668990
|
[38] |
Souza, A. S., & Oberauer, K. (2016). In search of the focus of attention in working memory: 13 years of the retro-cue effect. Attention, Perception, & Psychophysics, 78(7), 1839-1860.
|
[39] |
Souza, A. S., Rerko, L., & Oberauer, K. (2014). Unloading and reloading working memory: Attending to one item frees capacity. Journal of Experimental Psychology: Human Perception and Performance, 40(3), 1237-1256.
doi: 10.1037/a0036331
pmid: 24730737
|
[40] |
Souza, A. S., Rerko, L., & Oberauer, K. (2016). Getting more from visual working memory: Retro-cues enhance retrieval and protect from visual interference. Journal of Experimental Psychology: Human Perception and Performance, 42(6), 890-910.
doi: 10.1037/xhp0000192
pmid: 26752731
|
[41] |
Stokes, M. G. (2015). 'Activity-silent' working memory in prefrontal cortex: A dynamic coding framework. Trends in Cognitive Science, 19(7), 394-405.
|
[42] |
Stokes, M. G., Muhle-Karbe, P. S., & Myers, N. E. (2020). Theoretical distinction between functional states in working memory and their corresponding neural states. Visual Cognition, 28(5-8), 420-432.
doi: 10.1080/13506285.2020.1825141
pmid: 33223922
|
[43] |
Teng, C., & Kravitz, D. J. (2019). Visual working memory directly alters perception. Nature Human Behaviour, 3(8), 827-836.
doi: 10.1038/s41562-019-0640-4
pmid: 31285620
|
[44] |
van Moorselaar, D., Gunseli, E., Theeuwes, J., & Olivers, C. N. L. (2015). The time course of protecting a visual memory representation from perceptual interference. Frontiers in Human Neuroscience, 8, 1053.
|
[45] |
Wan, Q., Cai, Y., Samaha, J., & Postle, B. R. (2020). Tracking stimulus representation across a 2-back visual working memory task. Royal Society Open Science, 7(8), 190228.
|
[46] |
Wang, B., Knapen, T., & Olivers, C. N. L. (2022). Visual working memory adapts to the nature of anticipated interference. Journal of Cognitive Neuroscience, 34(7), 1148-1163.
|
[47] |
Wang, B., Theeuwes, J., & Olivers, C. N. L. (2018). When shorter delays lead to worse memories: Task disruption makes visual working memory temporarily vulnerable to test interference. Journal of Experimental Psychology: Learning, Memory, and Cognition, 44(5), 722-733.
|
[48] |
Wolff, M. J., Ding, J., Myers, N. E., & Stokes, M. G. (2015). Revealing hidden states in visual working memory using electroencephalography. Frontiers in System Neuroscience, 9, 123.
|
[49] |
Wolff, M. J., Jochim, J., Akyurek, E. G., & Stokes, M. G. (2017). Dynamic hidden states underlying working-memory-guided behavior. Nature Neuroscience, 20(6), 864-871.
doi: 10.1038/nn.4546
pmid: 28414333
|
[50] |
Xu, Y. D. (2017). Reevaluating the sensory account of visual working memory storage. Trends in Cognitive Sciences, 21(10), 794-815.
doi: S1364-6613(17)30137-7
pmid: 28774684
|
[51] |
Zhang, J., Ye, C., Sun, H. -J., Zhou, J., Liang, T., Li, Y., & Liu, Q. (2022). The passive state: A protective mechanism for information in working memory tasks. Journal of Experimental Psychology: Learning, Memory, and Cognition, 48(9), 1235-1248.
|