心理学报 ›› 2025, Vol. 57 ›› Issue (3): 363-379.doi: 10.3724/SP.J.1041.2025.0363 cstr: 32110.14.2025.0363
张俐娟1, 江妍雪1, 马建平2, 崔博洋1, 张锦坤1()
收稿日期:
2024-04-19
发布日期:
2025-01-24
出版日期:
2025-03-25
通讯作者:
张锦坤, E-mail: jinkunzhang@126.com作者简介:
第一联系人:张俐娟和江妍雪为共同第一作者。
基金资助:
ZHANG Lijuan1, JIANG Yanxue1, MA Jianping2, CUI Boyang1, ZHANG Jinkun1()
Received:
2024-04-19
Online:
2025-01-24
Published:
2025-03-25
摘要: 提取练习效应(Retrieval Practice Effect, RPE)的研究揭示了提取直接促进记忆保持和间接促进后续学习(重学)的关键作用。研究表明, 材料难度和提取难度是影响RPE的重要因素, 但以往研究未具体区分二者对提取练习直接和间接效应的影响。实验1采用2 (词对难度:简单, 困难) × 2 (提取支持:无, 有)的混合实验设计, 考察材料难度和提取难度对提取练习直接效应的影响。实验2引入提取后重学因素, 结合行为实验和fNIRS技术区分了材料难度和提取难度对提取练习两种效应的影响。结果发现, 相比有提取支持条件, 无提取支持条件下提取时颞上回脑区(与提取难度关联)的激活显著增强, 且前额皮层脑区(与加工深度关联)在重学阶段表现出更高的激活水平, 显著提高了最终记忆成绩。困难词对的提取练习效应弱于简单词对, 但无提取支持条件下重学困难词对时, 前额叶皮层脑区的激活水平显著更高, 有效促进了困难词对提取后的重学效果(记忆成绩显著提高)。以上发现表明, 提高提取难度增强了提取练习的直接和间接效应; 提取有助于促进困难材料的后续学习, 且增加提取难度有助于增强困难材料提取练习的间接效应。
中图分类号:
张俐娟, 江妍雪, 马建平, 崔博洋, 张锦坤. (2025). 提取难度对困难材料提取练习效应的促进作用:来自行为和fNIRS的证据. 心理学报, 57(3), 363-379.
ZHANG Lijuan, JIANG Yanxue, MA Jianping, CUI Boyang, ZHANG Jinkun. (2025). The positive effect of retrieval difficulty on the retrieval practice effect for difficult materials: Evidence from behavior and fNIRS. Acta Psychologica Sinica, 57(3), 363-379.
词对 | 无提取支持 | 有提取支持 |
---|---|---|
简单词对 | 0.67 (0.16) | 0.38 (0.16) |
困难词对 | 0.30 (0.15) | 0.07 (0.06) |
表1 不同提取支持和词对难度的记忆保持率
词对 | 无提取支持 | 有提取支持 |
---|---|---|
简单词对 | 0.67 (0.16) | 0.38 (0.16) |
困难词对 | 0.30 (0.15) | 0.07 (0.06) |
通道 | MNI坐标 | BA区 | 覆盖率 | ||
---|---|---|---|---|---|
X | Y | Z | |||
CH1 | −57 | 26 | 1 | 47-左额下回 | 58% |
45-左额下回三角区 | 40% | ||||
CH2 | −49 | 49 | −3 | 47-左额下回 | 50% |
10-左额极 | 39% | ||||
CH3 | −32 | 66 | −1 | 10-左额极 | 98% |
CH4 | −6 | 72 | −2 | 10-额极 | 79% |
CH5 | 27 | 70 | −4 | 11-右眶额皮层 | 84% |
CH6 | 49 | 53 | −6 | 10-右额极 | 49% |
47-右额下回 | 34% | ||||
CH7 | 56 | 28 | −7 | 47-右额下回 | 93% |
CH8 | −65 | 0 | 14 | 6-左前运动和辅助运动皮层 | 48% |
22-左颞上回 | 30% | ||||
CH9 | −56 | 32 | 11 | 45-左额下回三角区 | 59% |
46-左背外侧前额叶皮层 | 39% | ||||
CH10 | −42 | 56 | 12 | 10-左额极 | 81% |
