心理学报 ›› 2025, Vol. 57 ›› Issue (3): 349-362.doi: 10.3724/SP.J.1041.2025.0349 cstr: 32110.14.2025.0349
• 研究报告 • 下一篇
张环1,2,3, 秦锡权2, 刘雨2, 林琳1,2,3, 吴捷1,2,3()
收稿日期:
2023-08-04
发布日期:
2025-01-24
出版日期:
2025-03-25
通讯作者:
吴捷, E-mail: babaluosha@163.com
ZHANG Huan1,2,3, QIN Xiquan2, LIU Yu2, LIN Lin1,2,3, WU Jie1,2,3()
Received:
2023-08-04
Online:
2025-01-24
Published:
2025-03-25
摘要: 情绪会影响错误记忆。以往研究多关注情绪效价和唤醒度对错误记忆的影响。到目前为止, 情绪的动机维度对错误记忆的影响过程和神经机制尚不清楚。本研究采用表情−姿势法诱发被试产生不同强度趋近动机的积极情绪, 结合功能性近红外光学脑成像技术(fNIRS), 考察被试在高、中和低三种强度趋近动机积极情绪条件下学习DRM词表时大脑皮层氧合血红蛋白浓度的变化以及这种变化对基于语义关联性错误记忆的影响。结果显示, 高趋条件下产生了更多的错误记忆。同时, 在左侧额叶、颞叶的部分区域中, 高趋条件下的脑激活水平显著高于中、低趋条件, 表明高趋条件会引发特定脑区更大程度的脑激活。相关分析结果表明, 高趋条件下, 左侧额下回和颞叶的激活水平与错误记忆率呈显著的正相关关系; 低趋条件下, 左侧颞下回的激活水平与错误记忆呈显著的负相关关系。以上结果表明, 不同强度趋近动机积极情绪会影响错误记忆的产生; 且趋近动机的强度会影响语义相关脑区激活水平的强度, 其中左侧颞下回在不同强度趋近动机积极情绪影响错误记忆的产生过程中出现了分离效应。
中图分类号:
张环, 秦锡权, 刘雨, 林琳, 吴捷. (2025). 不同强度趋近动机积极情绪对基于语义关联性错误记忆的影响及其神经机制. 心理学报, 57(3), 349-362.
ZHANG Huan, QIN Xiquan, LIU Yu, LIN Lin, WU Jie. (2025). The influence of positive emotion with varying intensities of approach motivation on false memory and its neural mechanisms: A study based on semantic-related false memory. Acta Psychologica Sinica, 57(3), 349-362.
条件 | 学习词 正确识别 | 关键诱饵 虚报率 | 无关词 虚报率 |
---|---|---|---|
高趋积极情绪 | 0.76 (0.12) | 0.75 (0.15) | 0.17 (0.19) |
中趋积极情绪 | 0.73 (0.11) | 0.73 (0.19) | 0.22 (0.19) |
低趋积极情绪 | 0.74 (0.16) | 0.62 (0.22) | 0.17 (0.22) |
表1 不同实验条件下个体的“学过”反应描述统计结果(M (SD))
条件 | 学习词 正确识别 | 关键诱饵 虚报率 | 无关词 虚报率 |
---|---|---|---|
高趋积极情绪 | 0.76 (0.12) | 0.75 (0.15) | 0.17 (0.19) |
中趋积极情绪 | 0.73 (0.11) | 0.73 (0.19) | 0.22 (0.19) |
低趋积极情绪 | 0.74 (0.16) | 0.62 (0.22) | 0.17 (0.22) |
图3 不同强度趋近动机积极情绪条件下个体的通道激活与主效应F值检验图, 其中A) 高趋近动机条件下个体的脑激活情况, B) 中趋近动机条件下个体的脑激活情况, C) 低趋近动机条件下个体的脑激活情况, D) 趋近动机强度主效应F值图(注: 图中的颜色越靠近红色, 表明激活越显著; 图D中的数字代表对应通道)。
通道 | MNI坐标 | BA分区及脑区重合度 | ||
---|---|---|---|---|
X | Y | Z | ||
1 | −19 | 64 | 28 | 10, Frontopolar area, 0.69 |
2 | −42 | 52 | 24 | 46, Dorsolateral prefrontal cortex, 0.73 |
3 | −55 | 33 | 16 | 45, pars triangularis Broca's area, 1 |
4 | −65 | 1 | −10 | 48, Retrosubicular area, 0.47 |
5 | −71 | −27 | −7 | 21, Middle Temporal gyrus, 0.95 |
6 | −66 | −50 | −17 | 20, Inferior Temporal gyrus, 0.46 |
7 | −4 | 60 | 39 | 9, Dorsolateral prefrontal cortex, 0.70 |
8 | −26 | 52 | 37 | 9, Dorsolateral prefrontal cortex, 0.1 |
9 | −48 | 36 | 32 | 45, pars triangularis Broca's area, 0.85 |
10 | −64 | 6 | 22 | 6, Pre-Motor and Supplementary Motor Cortex, 0.60 |
11 | −69 | −20 | 9 | 22, Middle-Superior Temporal Gyrus, 1 |
12 | −70 | −43 | −2 | 21, Middle Temporal gyrus, 0.43 |
13 | −62 | −62 | −12 | 37, Fusiform gyrus, 1 |
