Advances in Psychological Science ›› 2025, Vol. 33 ›› Issue (8): 1321-1339.doi: 10.3724/SP.J.1042.2025.1321
• Research Method • Previous Articles Next Articles
HU Jingyi, BAI Duo, LEI Xu
Received:
2024-10-16
Online:
2025-08-15
Published:
2025-05-15
CLC Number:
HU Jingyi, BAI Duo, LEI Xu. Aperiodic components of resting-state EEG/MEG: Analysis procedures, application advances and future prospects[J]. Advances in Psychological Science, 2025, 33(8): 1321-1339.
[1] 雷旭, 尧德中. (2014). 同步脑电-功能磁共振(EEG-fMRI)原理与技术. 北京: 科学出版社. [2] Aleman A., Nieuwenstein M. R., Böcker K. B., & de Haan, E. H. (2000). Music training and mental imagery ability.Neuropsychologia, 38(12), 1664-1668. [3] Atallah, B. V., & Scanziani, M. (2009). Instantaneous modulation of gamma oscillation frequency by balancing excitation with inhibition.Neuron, 62(4), 566-577. [4] Bai D., Hu J., Jülich S., & Lei X. (2024). Impact of sleep deprivation on aperiodic activity: A resting-state EEG study.Journal of Neurophysiology, 132(5), 1577-1588. [5] Barron H. C., Vogels T. P., Behrens T. E., & Ramaswami M. (2017). Inhibitory engrams in perception and memory.Proceedings of the National Academy of Sciences, 114(26), 6666-6674. [6] Belova E. M., Semenova U., Gamaleya A. A., Tomskiy A. A., & Sedov A. (2021). Voluntary movements cause beta oscillations increase and broadband slope decrease in the subthalamic nucleus of parkinsonian patients.European Journal of Neuroscience, 53(7), 2205-2213. [7] Benchenane K., Tiesinga P. H., Battaglia F. P. (2011). Oscillations in the prefrontal cortex: A gateway to memory and attention.Current Opinion in Neurobiology, 21(3), 475-485. [8] Bódizs R., Szalárdy O., Horváth C., Ujma P. P., Gombos F., Simor P., ... Dresler M. (2021). A set of composite, non-redundant EEG measures of NREM sleep based on the power law scaling of the Fourier spectrum.Scientific Reports, 11(1), 2041. [9] Brady, B., & Bardouille, T. (2022). Periodic/Aperiodic parameterization of transient oscillations (PAPTO)- Implications for healthy ageing.NeuroImage, 251, 118974. [10] Brown M. S., Singel D., Hepburn S., & Rojas D. C. (2013). Increased glutamate concentration in the auditory cortex of persons with autism and first‐degree relatives: A 1H‐MRS study.Autism Research, 6(1), 1-10. [11] Buchanan, T. W. (2007). Retrieval of emotional memories.Psychological Bulletin, 133(5), 761-779. [12] Candelaria-Cook F. T., Solis I., Schendel M. E., Wang Y. P., Wilson T. W., Calhoun V. D., & Stephen J. M. (2022). Developmental trajectory of MEG resting-state oscillatory activity in children and adolescents: A longitudinal reliability study.Cerebral Cortex, 32(23), 5404-5419. [13] Cassady K., Gagnon H., Lalwani P., Simmonite M., Foerster B., Park D., ... Polk T. A. (2019). Sensorimotor network segregation declines with age and is linked to GABA and to sensorimotor performance.Neuroimage, 186, 234-244. [14] Chaoul, A. I., & Siegel, M. (2021). Cortical correlation structure of aperiodic neuronal population activity.NeuroImage, 245, 118672. [15] Clark D. L., Khalil T., Kim L. H., Noor M. S., Luo F., & Kiss Z. H. (2023). Aperiodic subthalamic activity predicts motor severity and stimulation response in Parkinson disease.Parkinsonism & Related Disorders, 110, 105397. [16] Cohen J., Boshes L. D., Snider R. S. (1961). Electroencephalographic changes following retrolental fibroplasia.Electroencephalography and Clinical Neurophysiology, 13(6), 914-922. [17] Colombo M. A., Napolitani M., Boly M., Gosseries O., Casarotto S., Rosanova M., ... Sarasso S. (2019). The spectral exponent of the resting EEG indexes the presence of consciousness during unresponsiveness induced by propofol, xenon, and ketamine.NeuroImage, 189, 631-644. [18] Dakwar-Kawar O., Mentch-Lifshits T., Hochman S., Mairon N., Cohen R., Balasubramani P., ... Nahum M. (2024). Aperiodic and periodic components of oscillatory brain activity in relation to cognition and symptoms in pediatric ADHD. Cerebral Cortex, 34(6), bhae236. https://doi.org/10.1093/cercor/bhae236 [19] Dave S., Brothers T. A., & Swaab T. Y. (2018). 