CH11 | −19 | 71 | 14 | 10-左额极 | 100% |
CH12 | 13 | 73 | 12 | 10-右额极 | 100% |
CH13 | 42 | 61 | 10 | 10-右额极 | 96% |
CH14 | 58 | 36 | 8 | 46-右背外侧前额叶皮层 | 41% |
45-右额下回三角区 | 39% | ||||
CH15 | 65 | 2 | 6 | 22-右颞上回 | 61% |
CH16 | −62 | 10 | 26 | 9-左背外侧前额叶皮层 | 39% |
CH17 | −49 | 38 | 27 | 9-左背外侧前额叶皮层 | 97% |
CH18 | −31 | 57 | 28 | 10-左额极 | 80% |
CH19 | −6 | 66 | 28 | 10-额极 | 93% |
CH20 | 26 | 63 | 28 | 10-右额极 | 83% |
CH21 | 50 | 43 | 26 | 46-右背外侧前额叶皮层 | 84% |
CH22 | 63 | 15 | 22 | 44/45-右额下回三角区 | 66% |
9-右背外侧前额叶皮层 | 30% |
表2 fNIRS实验中通道所对应的布鲁德曼分区
通道 | MNI坐标 | BA区 | 覆盖率 | ||
---|---|---|---|---|---|
X | Y | Z | |||
CH1 | −57 | 26 | 1 | 47-左额下回 | 58% |
45-左额下回三角区 | 40% | ||||
CH2 | −49 | 49 | −3 | 47-左额下回 | 50% |
10-左额极 | 39% | ||||
CH3 | −32 | 66 | −1 | 10-左额极 | 98% |
CH4 | −6 | 72 | −2 | 10-额极 | 79% |
CH5 | 27 | 70 | −4 | 11-右眶额皮层 | 84% |
CH6 | 49 | 53 | −6 | 10-右额极 | 49% |
47-右额下回 | 34% | ||||
CH7 | 56 | 28 | −7 | 47-右额下回 | 93% |
CH8 | −65 | 0 | 14 | 6-左前运动和辅助运动皮层 | 48% |
22-左颞上回 | 30% | ||||
CH9 | −56 | 32 | 11 | 45-左额下回三角区 | 59% |
46-左背外侧前额叶皮层 | 39% | ||||
CH10 | −42 | 56 | 12 | 10-左额极 | 81% |
CH11 | −19 | 71 | 14 | 10-左额极 | 100% |
CH12 | 13 | 73 | 12 | 10-右额极 | 100% |
CH13 | 42 | 61 | 10 | 10-右额极 | 96% |
CH14 | 58 | 36 | 8 | 46-右背外侧前额叶皮层 | 41% |
45-右额下回三角区 | 39% | ||||
CH15 | 65 | 2 | 6 | 22-右颞上回 | 61% |
CH16 | −62 | 10 | 26 | 9-左背外侧前额叶皮层 | 39% |
CH17 | −49 | 38 | 27 | 9-左背外侧前额叶皮层 | 97% |
CH18 | −31 | 57 | 28 | 10-左额极 | 80% |
CH19 | −6 | 66 | 28 | 10-额极 | 93% |
CH20 | 26 | 63 | 28 | 10-右额极 | 83% |
CH21 | 50 | 43 | 26 | 46-右背外侧前额叶皮层 | 84% |
CH22 | 63 | 15 | 22 | 44/45-右额下回三角区 | 66% |
9-右背外侧前额叶皮层 | 30% |
效应 | 通道 | BA区 | F (1, 32) | p | η2p |
---|---|---|---|---|---|
提取支持主效应 | CH15 | 22-右颞上回 | 8.81 | 0.01 | 0.22 |
词对难度主效应 | CH2 | 47-左额下回 | 5.58 | 0.02 | 0.15 |
10-左额极 | |||||
CH9 | 45-左额下回三角区 | 4.83 | 0.04 | 0.13 | |
46-左背外侧前额叶皮层 | |||||
CH14 | 46-右背外侧前额叶皮层 | 4.23 | 0.05 | 0.12 | |
45-右额下回三角区 | |||||
CH16 | 9-左背外侧前额叶皮层 | 4.28 | 0.05 | 0.12 | |
CH17 | 9-左背外侧前额叶皮层 | 5.91 | 0.02 | 0.16 |
表3 提取阶段提取支持和词对难度各主效应显著的通道