14 | −32 | 47 | 51 | 9, Dorsolateral prefrontal cortex, 0.86 |
15 | −32 | 37 | 47 | 9, Dorsolateral prefrontal cortex, 0.92 |
16 | −50 | 37 | 45 | 44, pars opercularis, part of Broca's area, 0.48 |
17 | −66 | −9 | 34 | 43, Subcentral area, 0.66 |
18 | −69 | −36 | 20 | 22, Superior Temporal Gyrus, 0.61 |
19 | −64 | −61 | 3 | 37, Fusiform gyrus, 0.95 |
20 | −3 | 42 | 54 | 8, Includes Frontal eye fields, 0.65 |
21 | −23 | 34 | 57 | 8, Includes Frontal eye fields, 0.75 |
22 | −44 | 17 | 55 | 9, Dorsolateral prefrontal cortex, 0.75 |
23 | −60 | −12 | 46 | 3, Primary Somatosensory Cortex, 0.37 |
24 | −67 | −39 | 35 | 40, Supramarginal gyrus part of Wernicke's area, 0.63 |
25 | −60 | −67 | 14 | 37, Fusiform gyrus, 0.58 |
26 | −54 | −74 | 27 | 39, Angular gyrus, part of Wernicke's area, 0.88 |
27 | −16 | 22 | 67 | 8, Includes Frontal eye fields, 0.71 |
28 | −39 | 18 | 59 | 9, Dorsolateral prefrontal cortex, 0.50 |
29 | −58 | −22 | 54 | 1、3, Primary Somatosensory Cortex, 0.78 |
30 | −64 | −41 | 44 | 40, Supramarginal gyrus part of Wernicke's area, 1 |
31 | −58 | −70 | 23 | 39, Angular gyrus, part of Wernicke's area, 0.85 |
32 | −46 | −89 | 6 | 19, V3, 0.67 |
33 | −55 | −62 | 45 | 39, Angular gyrus, part of Wernicke's area, 0.80 |
34 | −51 | −77 | 30 | 39, Angular gyrus, part of Wernicke's area, 0.87 |
35 | −41 | −91 | 17 | 19, V3, 0.77 |
36 | −51 | −64 | 51 | 39, Angular gyrus, part of Wernicke's area, 0.80 |
37 | −41 | −85 | 33 | 19, V3, 0.86 |
表S1 通道位置对应MNI坐标与布鲁德曼分区
通道 | MNI坐标 | BA分区及脑区重合度 | ||
---|---|---|---|---|
X | Y | Z | ||
1 | −19 | 64 | 28 | 10, Frontopolar area, 0.69 |
2 | −42 | 52 | 24 | 46, Dorsolateral prefrontal cortex, 0.73 |
3 | −55 | 33 | 16 | 45, pars triangularis Broca's area, 1 |
4 | −65 | 1 | −10 | 48, Retrosubicular area, 0.47 |
5 | −71 | −27 | −7 | 21, Middle Temporal gyrus, 0.95 |
6 | −66 | −50 | −17 | 20, Inferior Temporal gyrus, 0.46 |
7 | −4 | 60 | 39 | 9, Dorsolateral prefrontal cortex, 0.70 |
8 | −26 | 52 | 37 | 9, Dorsolateral prefrontal cortex, 0.1 |
9 | −48 | 36 | 32 | 45, pars triangularis Broca's area, 0.85 |
10 | −64 | 6 | 22 | 6, Pre-Motor and Supplementary Motor Cortex, 0.60 |
11 | −69 | −20 | 9 | 22, Middle-Superior Temporal Gyrus, 1 |
12 | −70 | −43 | −2 | 21, Middle Temporal gyrus, 0.43 |
13 | −62 | −62 | −12 | 37, Fusiform gyrus, 1 |
14 | −32 | 47 | 51 | 9, Dorsolateral prefrontal cortex, 0.86 |
15 | −32 | 37 | 47 | 9, Dorsolateral prefrontal cortex, 0.92 |
16 | −50 | 37 | 45 | 44, pars opercularis, part of Broca's area, 0.48 |
17 | −66 | −9 | 34 | 43, Subcentral area, 0.66 |
18 | −69 | −36 | 20 | 22, Superior Temporal Gyrus, 0.61 |
