心理学报 ›› 2025, Vol. 57 ›› Issue (3): 398-414.doi: 10.3724/SP.J.1041.2025.0398 cstr: 32110.14.2025.0398
收稿日期:
2024-04-07
发布日期:
2025-01-24
出版日期:
2025-03-25
通讯作者:
李春好, E-mail: jyhlichunhao@126.com;基金资助:
LI Chunhao(), LIU Rongyuan(
), LIU Yuanhao
Received:
2024-04-07
Online:
2025-01-24
Published:
2025-03-25
摘要: 已有研究发现经典共结果效应在窄前景集结果区间不出现, 因而认为此时个体的决策行为符合期望效用理论(EUT)。但是, 经典共结果效应不出现并不意味着违背EUT的对偶共结果效应也不出现。此外, 相关研究普遍采用特定概率水平, 未考察概率变化后经典共结果效应是否出现。鉴于此, 通过逻辑递进的两项实验探究了三个问题。其一, 对偶共结果效应在窄前景集结果区间是否出现以及前景集结果区间变化对其有何影响。其二, 概率变化后, 经典共结果效应在窄前景集结果区间是否出现。其三, 前景集结果区间对两类共结果效应的影响机理。结果发现:(1)对偶共结果效应在窄前景集结果区间不仅存在, 且相较于宽前景集结果区间显著增强; (2)相较于宽前景集结果区间, 经典共结果效应在窄前景集结果区间显著减弱, 但仍然存在; (3)前景集结果区间通过改变个体对客观概率的风险感知(即概率权重)影响两类共结果效应。上述发现不仅驳斥了EUT适用于窄前景集结果区间的观点, 揭示了决策偏好对前景集结果区间的依赖性, 还从概率权重依赖前景集结果区间的视角为发展累积前景理论等非期望效用理论提供了实证依据。从实践方面, 实验发现也为盲盒销售的产品设计及其调整提供了管理启示。
中图分类号:
李春好, 刘荣媛, 刘远豪. (2025). 经典和对偶共结果效应对前景集结果区间的依赖性:基于概率权重的视角. 心理学报, 57(3), 398-414.
LI Chunhao, LIU Rongyuan, LIU Yuanhao. (2025). The dependence of classic and dual common consequence effects on the choice-set outcome range: From the perspective of probability weights. Acta Psychologica Sinica, 57(3), 398-414.
问题 | 前景S中各结果对应的概率值 | 前景R中各结果对应的概率值 | ||||
---|---|---|---|---|---|---|
结果:¥60 (¥6, 000) | 结果:¥30 (¥3, 000) | 结果:¥0 (¥0) | 结果:¥60 (¥6, 000) | 结果:¥30 (¥3, 000) | 结果:¥0 (¥0) | |
1 | 0 | 0.2 | 0.8 | 0.1 | 0 | 0.9 |
2 | 0 | 0.3 | 0.7 | 0.1 | 0.1 | 0.8 |
3 | 0 | 0.4 | 0.6 | 0.1 | 0.2 | 0.7 |
4 | 0 | 0.5 | 0.5 | 0.1 | 0.3 | 0.6 |
5 | 0 | 0.6 | 0.4 | 0.1 | 0.4 | 0.5 |
6 | 0 | 0.7 | 0.3 | 0.1 | 0.5 | 0.4 |
7 | 0 | 0.8 | 0.2 | 0.1 | 0.6 | 0.3 |
8 | 0 | 0.9 | 0.1 | 0.1 | 0.7 | 0.2 |
9 | 0 | 1.0 | 0 | 0.1 | 0.8 | 0.1 |
表1 各实验组所采用的选择问题
问题 | 前景S中各结果对应的概率值 | 前景R中各结果对应的概率值 | ||||
---|---|---|---|---|---|---|
结果:¥60 (¥6, 000) | 结果:¥30 (¥3, 000) | 结果:¥0 (¥0) | 结果:¥60 (¥6, 000) | 结果:¥30 (¥3, 000) | 结果:¥0 (¥0) | |
1 | 0 | 0.2 | 0.8 | 0.1 | 0 | 0.9 |
2 | 0 | 0.3 | 0.7 | 0.1 | 0.1 | 0.8 |
3 | 0 | 0.4 | 0.6 | 0.1 | 0.2 | 0.7 |
4 | 0 | 0.5 | 0.5 | 0.1 | 0.3 | 0.6 |
5 | 0 | 0.6 | 0.4 | 0.1 | 0.4 | 0.5 |
6 | 0 | 0.7 | 0.3 | 0.1 | 0.5 | 0.4 |
7 | 0 | 0.8 | 0.2 | 0.1 | 0.6 | 0.3 |
8 | 0 | 0.9 | 0.1 | 0.1 | 0.7 | 0.2 |
9 | 0 | 1.0 | 0 | 0.1 | 0.8 | 0.1 |
问题对 | 窄区间组各选择模式的被试占比 | Conlisk z | p | 宽区间组各选择模式的被试占比 | Conlisk z | p | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
RR | SS | RS | SR | RR | SS | RS | SR | |||||
1-2 | 35.14 | 24.32 | 17.57 | 22.97 | −0.73 | 0.233 | 26.32 | 25.00 | 23.68 | 25.00 | −0.16 | 0.435 |
1-3 | 44.59 | 24.32 | 8.11 | 22.97 | −2.36 | 0.009 | 34.21 | 19.74 | 15.79 | 30.26 | −1.89 | 0.029 |
1-4 | 43.24 | 18.92 | 9.46 | 28.38 | −2.76 | 0.003 | 34.21 | 34.21 | 15.79 | 15.79 | 0.00 | 0.500 |