效应 | 通道 | BA区 | F (1, 32) | p | η2p |
---|---|---|---|---|---|
提取支持主效应 | CH15 | 22-右颞上回 | 8.81 | 0.01 | 0.22 |
词对难度主效应 | CH2 | 47-左额下回 | 5.58 | 0.02 | 0.15 |
10-左额极 | |||||
CH9 | 45-左额下回三角区 | 4.83 | 0.04 | 0.13 | |
46-左背外侧前额叶皮层 | |||||
CH14 | 46-右背外侧前额叶皮层 | 4.23 | 0.05 | 0.12 | |
45-右额下回三角区 | |||||
CH16 | 9-左背外侧前额叶皮层 | 4.28 | 0.05 | 0.12 | |
CH17 | 9-左背外侧前额叶皮层 | 5.91 | 0.02 | 0.16 |
效应 | 通道 | BA区 | F (1, 31) | p | η2p |
---|---|---|---|---|---|
提取支持主效应 | CH12 | 10-右额极 | 7.57 | 0.01 | 0.20 |
CH18 | 10-左额极 | 4.50 | 0.04 | 0.13 | |
词对难度主效应 | CH1 | 47-左额下回 | 10.12 | 0.01 | 0.25 |
45-左额下回三角区 | |||||
CH7 | 47-右额下回 | 4.20 | 0.05 | 0.12 | |
CH9 | 9-左背外侧前额叶皮层 | 5.65 | 0.02 | 0.16 | |
CH16 | 9-左背外侧前额叶皮层 | 5.35 | 0.03 | 0.15 | |
CH17 | 9-左背外侧前额叶皮层 | 7.52 | 0.01 | 0.20 | |
CH20 | 10-右额极 | 10.87 | 0.01 | 0.27 | |
CH21 | 46-右背外侧前额叶皮层 | 4.16 | 0.05 | 0.12 |
表4 提取后重学阶段提取支持和词对难度各主效应显著统计结果
效应 | 通道 | BA区 | F (1, 31) | p | η2p |
---|---|---|---|---|---|
提取支持主效应 | CH12 | 10-右额极 | 7.57 | 0.01 | 0.20 |
CH18 | 10-左额极 | 4.50 | 0.04 | 0.13 | |
词对难度主效应 | CH1 | 47-左额下回 | 10.12 | 0.01 | 0.25 |
45-左额下回三角区 | |||||
CH7 | 47-右额下回 | 4.20 | 0.05 | 0.12 | |
CH9 | 9-左背外侧前额叶皮层 | 5.65 | 0.02 | 0.16 | |
CH16 | 9-左背外侧前额叶皮层 | 5.35 | 0.03 | 0.15 | |
CH17 | 9-左背外侧前额叶皮层 | 7.52 | 0.01 | 0.20 | |
CH20 | 10-右额极 | 10.87 | 0.01 | 0.27 | |
CH21 | 46-右背外侧前额叶皮层 | 4.16 | 0.05 | 0.12 |
效应 | 通道 | BA区 | t (1, 15) | p | d | 95% CI |
---|---|---|---|---|---|---|
简单词对 | CH20 | 10-右额极 | −2.29 | 0.04 | 0.66 | [−0.005, −0.001] |
困难词对 | CH12 | 10-右额极 | 2.57 | 0.02 | 0.92 | [0.001, 0.007] |
CH14 | 46-右背外侧前额叶皮层 | 2.25 | 0.04 | 0.86 | [0.001, 0.009] | |
45-右额下回三角区 | ||||||
CH17 | 46-左背外侧前额叶皮层 | 3.21 | 0.01 | 1.14 | [0.003, 0.013] | |
CH18 | 10-左额极 | 3.46 | 0.01 | 1.23 | [0.002, 0.011] | |
CH19 | 10-额极 | 2.28 | 0.04 | 0.90 | [0.001, 0.012] |
表5 无提取支持组提取后重学与初始学习对比显著激活的通道
效应 | 通道 | BA区 | t (1, 15) | p | d | 95% CI |
---|---|---|---|---|---|---|
简单词对 | CH20 | 10-右额极 | −2.29 | 0.04 | 0.66 | [−0.005, −0.001] |
困难词对 | CH12 | 10-右额极 | 2.57 | 0.02 | 0.92 | [0.001, 0.007] |