19 | −64 | −61 | 3 | 37, Fusiform gyrus, 0.95 |
20 | −3 | 42 | 54 | 8, Includes Frontal eye fields, 0.65 |
21 | −23 | 34 | 57 | 8, Includes Frontal eye fields, 0.75 |
22 | −44 | 17 | 55 | 9, Dorsolateral prefrontal cortex, 0.75 |
23 | −60 | −12 | 46 | 3, Primary Somatosensory Cortex, 0.37 |
24 | −67 | −39 | 35 | 40, Supramarginal gyrus part of Wernicke's area, 0.63 |
25 | −60 | −67 | 14 | 37, Fusiform gyrus, 0.58 |
26 | −54 | −74 | 27 | 39, Angular gyrus, part of Wernicke's area, 0.88 |
27 | −16 | 22 | 67 | 8, Includes Frontal eye fields, 0.71 |
28 | −39 | 18 | 59 | 9, Dorsolateral prefrontal cortex, 0.50 |
29 | −58 | −22 | 54 | 1、3, Primary Somatosensory Cortex, 0.78 |
30 | −64 | −41 | 44 | 40, Supramarginal gyrus part of Wernicke's area, 1 |
31 | −58 | −70 | 23 | 39, Angular gyrus, part of Wernicke's area, 0.85 |
32 | −46 | −89 | 6 | 19, V3, 0.67 |
33 | −55 | −62 | 45 | 39, Angular gyrus, part of Wernicke's area, 0.80 |
34 | −51 | −77 | 30 | 39, Angular gyrus, part of Wernicke's area, 0.87 |
35 | −41 | −91 | 17 | 19, V3, 0.77 |
36 | −51 | −64 | 51 | 39, Angular gyrus, part of Wernicke's area, 0.80 |
37 | −41 | −85 | 33 | 19, V3, 0.86 |
[1] | Alonso, M. A., Díez, E., Díez-Álamo, A. M., Fernandez, A., & Gómez-Ariza, C. J. (2024). Transcranial direct current stimulation over the left posterior temporal lobe modulates semantic control: Evidence from episodic memory distortions. Brain and Cognition, 175, 106130. |
[2] |
Badre, D., Poldrack, R. A., Paré-Blagoev, E. J., Insler, R. Z., & Wagner, A. D. (2005). Dissociable controlled retrieval and generalized selection mechanisms in ventrolateral prefrontal cortex. Neuron, 47(6), 907-918.
doi: 10.1016/j.neuron.2005.07.023 pmid: 16157284 |
[3] |
Bai, X. J., Zhang, Q. H., Zhang, P., Zhou, S., Liu, Y., Song, X., & Peng, G. H. (2016). Comparison of motor execution and motor imagery brain activation patterns: A fNIRS study. Acta Psychologica Sinica, 48(5), 495-508.
doi: 10.3724/SP.J.1041.2016.00495 |
[白学军, 张琪涵, 章鹏, 周菘, 刘颖, 宋星, 彭国慧. (2016). 基于fNIRS的运动执行与运动想象脑激活模式比较. 心理学报, 48(5), 495-508.] | |
[4] | Balconi, M., Falbo, X., & Conte, V. A. (2012). BIS and BAS correlates with psychophysiological and cortical response systems during aversive and appetitive emotional stimuli processing. Motivation and Emotion, 36, 218-231. |
[5] |
Bookbinder, S, H., & Brainerd, C. J. (2016). Emotion and false memory: The context-content paradox. Psychological Bulletin, 142(12), 1315-1351.
pmid: 27748610 |
[6] |
Bookbinder, S. H., & Brainerd, C. J. (2017). Emotionally negative pictures enhance gist memory. Emotion, 17(1), 102-119.