1-5 | 41.89 | 14.86 | 10.81 | 32.43 | −2.97 | 0.001 | 26.32 | 22.37 | 23.68 | 27.63 | −0.48 | 0.316 |
1-6 | 40.54 | 21.62 | 12.16 | 25.68 | −1.92 | 0.027 | 26.32 | 26.32 | 23.68 | 23.68 | 0.00 | 0.500 |
1-7 | 36.49 | 16.22 | 16.22 | 31.08 | −1.89 | 0.029 | 22.37 | 32.89 | 27.63 | 17.11 | 1.38 | 0.084 |
1-8 | 33.78 | 16.22 | 18.92 | 31.08 | −1.49 | 0.068 | 26.32 | 32.89 | 23.68 | 17.11 | 0.90 | 0.185 |
表2 在不含确定前景的各问题对中表现出各种选择模式的被试占比(%)以及Conlisk z检验结果
问题对 | 窄区间组各选择模式的被试占比 | Conlisk z | p | 宽区间组各选择模式的被试占比 | Conlisk z | p | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
RR | SS | RS | SR | RR | SS | RS | SR | |||||
1-2 | 35.14 | 24.32 | 17.57 | 22.97 | −0.73 | 0.233 | 26.32 | 25.00 | 23.68 | 25.00 | −0.16 | 0.435 |
1-3 | 44.59 | 24.32 | 8.11 | 22.97 | −2.36 | 0.009 | 34.21 | 19.74 | 15.79 | 30.26 | −1.89 | 0.029 |
1-4 | 43.24 | 18.92 | 9.46 | 28.38 | −2.76 | 0.003 | 34.21 | 34.21 | 15.79 | 15.79 | 0.00 | 0.500 |
1-5 | 41.89 | 14.86 | 10.81 | 32.43 | −2.97 | 0.001 | 26.32 | 22.37 | 23.68 | 27.63 | −0.48 | 0.316 |
1-6 | 40.54 | 21.62 | 12.16 | 25.68 | −1.92 | 0.027 | 26.32 | 26.32 | 23.68 | 23.68 | 0.00 | 0.500 |
1-7 | 36.49 | 16.22 | 16.22 | 31.08 | −1.89 | 0.029 | 22.37 | 32.89 | 27.63 | 17.11 | 1.38 | 0.084 |
1-8 | 33.78 | 16.22 | 18.92 | 31.08 | −1.49 | 0.068 | 26.32 | 32.89 | 23.68 | 17.11 | 0.90 | 0.185 |
问题对 | 窄区间组各选择模式的被试占比 | Conlisk z | p | 宽区间组各选择模式的被试占比 | Conlisk z | p | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
RR | SS | RS | SR | RR | SS | RS | SR | |||||
1-9 | 27.03 | 14.86 | 25.68 | 32.43 | −0.76 | 0.224 | 11.84 | 27.63 | 38.16 | 22.37 | 1.79 | 0.036 |
2-9 | 36.49 | 18.92 | 21.62 | 22.97 | −0.17 | 0.431 | 18.42 | 32.89 | 32.89 | 15.79 | 2.19 | 0.014 |
3-9 | 37.84 | 10.81 | 29.73 | 21.62 | 0.97 | 0.165 | 22.37 | 23.68 | 42.11 | 11.84 | 3.92 | <0.001 |
4-9 | 47.30 | 16.22 | 24.32 | 12.16 | 1.76 | 0.040 | 17.11 | 32.89 | 32.89 | 17.11 | 1.98 | 0.024 |
5-9 | 47.30 | 13.51 | 27.03 | 12.16 | 2.09 | 0.018 | 25.00 | 36.84 | 28.95 | 9.21 | 2.92 | 0.002 |
6-9 | 44.59 | 18.92 | 21.62 | 14.86 | 0.96 | 0.168 | 23.68 | 39.47 | 26.32 | 10.53 | 2.33 | 0.010 |
7-9 | 50.00 | 22.97 | 17.57 | 9.46 | 1.35 | 0.089 | 18.42 | 44.74 | 21.05 | 15.79 | 0.75 | 0.225 |
8-9 | 48.65 | 24.32 | 16.22 | 10.81 | 0.89 | 0.186 | 19.74 | 42.11 | 23.68 | 14.47 | 1.31 | 0.096 |
表3 在含确定前景的各问题对中表现出各种选择模式的被试占比(%)以及Conlisk z检验结果
问题对 | 窄区间组各选择模式的被试占比 | Conlisk z | p | 宽区间组各选择模式的被试占比 | Conlisk z | p | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
RR | SS | RS | SR | RR | SS | RS | SR | |||||
1-9 | 27.03 | 14.86 | 25.68 | 32.43 | −0.76 | 0.224 | 11.84 | 27.63 | 38.16 | 22.37 | 1.79 | 0.036 |