CH14 | 46-右背外侧前额叶皮层 | 2.25 | 0.04 | 0.86 | [0.001, 0.009] | |
45-右额下回三角区 | ||||||
CH17 | 46-左背外侧前额叶皮层 | 3.21 | 0.01 | 1.14 | [0.003, 0.013] | |
CH18 | 10-左额极 | 3.46 | 0.01 | 1.23 | [0.002, 0.011] | |
CH19 | 10-额极 | 2.28 | 0.04 | 0.90 | [0.001, 0.012] |
效应 | 通道 | BA区 | t (1, 15) | p | d | 95% CI |
---|---|---|---|---|---|---|
简单词对 | CH1 | 47-左额下回 | −4.52 | <0.001 | 1.33 | [−0.017, −0.006] |
45-左额下回三角区 | ||||||
CH8 | 6-左前运动和辅助运动皮层 | −3.29 | 0.01 | 1.01 | [−0.013, −0.003] | |
22-左颞上回 | ||||||
CH9 | 45-左额下回三角区 | −3.21 | 0.01 | 1.23 | [−0.011, −0.002] | |
46-左背外侧前额叶皮层 | ||||||
CH16 | 9-左背外侧前额叶皮层 | −3.15 | 0.01 | 0.88 | [−0.013, −0.002] |
表6 有提取支持组提取后重学与初始学习对比显著激活的通道
效应 | 通道 | BA区 | t (1, 15) | p | d | 95% CI |
---|---|---|---|---|---|---|
简单词对 | CH1 | 47-左额下回 | −4.52 | <0.001 | 1.33 | [−0.017, −0.006] |
45-左额下回三角区 | ||||||
CH8 | 6-左前运动和辅助运动皮层 | −3.29 | 0.01 | 1.01 | [−0.013, −0.003] | |
22-左颞上回 | ||||||
CH9 | 45-左额下回三角区 | −3.21 | 0.01 | 1.23 | [−0.011, −0.002] | |
46-左背外侧前额叶皮层 | ||||||
CH16 | 9-左背外侧前额叶皮层 | −3.15 | 0.01 | 0.88 | [−0.013, −0.002] |
[1] | Arnold, K. M., & McDermott, K. B. (2013). Test-potentiated learning: Distinguishing between direct and indirect effects of tests. Journal of Experimental Psychology: Learning, Memory, and Cognition, 39( 3), 940-945. |
[2] | Bjork, R. A. (1975). Retrieval as a memory modifier:An interpretation of negative recency and related phenomena. In R.Solso (Ed.), Information processing and cognition: The Loyola symposium (pp. 123-144). Hillsdale, NJ: Erlbaum. |
[3] | Bjork, R. A., & Bjork, E. L. (1992). A new theory of disuse and an old theory of stimulus fluctuation. In A.Healy, S.Kosslyn, & R.Shiffrin (Eds.), From learning processes to cognitive processes: Essays in honor of William K. Estes (Vol. 2, pp. 35-67). Hillsdale, NJ: Erlbaum. |
[4] |
Blumenfeld, R. S., Parks, C. M., Yonelinas, A. P., & Ranganath, C. (2011). Putting the pieces together: The role of dorsolateral prefrontal cortex in relational memory encoding. Journal of Cognitive Neuroscience, 23(1), 257-265.