doi: 10.1037/emo0000171 pmid: 27454002 |
[7] | Boggio, P. S., Fregni, F., Valasek, C., Ellwood, S., Chi, R., Gallate, J., … Snyder, A. (2009). Temporal lobe cortical electrical stimulation during the encoding and retrieval phase reduces false memories. PloS one, 4(3), e4959. |
[8] |
Binder, J. R., & Desai, R. H. (2011). The neurobiology of semantic memory. Trends in Cognitive Sciences, 15(11), 527-536.
doi: 10.1016/j.tics.2011.10.001 pmid: 22001867 |
[9] |
Buss, K. A., Schumacher, J. R., Dolski, I., Kalin, N. H., Goldsmith, H. H., & Davidson, R. J. (2003). Right frontal brain activity, cortisol, and withdrawal behavior in 6-month-old infants. Behavioral Neuroscience, 117(1), 11-20.
pmid: 12619903 |
[10] | Brigadoi, S., Ceccherini, L., Cutini, S., Scarpa, F., Scatturin, P., Selb, J., … Cooper, R. J. (2014). Motion artifacts in functional near-infrared spectroscopy: A comparison of motion correction techniques applied to real cognitive data. NeuroImage, 85, 181-191. |
[11] |
Cabeza, R., Rao, S. M., Wagner, A. D., Mayer, A. R., & Schacter, D. L. (2001). Can medial temporal lobe regions distinguish true from false? An event-related functional MRI study of veridical and illusory recognition memory. Proceedings of the National Academy of Sciences of the United States of America, 98(8), 4805-4810.
doi: 10.1073/pnas.081082698 pmid: 11287664 |
[12] |
Cui, L. X., Zhang, Y. J., Xiao, J., & Zhang, Q. (2013). The influence of positive affect on mental rotation of compound stimuli: The moderating role of approch motivation. Acta Psychologica Sinica, 45(11), 1228-1241.
doi: 10.3724/SP.J.1041.2013.01228 |
[崔丽霞, 张玉静, 肖晶, 张钦. (2013). 积极情绪对心理旋转的影响: 趋近动机的调节效应. 心理学报, 45(11), 1228-1241.] | |
[13] |
Chadwick, M. J., Anjum, R. S., Kumaran, D., Schacter, D. L., Spiers, H. J., & Hassabis, D. (2016). Semantic representations in the temporal pole predict false memories. Proceedings of the National Academy of Sciences of the United States of America, 113(36), 10180-10185.
doi: 10.1073/pnas.1610686113 pmid: 27551087 |
[14] |
Cooper, R. A., & Ritchey, M. (2020). Progression from feature- specific brain activity to hippocampal binding during episodic encoding. Journal of Neuroscience, 40(8), 1701-1709.
doi: 10.1523/JNEUROSCI.1971-19.2019 pmid: 31826947 |
[15] |
Deese, J. (1959). On the prediction of occurrence of particular verbal intrusions in immediate recall. Journal of Experimental Psychology, 58, 17-22.
pmid: 13664879 |
[16] |
Díez, E., Gómez-Ariza, C. J., Díez-Álamo, A. M., Alonso, M. A., & Fernandez, A. (2017). The processing of semantic relatedness in the brain: Evidence from associative and categorical false recognition effects following transcranial direct current stimulation of the left anterior temporal lobe. Cortex, 93, 133-145.
doi: S0010-9452(17)30159-4 pmid: 28647325 |
[17] | Frenda, S. J., Nichls, R. M., & Loftus, E. F. (2011). Current issues and advances in misinformation research. Current Directions in Psychological Sciences, 20(1), 20-23. |
[18] |
Ferrari, M., & Quaresima, V. (2012). A brief review on the history of human functional near-infrared spectroscopy development and fields of application. NeuroImage, 63(2), 921-935.
doi: 10.1016/j.neuroimage.2012.03.049 pmid: 22510258 |
[19] | Förster, J., Friedman, R.S., Özelsel, A., & Denzler, M. (2006). Enactment of approach and avoidance behavior influences the scope of perceptual and conceptual attention. Journal of Experimental Social Psychology, 42(2), 133-146. |
[20] | Förster, J. (2012). Glomosysr: The how and why of global and local processing. Current Directions in Psychological Science, 21(1), 15-19. |
[21] |
Gable, P. A., & Harmon-Jones, E. (2008). Approach-motivated positive affect reduces breadth of attention. Psychological Science, 19, 476-482.