2-9 | 36.49 | 18.92 | 21.62 | 22.97 | −0.17 | 0.431 | 18.42 | 32.89 | 32.89 | 15.79 | 2.19 | 0.014 |
3-9 | 37.84 | 10.81 | 29.73 | 21.62 | 0.97 | 0.165 | 22.37 | 23.68 | 42.11 | 11.84 | 3.92 | <0.001 |
4-9 | 47.30 | 16.22 | 24.32 | 12.16 | 1.76 | 0.040 | 17.11 | 32.89 | 32.89 | 17.11 | 1.98 | 0.024 |
5-9 | 47.30 | 13.51 | 27.03 | 12.16 | 2.09 | 0.018 | 25.00 | 36.84 | 28.95 | 9.21 | 2.92 | 0.002 |
6-9 | 44.59 | 18.92 | 21.62 | 14.86 | 0.96 | 0.168 | 23.68 | 39.47 | 26.32 | 10.53 | 2.33 | 0.010 |
7-9 | 50.00 | 22.97 | 17.57 | 9.46 | 1.35 | 0.089 | 18.42 | 44.74 | 21.05 | 15.79 | 0.75 | 0.225 |
8-9 | 48.65 | 24.32 | 16.22 | 10.81 | 0.89 | 0.186 | 19.74 | 42.11 | 23.68 | 14.47 | 1.31 | 0.096 |
共结果效应的类型 | 问题对 | 窄区间组 | 宽区间组 | W | p |
---|---|---|---|---|---|
对偶共结果效应 | 1-2 | 56.67 | 51.35 | 28.0 | 0.008 |
1-3 | 73.91 | 65.71 | |||
1-4 | 75.00 | 50.00 | |||
1-5 | 75.00 | 53.85 | |||
1-6 | 67.86 | 50.00 | |||
1-7 | 65.71 | 38.24 | |||
1-8 | 62.16 | 41.94 | |||
经典共结果效应 | 1-9 | 44.19 | 63.04 | 5.0 | 0.040 |
2-9 | 48.48 | 67.57 | |||
3-9 | 57.89 | 78.05 | |||
4-9 | 66.67 | 65.79 | |||
5-9 | 68.97 | 75.86 | |||
6-9 | 59.26 | 71.43 | |||
7-9 | 65.00 | 57.14 | |||
8-9 | 60.00 | 62.07 |
表4 各实验组中决策行为符合两类共结果效应的被试相对占比(%)以及Wilcoxon符号秩检验结果
共结果效应的类型 | 问题对 | 窄区间组 | 宽区间组 | W | p |
---|---|---|---|---|---|
对偶共结果效应 | 1-2 | 56.67 | 51.35 | 28.0 | 0.008 |
1-3 | 73.91 | 65.71 | |||
1-4 | 75.00 | 50.00 | |||
1-5 | 75.00 | 53.85 | |||
1-6 | 67.86 | 50.00 | |||
1-7 | 65.71 | 38.24 | |||
1-8 | 62.16 | 41.94 | |||
经典共结果效应 | 1-9 | 44.19 | 63.04 | 5.0 | 0.040 |
2-9 | 48.48 | 67.57 | |||
3-9 | 57.89 | 78.05 | |||
4-9 | 66.67 | 65.79 | |||
5-9 | 68.97 | 75.86 | |||
6-9 | 59.26 | 71.43 | |||
7-9 | 65.00 | 57.14 | |||
8-9 | 60.00 | 62.07 |
步骤 | 各步骤包含的前景 | 各概率对应的结果值 | 各步骤的目标 | ||
---|---|---|---|---|---|
概率:g | 概率:q | 概率:1 - g - q | |||
1 | 前景R | M | x0 | 0 | 确定使前景R和S无差异的结果值x1 |
前景S | m | x1 = ? | 0 | ||
2 | 前景R | M | x1 | 0 | 确定使前景R和S无差异的结果值x2 |
前景S | m | x2 = ? | 0 | ||
3 | 前景R | M | x2 | 0 | 确定使前景R和S无差异的结果值x3 |
前景S | m | x3 = ? | 0 | ||
︙ | ︙ | ︙ | ︙ | ||
k | 前景R | M | xk−1 | 0 | 确定使前景R和S无差异的结果值xk |
前景S | m | xk = ? | 0 |
表5 引出结果标准序列的具体过程
步骤 | 各步骤包含的前景 | 各概率对应的结果值 | 各步骤的目标 | ||
---|---|---|---|---|---|
概率:g | 概率:q | 概率:1 - g - q | |||
1 | 前景R | M | x0 | 0 | 确定使前景R和S无差异的结果值x1 |
前景S | m | x1 = ? | 0 | ||
2 | 前景R | M | x1 | 0 | 确定使前景R和S无差异的结果值x2 |
前景S | m | x2 = ? | 0 | ||
3 | 前景R | M | x2 | 0 | 确定使前景R和S无差异的结果值x3 |
前景S | m | x3 = ? | 0 | ||
︙ | ︙ | ︙ | ︙ | ||
k | 前景R | M | xk−1 | 0 | 确定使前景R和S无差异的结果值xk |
前景S | m | xk = ? | 0 |
子实验 | 指标 | 对应于各元素的重复问题 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
x1 | x2 | x3 | x4 | x5 | x6 | q1 | q2 | q3 | q4 | q5 | ||