doi: 10.1162/jocn.2010.21459 pmid: 20146616 |
[5] | Blumenfeld, R. S., & Ranganath, C. (2007). Prefrontal cortex and long-term memory encoding: An integrative review of findings from neuropsychology and neuroimaging. The Neuroscientist, 13(3), 280-291. |
[6] | Brigadoi, S., Ceccherini, L., Cutini, S., Scarpa, F., Scatturin, P., Selb, J., … Cooper, R. J. (2014). Motion artifacts in functional near-infrared spectroscopy: A comparison of motion correction techniques applied to real cognitive data. Neuroimage, 85, 181-191. |
[7] | Burgess, P. W., Gilbert, S. J., & Dumontheil, I. (2007). Function and localization within rostral prefrontal cortex (area 10). Philosophical Transactions of the Royal Society B: Biological Sciences, 362(1481), 887-899. |
[8] | Carpenter, S. K. (2009). Cue strength as a moderator of the testing effect: The benefits of elaborative retrieval. Journal of Experimental Psychology: Learning, Memory, and Cognition, 35( 6), 1563-1569. |
[9] | Carpenter, S. K., & DeLosh, E. L. (2006). Impoverished cue support enhances subsequent retention: Support for the elaborative retrieval explanation of the testing effect. Memory & Cognition, 34(2), 268-276. |
[10] | Carpenter, S. K., Endres, T., & Hui, L. (2020). Students’ use of retrieval in self-regulated learning: Implications for monitoring and regulating effortful learning experiences. Educational Psychology Review, 32(4), 1029-1054. |
[11] | Carpenter, S. K., & Yeung, K. L. (2017). The role of mediator strength in learning from retrieval. Journal of Memory and Language, 92, 128-141. |
[12] | Darnai, G., Perlaki, G., Zsidó, A. N., Inhóf, O., Orsi, G., Horváth, R., ... Janszky, J. (2019). Internet addiction and functional brain networks: Task-related fMRI study. Scientific Reports, 9(1), 15777. |
[13] | de Lima, M. F. R., Venâncio, S., Feminella, J., & Buratto, L. G. (2020). Does item difficulty affect the magnitude of the retrieval practice effect? An evaluation of the retrieval effort hypothesis. The Spanish Journal of Psychology, 23, e31. |
[14] | Endres, T., Kranzdorf, L., Schneider, V., & Renkl, A. (2020). It matters how to recall-task differences in retrieval practice. Instructional Science, 48(6), 699-728. |
[15] | Faul, F., Erdfelder, E., Buchner, A., & Lang, A. -G. (2009). Statistical power analyses using G* Power 3.1: Tests for correlation and regression analyses. Behavior Research Methods, 41(4), 1149-1160. |
[16] | Greving, S., & Richter, T. (2022). Practicing retrieval in university teaching: Short-answer questions are beneficial, whereas multiple-choice questions are not. Journal of Cognitive Psychology, 34(5), 657-674. |
[17] | Grimaldi, P. J., & Karpicke, J. D. (2012). When and why do retrieval attempts enhance subsequent encoding? Memory & Cognition, 40(4), 505-513. |
[18] | Guran, C. N. A., Deuker, L., Göttlich, M., Axmacher, N., & Bunzeck, N. (2022). Benefit from retrieval practice is linked to temporal and frontal activity in healthy young and older humans. Cerebral Cortex Communications, 3(1), tgac009. |
[19] |
Hoshi, Y., Kobayashi, N., & Tamura, M. (2001). Interpretation of near-infrared spectroscopy signals: A study with a newly developed perfused rat brain model. Journal of Applied Physiology, 90(5), 1657-1662.
doi: 10.1152/jappl.2001.90.5.1657 pmid: 11299252 |
[20] | Kang, S. H., McDermott, K. B., & Roediger III, H. L. (2007). Test format and corrective feedback modify the effect of testing on long-term retention. European Journal of Cognitive Psychology, 19(4-5), 528-558. |
[21] | Karpicke, J. D. (2017). Retrieval-based learning:A decade of progress. In J. H.Byrne (Ed.), Learning and memory: A comprehensive reference (2nd ed., pp. 487-514). Academic Press. |
[22] | Karpicke, J. D., Lehman, M., & Aue, W. R. (2014). Retrieval-based learning:An episodic context account. In B. H.Ross (Ed.), The psychology of learning and motivation (vol. 61, pp. 237-284). San Diego, CA: Elsevier Academic Press. |
[23] |
Karpicke, J. D., & Roediger, H. L. (2008). The critical importance of retrieval for learning. Science, 319(5865), 966-968.