doi: 10.1111/j.1467-9280.2008.02112.x pmid: 18466409 |
[22] |
Gallate, J., Chi, R., Ellwood, S., & Snyder, A. (2009). Reducing false memories by magnetic pulse stimulation. Neuroscience Letters, 449, 151-154.
doi: 10.1016/j.neulet.2008.11.021 pmid: 19022348 |
[23] | Gable, P. A., & Harmon-Jones, E. (2010a). The motivational dimensional model of affect: Implications for breadth of attention, memory, and cognitive categorisation. Cognition and Emotion, 24(2), 322-337. |
[24] | Gable, P. A., & Harmon-Jones, E. (2010b). The blues broaden, but the nasty narrows: Attentional consequences of negative affects low and high in motivational intensity. Psychological Science, 21, 211-215. |
[25] | Gable, P. A., & Harmon-Jones, E. (2010c). The effect of low versus high approach-motivated positive affect on memory for peripherally versus centrally presented information. Emotion, 10, 599-603. |
[26] |
Gainotti, G. (2011). What the study of voice recognition in normal subjects and brain-damaged patients tells us about models of familiar people recognition. Neuropsychologia, 49, 2273-2282.
doi: 10.1016/j.neuropsychologia.2011.04.027 pmid: 21569784 |
[27] |
Harmon-Jones, E. (2007). Trait anger predicts relative left frontal cortical activation to anger-inducing stimuli. International Journal of Psychophysiology, 66(2), 154-160.
pmid: 17561297 |
[28] |
Hoshi, Y., Kobayashi, N., & Tamura, M. (2001). Interpretation of near-infrared spectroscopy signals: A study with a newly developed perfused rat brain model. Journal of Applied Physiology, 90(5), 1657-662.
doi: 10.1152/jappl.2001.90.5.1657 pmid: 11299252 |
[29] | Jang, K. E., Tak, S., Jung, J., Jang, J., Jeong, Y., & Ye, J. C. (2009). Wavelet minimum description length detrending for near-infrared spectroscopy. Journal of Biomedical Optics, 14(3), 034004. |
[30] | Knott, L. M., & Thorley, C. E. (2014). Mood-congruent false memories persist over time. Cognition & Emotion, 28(5), 903-912. |
[31] | Kubota, Y., Toichi, M., Shimizu, M., Mason, R. A., Findling, R. L., Yamamoto, K., & Calabrese, J. R. (2006). Pref-rontal hemodynamic activity predicts false memory—A near-infrared spectroscopy study. NeuroImage, 31(4), 1783-1789. |
[32] |
Leff, D. R., Orihuela-Espina, F., Elwell, C. E., Athanasiou, T., Delpy, D.T., Darzi, A. W., & Yang, G. Z. (2011). Assessment of the cerebral cortex during motor task behaviours in adults: A systematic review of functional near infrared spectroscopy (fNIRS) studies. NeuroImage, 54(4), 2922-2936.
doi: 10.1016/j.neuroimage.2010.10.058 pmid: 21029781 |
[33] | Li, T. (2015). Affective state and DRM paradigm: An investigation of valence and arousal on false memory. [Unpublished master’s thesis]. Shaanxi Normal University, China. |
[李桐. (2015). DRM范式下诱发情绪对错误记忆的影响 (硕士学位论文). 陕西师范大学.] | |
[34] | Li, X. X. (2020). The influence of motivation of affect for acene memory. [Unpublished master’s thesis]. Hebei University, China. |
[李晓雪. (2020). 情绪的动机对场景记忆的影响 (硕士学位论文). 河北大学.] | |
[35] |
Liu, F., Ding, J. H., & Zhang, Q. (2016). Positive affect and selective attention: Approach-motivation intensity influences the early and late attention processing stages. Acta Psychologica Sinica, 48(7), 794-803.