宽区间 | t (54) | 1.00 | −1.94 | 1.43 | 1.77 | 1.66 | 1.35 | 1.35 | −1.43 | −1.66 | −1.94 | −1.66 |
r | 0.74** | 0.75** | 0.70** | 0.90** | 0.79** | 0.82** | 0.77** | 0.71** | 0.79** | 0.76** | 0.79** | |
窄区间 | t (54) | 1.35 | −1.35 | 1.43 | 1.43 | 1.00 | 1.00 | 1.35 | −1.66 | −1.35 | 1.66 | −1.94 |
r | 0.80** | 0.78** | 0.70** | 0.93** | 0.86** | 0.85** | 0.82** | 0.78** | 0.82** | 0.79** | 0.72** |
表6 在相同选择问题上前后两次选择的一致性检验
子实验 | 指标 | 对应于各元素的重复问题 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
x1 | x2 | x3 | x4 | x5 | x6 | q1 | q2 | q3 | q4 | q5 | ||
宽区间 | t (54) | 1.00 | −1.94 | 1.43 | 1.77 | 1.66 | 1.35 | 1.35 | −1.43 | −1.66 | −1.94 | −1.66 |
r | 0.74** | 0.75** | 0.70** | 0.90** | 0.79** | 0.82** | 0.77** | 0.71** | 0.79** | 0.76** | 0.79** | |
窄区间 | t (54) | 1.35 | −1.35 | 1.43 | 1.43 | 1.00 | 1.00 | 1.35 | −1.66 | −1.35 | 1.66 | −1.94 |
r | 0.80** | 0.78** | 0.70** | 0.93** | 0.86** | 0.85** | 0.82** | 0.78** | 0.82** | 0.79** | 0.72** |
i | qSi的均值 | qLi的均值 | t (108) | p |
---|---|---|---|---|
1 | 0.05 | 0.11 | −6.26 | <0.001 |
2 | 0.24 | 0.34 | −4.65 | <0.001 |
3 | 0.48 | 0.63 | −7.37 | <0.001 |
4 | 0.73 | 0.82 | −4.69 | <0.001 |
5 | 0.92 | 0.94 | −2.69 | 0.008 |
表7 针对零假设qLi=qSi的独立样本t检验
i | qSi的均值 | qLi的均值 | t (108) | p |
---|---|---|---|---|
1 | 0.05 | 0.11 | −6.26 | <0.001 |
2 | 0.24 | 0.34 | −4.65 | <0.001 |
3 | 0.48 | 0.63 | −7.37 | <0.001 |
4 | 0.73 | 0.82 | −4.69 | <0.001 |
5 | 0.92 | 0.94 | −2.69 | 0.008 |
i | 窄区间子实验 | 宽区间子实验 | ||||
---|---|---|---|---|---|---|
qi − w (qi) 的均值 | t (54) | p | qi − w (qi) 的均值 | t (54) | p | |
1 | −0.12 | −38.58 | <0.001 | −0.05 | −5.18 | <0.001 |
2 | −0.09 | −7.41 | <0.001 | 0.00 | 0.14 | 0.888 |
3 | −0.02 | −1.63 | 0.109 | 0.13 | 8.34 | <0.001 |
4 | 0.06 | 4.23 | <0.001 | 0.16 | 12.78 | <0.001 |
5 | 0.09 | 19.38 | <0.001 | 0.11 | 19.46 | <0.001 |
表8 针对零假设w (qi) = qi的单样本t检验
i | 窄区间子实验 | 宽区间子实验 | ||||
---|---|---|---|---|---|---|
qi − w (qi) 的均值 | t (54) | p | qi − w (qi) 的均值 | t (54) | p | |
1 | −0.12 | −38.58 | <0.001 | −0.05 | −5.18 | <0.001 |
2 | −0.09 | −7.41 | <0.001 | 0.00 | 0.14 | 0.888 |
3 | −0.02 | −1.63 | 0.109 | 0.13 | 8.34 | <0.001 |
4 | 0.06 | 4.23 | <0.001 | 0.16 | 12.78 | <0.001 |
5 | 0.09 | 19.38 | <0.001 | 0.11 | 19.46 | <0.001 |
i | qSi − qLi的均值 | t (54) | p |
---|---|---|---|
1 | −0.07 | −6.18 | <0.001 |
2 | −0.10 | −4.72 | <0.001 |
3 | −0.15 | −7.84 | <0.001 |
4 | −0.09 | −4.98 | <0.001 |
5 | −0.02 | −2.76 | 0.008 |
表9 针对零假设qSi = qLi的配对t检验
i | qSi − qLi的均值 | t (54) | p |
---|---|---|---|
1 | −0.07 | −6.18 | <0.001 |
2 | −0.10 | −4.72 | <0.001 |
3 | −0.15 | −7.84 | <0.001 |
4 | −0.09 | −4.98 | <0.001 |
5 | −0.02 | −2.76 | 0.008 |
分类条件 | 被试人数 | 汇总 | |