doi: 10.1126/science.1152408 pmid: 18276894 |
[24] | Kirk-Johnson, A., Galla, B. M., & Fraundorf, S. H. (2019). Perceiving effort as poor learning: The misinterpreted- effort hypothesis of how experienced effort and perceived learning relate to study strategy choice. Cognitive Psychology, 115, 101237. |
[25] |
Kovelman, I., Shalinsky, M. H., Berens, M. S., & Petitto, L. -A. (2008). Shining new light on the brain's “bilingual signature”: A functional near infrared spectroscopy investigation of semantic processing. Neuroimage, 39(3), 1457-1471.
doi: 10.1016/j.neuroimage.2007.10.017 pmid: 18054251 |
[26] | Ma, X. F., Li, Z. Y., & Zhou, A. B. (2022). Can Retrieval Practice Promote the Learning of Procedural Knowledge? ——Testing Based on Prompt Retrieval. Journal of Psychological Science, 45(4), 849-855. |
[马小凤, 李增艳, 周爱保. (2022). 提取练习能够促进程序性知识的学习吗? ——基于有提示提取的检验. 心理科学, 45(4), 849-855.] | |
[27] | Ma, X. F., Zhou, A. B., & Yang, X. E. (2017). Cue strength: The important variables of the examination of retrieval practice effect mechanism. Psychological Development and Education, 33(3), 313-320. |
[马小凤, 周爱保, 杨小娥. (2017). 线索强度:检验提取练习效应内部机制的重要变量. 心理发展与教育, 33(3), 313-320.] | |
[28] |
Manoach, D. S., Schlaug, G., Siewert, B., Darby, D. G., Bly, B. M., Benfield, A., ... Warach, S. (1997). Prefrontal cortex fMRI signal changes are correlated with working memory load. Neuroreport, 8(2), 545-549.
pmid: 9080445 |
[29] | Marin-Garcia, E., Mattfeld, A. T., & Gabrieli, J. D. (2021). Neural correlates of long-term memory enhancement following retrieval practice. Frontiers in Human Neuroscience, 15, 584560. |
[30] | McClelland, J. L., & Rumelhart, D. E. (1985). Distributed memory and the representation of general and specific information. Journal of Experimental Psychology: General, 114(2), 159-188. |
[31] |
McDermott, K. B. (2021). Practicing retrieval facilitates learning. Annual Review of Psychology, 72, 609-633.
doi: 10.1146/annurev-psych-010419-051019 pmid: 33006925 |
[32] | Moayedi, M., Salomons, T. V., Dunlop, K. A., Downar, J., & Davis, K. D. (2015). Connectivity-based parcellation of the human frontal polar cortex. Brain Structure and Function, 220(5), 2603-2616. |
[33] | Nelson, D. L., McEvoy, C. L., & Schreiber, T. A. (2004). The University of South Florida free association, rhyme, and word fragment norms. Behavior Research Methods, Instruments, & Computers, 36(3), 402-407. |
[34] | Nelson, T. O., & Dunlosky, J. (1991). When people's judgments of learning (JOLs) are extremely accurate at predicting subsequent recall: The “delayed-JOL effect”. Psychological Science, 2(4), 267-270. |
[40] |
Pyc, M. A., & Rawson, K. A. (2010). Why testing improves memory: Mediator effectiveness hypothesis. Science, 330(6002), 335-335.
doi: 10.1126/science.1191465 pmid: 20947756 |
[41] | Pyc, M. A., & Rawson, K. A. (2012). Why is test-restudy practice beneficial for memory? An evaluation of the mediator shift hypothesis. Journal of Experimental Psychology: Learning, Memory, and Cognition, 38( 3), 737-746. |
[42] |
Reas, E. T., & Brewer, J. B. (2013). Retrieval search and strength evoke dissociable brain activity during episodic memory recall. Journal of Cognitive Neuroscience, 25(2), 219-233.