doi: 10.3724/SP.J.1041.2016.00794 |
[刘芳, 丁锦红, 张钦. (2016). 高、低趋近积极情绪对不同注意加工阶段的影响. 心理学报, 48(7), 794-803.] | |
[36] | Liu, L. T. (2018). The effects of mood on spontaneous false memory and its underlying mechanism. [Unpublished doctoral dissertation]. Zhejiang University, China. |
[刘丽婷. (2018). 情绪对自发性错误记忆的影响及其机制 (博士学位论文). 浙江大学.] | |
[37] | Liu, Y. L., Guo, C. Y., & Jin, Z. (2015). The effects of different motivational emotions on word working memory. Chinese Journal of Behavioral Medicine and Brain Science, 24(2), 176-177. |
[刘英丽, 郭春彦, 金真. (2015). 不同动机情绪对词语工作记忆的作用. 中华行为医学与脑科学杂志, 24(2), 176-177.] | |
[38] | Lu, C. M., Zhang, Y. J., Biswal, B. B., Zang, Y. F., Peng, D. L., & Zhu, C. Z. (2010). Use of fNIRS to assess resting state functional connectivity. Journal of Neuroscience Methods, 186(2), 242-249. |
[39] | Ni, S. B., Li, Y., Zhao, Y. G., Yang, S., & Yin, N. (2021). Research on the influence of mixed emotional factors on false memory based on brain functional network. Journal of Biomedical Engineering, 38(5), 828-837. |
[倪召兵, 李颖, 赵营鸽, 杨硕, 尹宁. (2021). 基于脑功能网络的混合情绪因素对错误记忆影响的研究. 生物医学工程学杂志, 38(5), 828-837.] | |
[40] | Oliver, M. C., Bays, R. B., & Zabrucky, K. M. (2016). False memories and the DRM paradigm: Effects of imagery, list, and test type. The Journal of General Psychology, 143, 33-48. |
[41] | Pierce, B. H., Gallo, D. A., Weiss, J. A., & Schacter, D. L. (2005). The modality effect in false recognition: Evidence for test-based monitoring. Memory & Cognition, 33(8), 1407-1413. |
[42] |
Price, T. F., & Harmon-Jones, E. (2010). The effect of embodied emotive states on cognitive categorization. Emotion, 10(6), 934-938.
doi: 10.1037/a0019809 pmid: 21171763 |
[43] |
Price, T. F., & Harmon-Jones, E. (2011). Approach motivational body postures lean toward left frontal brain activity. Psychophysiology, 48, 718-722.
doi: 10.1111/j.1469-8986.2010.01127.x pmid: 21457272 |
[44] |
Poole, B. D., & Gable, P. A. (2014). Affective motivational direction drives asymmetric frontal hemisphere activation. Experimental Brain Research, 232(7), 2121-2130.
doi: 10.1007/s00221-014-3902-4 pmid: 24658634 |
[45] | Roediger, H., & McDermott, K. B. (1995). Creating false memories: Remembering words not presented in lists. Journal of Experimental Psychology: Learning, Memory and Cognition, 21( 4), 803-814. |
[46] |
Schutter, D. J., de Weijer, A. D., Meuwese, J. D., Morgan, B., & van Honk, J. (2008). Interrelations between motivational stance, cortical excitability, and the frontal electroencephalogram asymmetry of emotion: A transcranial magnetic stimulation study. Human Brain Mapping, 29, 574-80.
pmid: 17557298 |
[47] |
Singh, A. K., Okamoto, M., Dan, H., Jurcak, V., & Dan, I. (2005). Spatial registration of multichannel multi-subject fNIRS data to MNI space without MRI. NeuroImage, 27(4), 842-851.
doi: 10.1016/j.neuroimage.2005.05.019 pmid: 15979346 |
[48] |
Spalding, K. N., Jones, S. H., Duff, M. C., Tranel, D., & Warren, D. E. (2015). Investigating the neural correlates of schemas: Ventromedial prefrontal cortex is necessary for normal schematic influence on memory. Journal of Neuroscience, 35(47), 15746-15751.
doi: 10.1523/JNEUROSCI.2767-15.2015 pmid: 26609165 |
[49] | Stadler, M. A., Roediger, H. L., & McDermott, K. B. (1999). Norms for word lists that create false memories. Memory and Cognition, 27(3), 495-500. |
[50] |
Storbeck, J., & Clore, G. L. (2005). With sadness comes accuracy; with happiness, false memory mood and the false memory effect. Psychological Science, 16(10), 785-791.
doi: 10.1111/j.1467-9280.2005.01615.x pmid: 16181441 |
[51] |
Storbeck, J., & Clore, G. L. (2011). Affect influences false memories at encoding: Evidence from recognition date. Emotion, 11(4), 981-989.
doi: 10.1037/a0022754 pmid: 21517165 |
[52] |
Wagner, U., Schlechter, P., & Echterhoff, G. (2022). Socially induced false memories in the absence of misinformation. Scientific Reports, 12, 7725.