---|---|---|---|
在至少3个概率权重水平上满足qSi < qLi | 在5个概率权重水平上满足qSi < qLi | 12 | 40 |
在4个概率权重水平上满足qSi < qLi | 16 | ||
在3个概率权重水平上满足qSi < qLi | 12 | ||
在至多2个概率权重水平上满足qSi < qLi | 在2个概率权重水平上满足qSi < qLi | 5 | 15 |
在1个概率权重水平上满足qSi < qLi | 7 | ||
在0个概率权重水平上满足qSi < qLi | 3 |
表10 被试分类统计
分类条件 | 被试人数 | 汇总 | |
---|---|---|---|
在至少3个概率权重水平上满足qSi < qLi | 在5个概率权重水平上满足qSi < qLi | 12 | 40 |
在4个概率权重水平上满足qSi < qLi | 16 | ||
在3个概率权重水平上满足qSi < qLi | 12 | ||
在至多2个概率权重水平上满足qSi < qLi | 在2个概率权重水平上满足qSi < qLi | 5 | 15 |
在1个概率权重水平上满足qSi < qLi | 7 | ||
在0个概率权重水平上满足qSi < qLi | 3 |
文献 | 国家 | 年份 | 最大结果 | 货币 单位 | 换算后的 结果值 (单位:元) |
---|---|---|---|---|---|
Schneider和Leland ( | 美国 | 2019 | 5 | 美元$ | 20.35 |
Camerer ( | 美国 | 1989 | 10 | 美元$ | 77.60 |
Starmer ( | 英国 | 1987 | 7 | 英镑£ | 78.89 |
Huck和Müller ( | 英国 | 2012 | 25 | 欧元€ | 135.02 |
Baillon等( | 荷兰 | 2016 | 30 | 欧元€ | 155.57 |
Conlisk ( | 美国 | 1989 | 25 | 美元$ | 194.00 |
Birnbaum等( | 英国 | 2017 | 44 | 英镑£ | 249.06 |
表A1 被视为小结果的数值及其换算结果
文献 | 国家 | 年份 | 最大结果 | 货币 单位 | 换算后的 结果值 (单位:元) |
---|---|---|---|---|---|
Schneider和Leland ( | 美国 | 2019 | 5 | 美元$ | 20.35 |
Camerer ( | 美国 | 1989 | 10 | 美元$ | 77.60 |
Starmer ( | 英国 | 1987 | 7 | 英镑£ | 78.89 |
Huck和Müller ( | 英国 | 2012 | 25 | 欧元€ | 135.02 |
Baillon等( | 荷兰 | 2016 | 30 | 欧元€ | 155.57 |
Conlisk ( | 美国 | 1989 | 25 | 美元$ | 194.00 |
Birnbaum等( | 英国 | 2017 | 44 | 英镑£ | 249.06 |
结果水平 | 问题A:前景S与前景R谁更具有吸引力? | 问题B:前景S与前景R谁更具有吸引力? | ||
---|---|---|---|---|
前景S | 前景R | 前景S | 前景R | |
260元 | (52元, 0.11; 0元, 0.89) | (260元, 0.01; 0元, 0.99) | (52元, 1) | (260元, 0.01; 52元, 0.89; 0元, 0.1) |
220元 | (44元, 0.11; 0元, 0.89) | (220元, 0.01; 0元, 0.99) | (44元, 1) | (220元, 0.01; 44元, 0.89; 0元, 0.1) |
180元 | (36元, 0.11; 0元, 0.89) | (180元, 0.01; 0元, 0.99) | (36元, 1) | (180元, 0.01; 36元, 0.89; 0元, 0.1) |
140元 | (28元, 0.11; 0元, 0.89) | (140元, 0.01; 0元, 0.99) | (28元, 1) | (140元, 0.01; 28元, 0.89; 0元, 0.1) |
100元 | (20元, 0.11; 0元, 0.89) | (100元, 0.01; 0元, 0.99) | (20元, 1) | (100元, 0.01; 20元, 0.89; 0元, 0.1) |
60元 | (12元, 0.11; 0元, 0.89) | (60元, 0.01; 0元, 0.99) | (12元, 1) | (60元, 0.01; 12元, 0.89; 0元, 0.1) |
20元 | (4元, 0.11; 0元, 0.89) | (20元, 0.01; 0元, 0.99) | (4元, 1) | (20元, 0.01; 4元, 0.89; 0元, 0.1) |
表A2 预实验所采用的选择问题对
结果水平 | 问题A:前景S与前景R谁更具有吸引力? | 问题B:前景S与前景R谁更具有吸引力? | ||
---|---|---|---|---|
前景S | 前景R | 前景S | 前景R | |
260元 | (52元, 0.11; 0元, 0.89) | (260元, 0.01; 0元, 0.99) | (52元, 1) | (260元, 0.01; 52元, 0.89; 0元, 0.1) |
220元 | (44元, 0.11; 0元, 0.89) | (220元, 0.01; 0元, 0.99) | (44元, 1) | (220元, 0.01; 44元, 0.89; 0元, 0.1) |
180元 | (36元, 0.11; 0元, 0.89) | (180元, 0.01; 0元, 0.99) | (36元, 1) | (180元, 0.01; 36元, 0.89; 0元, 0.1) |
140元 | (28元, 0.11; 0元, 0.89) | (140元, 0.01; 0元, 0.99) | (28元, 1) | (140元, 0.01; 28元, 0.89; 0元, 0.1) |