doi: 10.1162/jocn_a_00335 pmid: 23190328 |
[43] |
Roediger III, H. L., & Karpicke, J. D. (2006). The power of testing memory: Basic research and implications for educational practice. Perspectives on Psychological Science, 1(3), 181-210.
doi: 10.1111/j.1745-6916.2006.00012.x pmid: 26151629 |
[44] | Royer, J. M. (1973). Memory effects for test-like-events during acquisition of foreign language vocabulary. Psychological Reports, 32(1), 195-198. |
[45] | Shu, H., & Zhang, Y. X. (Eds). (2008). Methods in psychological science: Experimental design and data analysis. Beijing: People’s Education Press. |
[舒华, 张亚旭. (2008). 心理学研究方法:实验设计和数据分析. 北京: 人民教育出版社.] | |
[46] |
Smith, M. A., & Karpicke, J. D. (2014). Retrieval practice with short-answer, multiple-choice, and hybrid tests. Memory, 22(7), 784-802.
doi: 10.1080/09658211.2013.831454 pmid: 24059563 |
[47] | Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. Cognitive Science, 12(2), 257-285. |
[48] |
Toepper, M., Gebhardt, H., Bauer, E., Haberkamp, A., Beblo, T., Gallhofer, B., ... Sammer, G. (2014). The impact of age on load-related dorsolateral prefrontal cortex activation. Frontiers in Aging Neuroscience, 6, 9.
doi: 10.3389/fnagi.2014.00009 pmid: 24550826 |
[49] |
Van den Broek, G. S., Takashima, A., Segers, E., Fernández, G., & Verhoeven, L. (2013). Neural correlates of testing effects in vocabulary learning. Neuroimage, 78, 94-102.
doi: 10.1016/j.neuroimage.2013.03.071 pmid: 23578576 |
[50] | Vaughn, K. E., Rawson, K. A., & Pyc, M. A. (2013). Repeated retrieval practice and item difficulty: Does criterion learning eliminate item difficulty effects? Psychonomic Bulletin & Review, 20(6), 1239-1245. |
[51] | Vestergren, P., & Nyberg, L. (2014). Testing alters brain activity during subsequent restudy: Evidence for test-potentiated encoding. Trends in Neuroscience and Education, 3(2), 69-80. |
[52] | Wan, N., Hancock, A. S., Moon, T. K., & Gillam, R. B. (2018). A functional near‐infrared spectroscopic investigation of speech production during reading. Human Brain Mapping, 39(3), 1428-1437. |
[53] | Whelan, R. R. (2007). Neuroimaging of cognitive load in instructional multimedia. Educational Research Review, 2(1), 1-12. |
[54] |
Wing, E. A., Marsh, E. J., & Cabeza, R. (2013). Neural correlates of retrieval-based memory enhancement: An fMRI study of the testing effect. Neuropsychologia, 51(12), 2360-2370.
doi: 10.1016/j.neuropsychologia.2013.04.004 pmid: 23607935 |
[55] |
Wissman, K. T., & Rawson, K. A. (2018). Test-potentiated learning: Three independent replications, a disconfirmed hypothesis, and an unexpected boundary condition. Memory, 26(4), 406-414.
doi: 10.1080/09658211.2017.1350717 pmid: 28691577 |
[56] | Xia, M., Wang, J., & He, Y. (2013). BrainNet viewer: A network visualization tool for human brain connectomics. Plos One, 8(7), e68910. |
[57] |
Yang, H. B., Liu, H. j., Zhang, P., & Li, L. (2019). The role of masking stimulation in target recognition processing: Evidence from fNIRS. Acta Psychologica Sinica, 51(11), 1187-1197.
doi: 10.3724/SP.J.1041.2019.01187 |
[杨海波, 刘和珺, 章鹏, 李量. (2019). 掩蔽刺激对目标识别加工的作用:来自fNIRS的证据. 心理学报, 51(11), 1187-1197.]