doi: 10.1038/s41598-022-11749-w pmid: 35545651 |
[53] | Wang, A. Q., Zhu, H. D., Zhu, X., &. Qiao, Q. C. (2019). Electroencephalogram mechanism of asymmetric activation of frontal cortex induced by emotional motivation. Acta Universitatis Medicinalis Anhui, 54(10), 1632-1636. |
[王安琪, 朱海东, 朱洵, 乔亲才. (2019). 情绪动机方向诱发额叶皮质不对称激活的神经机制研究. 安徽医科大学学报, 54(10), 1632-1636.] | |
[54] | Wang, C. M., & Lv, Y. (2016). Review of the emotional motivation effect on cognitive processing. Psychological Research, 9(1), 15-21. |
[王春梅, 吕勇. (2016). 情绪的动机性对认知加工作用研究评述. 心理研究, 9(1), 15-21.] | |
[55] | Wang, T. T., Mo, L., & Shu, S. Y. (2009). The brain mechanism of memory encoding and retrieval: A review on the fMRI studies. Acta Physiological Sinica, 61(5), 395-403. |
[王婷婷, 莫雷, 舒斯云. (2009). 记忆编码与提取过程的脑机制——功能性核磁共振研究. 生理学报, 61(5), 395-403.] | |
[56] | Wang, X. M., Ma, Y. H., & Song, G. W. (2010). The effects of priming emotion and presentation mode on false memory. Studies of Psychology and Behavior, 8(3), 208-212. |
[王晓明, 马玉花, 宋广文. (2010). 启动情绪和呈现方式对错误记忆的影响. 心理与行为研究, 8(3), 208-212.] | |
[57] |
Wang, Z. H., Liu, Y., & Jiang, C. H. (2013). The effect of low versus high approach-motivated positive affect on cognitive control. Acta Psychologica Sinica, 45(5), 546-555.
doi: 10.3724/SP.J.1041.2013.00546 |
[王振宏, 刘亚, 蒋长好. (2013). 不同趋近动机强度积极情绪对认知控制的影响. 心理学报, 45(5), 546-555.] | |
[58] |
Xia, M., Li, X. L., Li, H., & Yang, K. (2015). The relationship between left frontal and approach motivation process. Advances in Psychological Science, 23(5), 815-821.
doi: 10.3724/SP.J.1042.2015.00815 |
[侠牧, 李雪榴, 李红, 杨柯. (2015). 左前额叶与趋近动机加工的关系. 心理科学进展, 23(5), 815-821.]
doi: 10.3724/SP.J.1042.2015.00815 |
|
[59] |
Xiao, H. R., Huang, Y. F., Gong, X. M., & Wang, D. H. (2015). Age alters the effects of emotional valence on false memory: Using the simplified conjoint recognition paradigm. Acta Psychologica Sinica, 47(1), 19-28.
doi: 10.3724/SP.J.1041.2015.00019 |
[肖红蕊, 黄一帆, 龚先旻, 王大华. (2015). 简化的联合再认范式中情绪对错误记忆影响的年龄差异. 心理学报, 47(1), 19-28.] | |
[60] | Yang, M. X., & Zhang, J. K. (2019). The effects of image encoding on false memory created by word List. Journal of Psychological Science, 45(5), 1033-1038. |
[杨妹香, 张锦坤. (2019). 表象编码对基于词表的错误记忆的影响. 心理科学, 42(5), 1033-1038.] | |
[61] | Yang, Z. L., Wang, S. R., & Tang, Q. H. (2006). Sources of false memories: Encoding stage/retention stage. Chinese Journal of Applied Psychology, (2), 99-106. |
[杨治良, 王思睿, 唐菁华. (2006). 错误记忆的来源: 编码阶段/保持阶段. 应用心理学, (2), 99-106.] | |
[62] | Ye, J. C., Tak, S., Jang, K. E., Jung, J., & Jang, J. (2009). NIRS_SPM: Statistical parametric mapping for near-infrared spectroscopy. NeuroImage, 44(2), 428-447. |
[63] | Zhang, J. Y. (2014). The effect of different approach motivational intensity of positive emotions on working memory. [Unpublished master’s thesis]. East China Normal University. |
[张建英. (2014). 不同动机趋近积极情绪对工作记忆的影响 (硕士学位论文). 华东师范大学.] | |
[64] | Zhang, Y. J. (2020). The influence of positive affect on the scope of mental rotation in high school students: The moderating role of approach motivation. Journal of Psychological Science, 43(4), 850-856. |
[张玉静. (2020). 积极情绪对高中生心理旋转范围的影响: 趋近动机的调节效应. 心理科学, 43(4), 850-856.] | |
[65] | Zhang, Z. X., Guo, X. Y., Li, L., & Zheng, L. (2017). A study on false memory and true memory in blind students. Journal of Psychological Science, 40(4), 844-849. |
[张增修, 郭秀艳, 李林, 郑丽. (2017). 盲生错误记忆和真实记忆研究. 心理科学, 40(4), 844-849.] | |
[66] |
Zhu, B., Chen, C., Shao, X., Liu, W., Ye, Z., Zhuang, L., … Xue, G. (2019). Multiple interactive memory representations underlie the induction of false memory. Proceedings of the National Academy of Sciences of the United States of America, 116(9), 3466-3475.