100元 | (20元, 0.11; 0元, 0.89) | (100元, 0.01; 0元, 0.99) | (20元, 1) | (100元, 0.01; 20元, 0.89; 0元, 0.1) |
60元 | (12元, 0.11; 0元, 0.89) | (60元, 0.01; 0元, 0.99) | (12元, 1) | (60元, 0.01; 12元, 0.89; 0元, 0.1) |
20元 | (4元, 0.11; 0元, 0.89) | (20元, 0.01; 0元, 0.99) | (4元, 1) | (20元, 0.01; 4元, 0.89; 0元, 0.1) |
结果水平 | 表现出各选择模式的被试占比(%) | Conlisk z | p | |||
---|---|---|---|---|---|---|
SS | RR | RS | SR | |||
260元 | 16.67 | 30.00 | 40.00 | 13.33 | 2.11 | 0.017 |
220元 | 23.33 | 36.67 | 30.00 | 10.00 | 1.80 | 0.036 |
180元 | 20.00 | 33.33 | 33.33 | 13.33 | 1.65 | 0.050 |
140元 | 23.33 | 26.67 | 36.67 | 13.33 | 1.88 | 0.030 |
100元 | 26.67 | 43.33 | 23.33 | 6.67 | 1.72 | 0.043 |
60元 | 16.67 | 30.00 | 36.67 | 16.67 | 1.53 | 0.063 |
20元 | 20.00 | 46.67 | 23.33 | 10.00 | 1.28 | 0.101 |
表A3 不同结果水平下各问题对中表现出各种选择模式的被试占比(%)以及Conlisk z检验结果
结果水平 | 表现出各选择模式的被试占比(%) | Conlisk z | p | |||
---|---|---|---|---|---|---|
SS | RR | RS | SR | |||
260元 | 16.67 | 30.00 | 40.00 | 13.33 | 2.11 | 0.017 |
220元 | 23.33 | 36.67 | 30.00 | 10.00 | 1.80 | 0.036 |
180元 | 20.00 | 33.33 | 33.33 | 13.33 | 1.65 | 0.050 |
140元 | 23.33 | 26.67 | 36.67 | 13.33 | 1.88 | 0.030 |
100元 | 26.67 | 43.33 | 23.33 | 6.67 | 1.72 | 0.043 |
60元 | 16.67 | 30.00 | 36.67 | 16.67 | 1.53 | 0.063 |
20元 | 20.00 | 46.67 | 23.33 | 10.00 | 1.28 | 0.101 |
[1] | Abdellaoui, M. (2000). Parameter-free elicitation of utility and probability weighting functions. Management Science, 46(11), 1497-1512. |
[2] | Abdellaoui, M., Bleichrodt, H., L’Haridon, O., & van Dolder, D. (2016). Measuring loss aversion under ambiguity: A method to make prospect theory completely observable. Journal of Risk and Uncertainty, 52(1), 1-20. |
[3] | Abdellaoui, M., L’Haridon, O., & Zank, H. (2010). Separating curvature and elevation: A parametric probability weighting function. Journal of Risk and Uncertainty, 41(1), 39-65. |
[4] | Agranov, M., & Ortoleva, P. (2017). Stochastic choice and preferences for randomization. The Journal of Political Economy, 125(1), 40-68. |
[5] | Allais, M. (1953). Le comportement de l’homme rationnel devant le risque: Critique des postulats et axiomes de l'ecole americaine. Econometrica, 21(4), 503-546. |
[6] | Andersen, S., Harrison, G. W., Lau, M. I., & Rutström, E. E. (2010). Behavioral econometrics for psychologists. Journal of Economic Psychology, 31(4), 553-576. |
[7] | Baillon, A., Bleichrodt, H., Liu, N., & Wakker, P. P. (2016). Group decision rules and group rationality under risk. Journal of Risk and Uncertainty, 52(2), 99-116. |
[8] |
Birnbaum, M. H. (2008). New paradoxes of risky decision making. Psychological Review, 115(2), 463-501.