doi: 10.3724/SP.J.1041.2019.01187 |
|
[58] | Yang, L. X., Zhang, J. K., Li, D. J., & Zhang, L. J. (2022). The longer the retrieval process, the better the memory retention? The moderating effect of material difficulty. Journal of Psychological Science, 45(3), 567-573. |
[杨丽娴, 张锦坤, 李冬静, 张俐娟. (2022). 提取过程越久记忆保持越好吗? 材料难度的调节作用. 心理科学, 45(3), 567-573.] | |
[59] | Ye, Z., Shi, L., Li, A., Chen, C., & Xue, G. (2020). Retrieval practice facilitates memory updating by enhancing and differentiating medial prefrontal cortex representations. ELife, 9, e57023. |
[60] |
Zhang, H., Hou, S., Wang, H. M., Lian, Y. X., & Yang, H. B. (2020). Socially shared retrieval-induced forgetting in a naturalistic collaborative retrieval situation. Acta Psychologica Sinica, 52(6), 716-729.
doi: 10.3724/SP.J.1041.2020.00716 |
[35] |
Nelson, S. M., Arnold, K. M., Gilmore, A. W., & McDermott, K. B. (2013). Neural signatures of test-potentiated learning in parietal cortex. Journal of Neuroscience, 33(29), 11754-11762.
doi: 10.1523/JNEUROSCI.0960-13.2013 pmid: 23864663 |
[36] |
Noble, W. S. (2009). How does multiple testing correction work? Nature Biotechnology, 27, 1135-1137.
doi: 10.1038/nbt1209-1135 pmid: 20010596 |
[37] |
Okamoto, M., Dan, H., Sakamoto, K., Takeo, K., Shimizu, K., Kohno, S., ... Dan, I. (2004). Three-dimensional probabilistic anatomical cranio-cerebral correlation via the international 10-20 system oriented for transcranial functional brain mapping. Neuroimage, 21(1), 99-111.
doi: 10.1016/j.neuroimage.2003.08.026 pmid: 14741647 |
[38] | Pan, J. J., Jiao, X. J., Jiang, J., Xu, F. G., & Yang, H. J. (2014). Mental workload assessment based on functional near-infrared spectroscopy. Acta Optica Sinica, 34(11), 344-349. |
[潘津津, 焦学军, 姜劲, 徐凤刚, 杨涵钧. (2014). 利用功能性近红外光谱成像方法评估脑力负荷. 光学学报, 34(11), 344-349.] | |
[39] | Pinti, P., Tachtsidis, I., Hamilton, A., Hirsch, J., Aichelburg, C., Gilbert, S., & Burgess, P. W. (2020). The present and future use of functional near-infrared spectroscopy (fNIRS) for cognitive neuroscience. Annals of the New York Academy of Sciences, 1464(1), 5-29. |
[60] |
[张环, 侯双, 王海曼, 廉宇煊, 杨海波. (2020). 他人在场条件下的社会分享型提取诱发遗忘. 心理学报, 52(6), 716-729.]
doi: 10.3724/SP.J.1041.2020.00716 |
[61] | Zhang, J. K., & Zhang, L. J. (2020). The effects of encoding and retrieval duration on retrieval practice effect. Journal of Psychological Science, 43(4), 785-792. |
[张锦坤, 张俐娟. (2020). 编码与提取时长对提取练习效应的影响. 心理科学, 43(4), 785-792.] | |
[62] | Zhuang, L., Wang, J., Xiong, B., Bian, C., Hao, L., Bayley, P. J., & Qin, S. (2022). Rapid neural reorganization during retrieval practice predicts subsequent long-term retention and false memory. Nature Human Behaviour, 6(1), 134-145. |
[1] | 张环, 秦锡权, 刘雨, 林琳, 吴捷. 不同强度趋近动机积极情绪对基于语义关联性错误记忆的影响及其神经机制[J]. 心理学报, 2025, 57(3): 349-362. |
[2] | 陈发坤, 陈甜, 蔡文琦, 王小娟, 杨剑峰. 左侧额中回参与汉字视觉空间分析的fNIRS证据[J]. 心理学报, 2023, 55(5): 685-695. |
[3] | 白学军;张琪涵;章鹏;周菘;刘颖;宋星;彭国慧. 基于fNIRS的运动执行与运动想象脑激活模式比较[J]. 心理学报, 2016, 48(5): 495-508. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||