doi: 10.1073/pnas.1817925116 pmid: 30765524 |
[67] | Zou, J. L., Zhang, X. C., Zhang, H., Yu, L., & Zhou, R. L. (2011). Beyond dichotomy of valence and arousal: Review of the motivational dimensional model of affect. Advances in Psychological Science, 19(9), 1339-1346. |
[邹吉林, 张小聪, 张环, 于靓, 周仁来. (2011). 超越效价和唤醒度——情绪的动机维度模型评述. 心理科学进展, 19(9), 1339-1346.] |
[1] | 张俐娟, 江妍雪, 马建平, 崔博洋, 张锦坤. 提取难度对困难材料提取练习效应的促进作用:来自行为和fNIRS的证据[J]. 心理学报, 2025, 57(3): 363-379. |
[2] | 张环, 王晨, 李俊霞, 林琳, 吴捷. 情绪效价和动机强度对社会分享型提取诱发遗忘的影响[J]. 心理学报, 2024, 56(8): 999-1014. |
[3] | 李其容, 王春淼, 孙明慧. 创业激情的“错位”对创业努力和创业成瘾的影响机制[J]. 心理学报, 2024, 56(11): 1568-1584. |
[4] | 陈发坤, 陈甜, 蔡文琦, 王小娟, 杨剑峰. 左侧额中回参与汉字视觉空间分析的fNIRS证据[J]. 心理学报, 2023, 55(5): 685-695. |
[5] | 蒋元萍, 江程铭, 胡天翊, 孙红月. 情绪对跨期决策的影响:来自单维占优模型的解释[J]. 心理学报, 2022, 54(2): 122-140. |
[6] | 陈晓宇, 杜媛媛, 刘强. 积极情绪提高背景线索学习的适应性[J]. 心理学报, 2022, 54(12): 1481-1490. |
[7] | 尹可丽, 兰淼森, 李慧, 赵子文. 仪式动作、象征意义和积极情绪增强控制感:双路径机制[J]. 心理学报, 2022, 54(1): 54-65. |
[8] | 钟毅平, 张文洁, 李亚蕾, 范伟. 时间压力对错误记忆的影响:情绪的调节作用 *[J]. 心理学报, 2018, 50(9): 929-939. |
[9] | 周楚, 苏曼, 周冲, 杨艳, 席雅琪, 董群. 想象膨胀范式下错误记忆的老化效应[J]. 心理学报, 2018, 50(12): 1369-1380. |
[10] | 窦凯, 刘耀中, 王玉洁, 聂衍刚. “乐”于合作:感知社会善念诱导合作行为的情绪机制[J]. 心理学报, 2018, 50(1): 101-114. |
[11] | 龚少英, 上官晨雨, 翟奎虎, 郭雅薇. 情绪设计对多媒体学习的影响[J]. 心理学报, 2017, 49(6): 771-782. |
[12] | 冯彪;徐亮;张蔚欣;陈婷;王文清;郑希付. 积极情绪对条件性恐惧泛化的抑制作用[J]. 心理学报, 2017, 49(3): 317-328. |
[13] | 刘芳; 丁锦红; 张钦. 高、低趋近积极情绪对不同注意加工阶段的影响[J]. 心理学报, 2016, 48(7): 794-803. |
[14] | 白学军;张琪涵;章鹏;周菘;刘颖;宋星;彭国慧. 基于fNIRS的运动执行与运动想象脑激活模式比较[J]. 心理学报, 2016, 48(5): 495-508. |
[15] | 肖红蕊;黄一帆;龚先旻;王大华. 简化的联合再认范式中情绪对错误记忆影响的年龄差异[J]. 心理学报, 2015, 47(1): 19-28. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||