doi: 10.1037/0033-295X.115.2.463 pmid: 18426300 |
[9] | Birnbaum, M. H., Schmidt, U., & Schneider, M. D. (2017). Testing independence conditions in the presence of errors and splitting effects. Journal of Risk and Uncertainty, 54(1), 61-85. |
[10] | Blavatskyy, P. (2013). The reverse Allais paradox. Economics Letters, 119(1), 60-64. |
[11] | Blavatskyy, P. (2021). A simple non-parametric method for eliciting prospect theory's value function and measuring loss aversion under risk and ambiguity. Theory and Decision, 91(3), 403-416. |
[12] | Blavatskyy, P., Ortmann, A., & Panchenko, V. (2022). On the experimental robustness of the Allais paradox. American Economic Journal. Microeconomics, 14(1), 143-163. |
[13] | Bordalo, P., Gennaioli, N., & Shleifer, A. (2012). Salience theory of choice under risk. The Quarterly Journal of Economics, 127(3), 1243-1285. |
[14] | Bostic, R., Herrnstein, R. J., & Luce, R. D. (1990). The effect on the preference-reversal phenomenon of using choice indifferences. Journal of Economic Behavior & Organization, 13(2), 193-212. |
[15] | Bouchouicha, R., & Vieider, F. M. (2017). Accommodating stake effects under prospect theory. Journal of Risk and Uncertainty, 55(1), 1-28. |
[16] | Camerer, C. F. (1989). An experimental test of several generalized utility theories. Journal of Risk and Uncertainty, 2(1), 61-104. |
[17] | Cerreia-Vioglio, S., Dillenberger, D., & Ortoleva, P. (2015). Cautious expected utility and the certainty effect. Econometrica, 83(2), 693-728. |
[18] | Choi, S., Kim, J., Lee, E., & Lee, J. (2022). Probability weighting and cognitive ability. Management Science, 68(7), 5201-5215. |
[19] | Conlisk, J. (1989). Three variants on the Allais example. The American Economic Review, 79(3), 392-407. |
[20] | Fan, C. (2002). Allais paradox in the small. Journal of Economic Behavior & Organization, 49(3), 411-421. |
[21] |
Faul, F., Erdfelder, E., Lang, A. G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175-191.
doi: 10.3758/bf03193146 pmid: 17695343 |
[22] | Fehr-Duda, H., Bruhin, A., Epper, T., & Schubert, R. (2010). Rationality on the rise: Why relative risk aversion increases with stake size. Journal of Risk and Uncertainty, 40(2), 147-180. |
[23] | Fischbacher, U. (2007). z-Tree: Zurich toolbox for ready-made economic experiments. Experimental Economics, 10(2), 171-178. |
[24] | Groes, E., Jacobsen, H. J., Sloth, B., & Tranæs, T. (1999). Testing the intransitivity explanation of the Allais paradox. Theory and Decision, 47(3), 229-245. |
[25] | Huck, S., & Müller, W. (2012). Allais for all: Revisiting the paradox in a large representative sample. Journal of Risk and Uncertainty, 44(3), 261-293. |
[26] | Humphrey, S. J., & Verschoor, A. (2004). The probability weighting function: Experimental evidence from Uganda, India and Ethiopia. Economics Letters, 84(3), 419-425. |
[27] | Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision under risk. Econometrica, 47(2), 263-291. |
[28] | Kellen, D., Steiner, M. D., Davis-Stober, C. P., & Pappas, N. R. (2020). Modeling choice paradoxes under risk: From prospect theories to sampling-based accounts. Cognitive Psychology, 118, 101258. |
[29] | Kontek, K., & Lewandowski, M. (2018). Range-dependent utility. Management Science, 64(6), 2812-2832. |
[30] | Kovacheva, A., Nikolova, H., & Lamberton, C. (2022). Will he buy a surprise? Gender differences in the purchase of surprise offerings. Journal of Retailing, 98(4), 667-684. |
[31] | Levy, M. (2022). An evolutionary explanation of the Allais paradox. Journal of Evolutionary Economics, 32(5), 1545-1574. |
[32] |
Locey, M. L., Jones, B. A., & Rachlin, H. (2011). Real and hypothetical rewards in self-control and social discounting. Judgment and Decision Making, 6(6), 552-564.
pmid: 22582110 |
[33] | Markowitz, H. (1952). The utility of wealth. Journal of Political Economy, 60(2), 151-158. |
[34] | Mvondo, G. F. N., Jing, F., & Hussain, K. (2023). What's in the box? Investigating the benefits and risks of the blind box selling strategy. Journal of Retailing and Consumer Services, 71, 103189. |
[35] |
Oliver, A., & Sunstein, C. (2019). Does size matter? the Allais paradox and preference reversals with varying outcome magnitudes. Journal of Behavioral and Experimental Economics, 78, 45-60.
doi: 10.1016/j.socec.2018.12.004 |
[36] | Ostermair, C. (2022). An experimental investigation of the Allais paradox with subjective probabilities and correlated outcomes. Journal of Economic Psychology, 93, 102553. |
[37] | Prelec, D. (1998). The probability weighting function. Econometrica, 66(3), 497-527. |
[38] | Prelec, D., & Loewenstein, G. (1991). Decision making over time and under uncertainty: A common approach. Management Science, 37(7), 770-786. |
[39] | Schmidt, U., & Seidl, C. (2014). Reconsidering the common ratio effect: The roles of compound independence, reduction, and coalescing. Theory and Decision, 77(3), 323-339. |
[40] | Schmidt, U., Starmer, C., & Sugden, R. (2008). Third- generation prospect theory. Journal of Risk and Uncertainty, 36(3), 203-223. |
[41] | Schneider, M., & Day, R. (2018). Target-adjusted utility functions and expected-utility paradoxes. Management Science, 64(1), 271-287. |
[42] | Schneider, M., & Leland, J. W. (2021). Salience and social choice. Experimental Economics, 24(4), 1215-1241. |
[43] | Starmer, C. (1992). Testing new theories of choice under uncertainty using the common consequence effect. The Review of Economic Studies, 59(4), 813-830. |
[44] | Tversky, A., & Kahneman, D. (1992). Advances in prospect theory: Cumulative representation of uncertainty. Journal of Risk and Uncertainty, 5(4), 297-323. |
[45] | Tymula, A., Wang, X., Imaizumi, Y., Kawai, T., Kunimatsu, J., Matsumoto, M., & Yamada, H. (2023). Dynamic prospect theory: Two core decision theories coexist in the gambling behavior of monkeys and humans. Science Advances, 9(20), e7972. |
[46] | von Neumann, J., & Morgenstern, O. (1947). Theory of games and economic behavior (2nd ed.). Princeton: Princeton University Press. |
[47] | Wakker, P. P. (1994). Separating marginal utility and probabilistic risk aversion. Theory and Decision, 36(1), 1-44. |
[48] |
Wakker, P. P. (2004). On the composition of risk preference and belief. Psychological Review, 111(1), 236-241.
pmid: 14756595 |
[49] | Wakker, P. P. (2010). Prospect theory: For risk and ambiguity. Cambridge: Cambridge University Press. |
[50] | Wakker, P. P., & Deneffe, D. (1996). Eliciting von Neumann- Morgenstern utilities when probabilities are distorted or unknown. Management Science, 42(8), 1131-1150. |
[51] | Weber, B. J., & Chapman, G. B. (2005). Playing for peanuts: Why is risk seeking more common for low-stakes gambles? Organizational Behavior and Human Decision Processes, 97(1), 31-46. |
[52] | Wu, G. (1994). An empirical test of ordinal independence. Journal of Risk and Uncertainty, 9(1), 39-60. |
[53] | Wu, G., & Gonzalez, R. (1998). Common consequence conditions in decision making under risk. Journal of Risk and Uncertainty, 16(1), 115-139. |
[54] | Wu, G., & Markle, A. B. (2008). An empirical test of gain-loss separability in prospect theory. Management Science, 54(7), 1322-1335. |
[55] | Xu, Y., & Guo, W. J. (2023). A dual perspective on uncertainty ——An exploration based on blind box. Journal of management science, 36(1), 119-131. |
[徐颖, 郭雯君. (2023). 不确定性的双元视角——基于盲盒销售的探讨. 管理科学, 36(1), 119-131.] |
[1] | 陆嘉琦, 李雨斯, 何贵兵. 双相障碍患者的风险决策偏好:来自三水平元分析的证据[J]. 心理学报, 2025, 57(1): 100-124. |
[2] | 刘洪志, 李兴珊, 李纾, 饶俪琳. 基于期望值最大化的理论何时失效:风险决策中为自己-为所有人决策差异的眼动研究[J]. 心理学报, 2022, 54(12): 1517-1531. |
[3] | 张银玲, 虞祯, 买晓琴. 社会价值取向对自我-他人风险决策的影响及其机制[J]. 心理学报, 2020, 52(7): 895-908. |
[4] | 杨玲, 王斌强, 耿银凤, 姚东伟, 曹华, 张建勋, 许琼英. 虚拟和真实金钱奖赏幅度对海洛因戒断者风险决策的影响[J]. 心理学报, 2019, 51(4): 507-516. |
[5] | 周蕾, 李爱梅, 张磊, 李纾, 梁竹苑. 风险决策和跨期决策的过程比较:以确定效应和即刻效应为例[J]. 心理学报, 2019, 51(3): 337-352. |
[6] | 陈嘉欣;何贵兵. “金钱−环境”复合收益的风险决策:价值取向的影响[J]. 心理学报, 2017, 49(4): 500-512. |
[7] | 陆青云;陶芳标;侯方丽;孙莹. 青少年应激下皮质醇应答与风险决策相关性的性别差异[J]. 心理学报, 2014, 46(5): 647-655. |
[8] | 徐四华;方卓;饶恒毅. 真实和虚拟金钱奖赏影响风险决策行为[J]. 心理学报, 2013, 45(8): 874-886. |
[9] | 徐四华. 网络成瘾者的行为冲动性—— 来自爱荷华赌博任务的证据[J]. 心理学报, 2012, 44(11): 1523-1534. |
[10] | 贺伟,龙立荣. 薪酬体系框架与考核方式对个人绩效薪酬选择的影响[J]. 心理学报, 2011, 43(10): 1198-1210. |
[11] | 张文慧,王晓田. 自我框架、风险认知和风险选择[J]. 心理学报, 2008, 40(06): 633-641. |
[12] | 张锋,周艳艳,李鹏,沈模卫. 海洛因戒除者的行为冲动性: 基于DDT和IGT任务反应模式的探讨 [J]. 心理学报, 2008, 40(06): 642-653. |
[13] | 王晓田. 投资决策进化心理学的研究:预期的私人资金分配和父母对子女的差异性精力投入[J]. 心理学报, 2007, 39(03): 406-414. |
[14] | 何贵兵,白凤祥. 风险决策中的参照点效应研究[J]. 心理学报, 1997, 29(2): 178-186. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||