1/f neural noise and electrophysiological indices of contextual prediction in aging.Brain Research, 1691, 34-43. [20] Dennison M., Whittle S., Yücel M., Vijayakumar N., Kline A., Simmons J., & Allen N. B. (2013). Mapping subcortical brain maturation during adolescence: Evidence of hemisphere‐and sex‐specific longitudinal changes.Developmental Science, 16(5), 772-791. [21] Di, X., & Biswal, B. B. (2013). Modulatory interactions of resting-state brain functional connectivity.PLoS One, 8(8), e71163. [22] Ding L., Duan W., Wang Y., & Lei X. (2022). Test-retest reproducibility comparison in resting and the mental task states: A sensor and source-level EEG spectral analysis.International Journal of Psychophysiology, 173, 20-28. [23] Donoghue T., Haller M., Peterson E. J., Varma P., Sebastian P., Gao R., ... Voytek B. (2020). Parameterizing neural power spectra into periodic and aperiodic components.Nature Neuroscience, 23(12), 1655-1665. [24] Drenthen G. S., Barendse E. M., Aldenkamp A. P., van Veenendaal T. M., Puts N. A., Edden R. A., ... Jansen J. F. (2016). Altered neurotransmitter metabolism in adolescents with high-functioning autism.Psychiatry Research: Neuroimaging, 256, 44-49. [25] Earl R. J., Ford T. C., Lum J. A., Enticott P. G., & Hill A. T. (2024). Exploring aperiodic activity in first episode schizophrenia spectrum psychosis: A resting-state EEG analysis. Brain Research, 1840, 149052. [26] Euler M. J., Vehar J. V., Guevara J. E., Geiger A. R., Deboeck P. R., & Lohse K. R. (2024). Associations between the resting EEG aperiodic slope and broad domains of cognitive ability.Psychophysiology, 61(6), e14543. [27] Favaro J., Colombo M. A., Mikulan E., Sartori S., Nosadini M., Pelizza M. F., ... Toldo I. (2023). The maturation of aperiodic EEG activity across development reveals a progressive differentiation of wakefulness from sleep.NeuroImage, 277, 120264. [28] Finley A. J., Angus D. J., Knight E. L., van Reekum C. M., Lachman M. E., Davidson R. J., & Schaefer S. M. (2024). Resting EEG periodic and aperiodic components predict cognitive decline over 10 years. The Journal of Neuroscience, 44(13). https://doi.org/10.1523/JNEUROSCI.1332-23.2024 [29] Frenda, S. J., & Fenn, K. M. (2016). Sleep less, think worse: The effect of sleep deprivation on working memory.Journal of Applied Research in Memory and Cognition, 5(4), 463-469. [30] Gaižauskaitė R., Gladutytė L., Zelionkaitė I., Čėsnaitė E., Busch N. A., & Grikšienė R. (2024). The search for the relationship between female hormonal status, alpha oscillations, and aperiodic features of resting state EEG.International Journal of Psychophysiology, 198, 112312. [31] Gao R. D., Peterson E. J., & Voytek B. (2017). Inferring synaptic excitation/inhibition balance from field potentials.NeuroImage, 158, 70-78. [32] Gatev P., Darbin O., & Wichmann T. (2006). Oscillations in the basal ganglia under normal conditions and in movement disorders.Movement Disorders, 21(10), 1566-1577. [33] Gerster M., Waterstraat G., Litvak V., Lehnertz K., Schnitzler A., Florin E., ... Nikulin V. (2022). Separating neural oscillations from aperiodic 1/f activity: Challenges and recommendations.Neuroinformatics, 20(4), 991-1012. [34] Girardeau, G., & Lopes-dos-Santos, V. (2021). Brain neural patterns and the memory function of sleep.Science, 374(6567), 560-564. [35] Gómez C. M., Rodríguez-Martínez E. I., Fernández A., Maestú F., Poza J., & Gómez C. (2017). Absolute power spectral density changes in the magnetoencephalographic activity during the transition from childhood to adulthood.Brain Topography, 30(1), 87-97. [36] Gómez-Laberge C., Smolyanskaya A., Nassi J. J., Kreiman G., & Born R. T. (2016). Bottom-up and top-down input augment the variability of cortical neurons.Neuron, 91(3), 540-547. [37] González-Ramírez L. R., Ahmed O. J., Cash S. S., Wayne C. E., & Kramer M. A. (2015). A biologically constrained, mathematical model of cortical wave propagation preceding seizure termination.PLoS Computational Biology, 11(2), e1004065. [38] Haegens S., Osipova D., Oostenveld R., & Jensen O. (2010). Somatosensory working memory performance in humans depends on both engagement and disengagement of regions in a distributed network.Human Brain Mapping, 31(1), 26-35. [39] Hassin-Baer S., Cohen O. S., Israeli-Korn S., Yahalom G., Benizri S., Sand D., ... Peremen Z. (2022). Identification of an early-stage Parkinson’s disease neuromarker using event-related potentials, brain network analytics and machine-learning.Plos One, 17(1), e0261947. [40] He, B. J. (2014). Scale-free brain activity: Past, present, and future.Trends in Cognitive Sciences, 18(9), 480-487. [41] He B. J., Zempel J. M., Snyder A. Z., & Raichle M. E. (2010). The temporal structures and functional significance of scale-free brain activity. Neuron, 66(3), 353-369. [42] Helfrich R. F., Mander B. A., Jagust W. J., Knight R. T., & Walker M. P. (2017). Old brains come uncoupled in sleep: Slow wave-spindle synchrony, brain atrophy, and forgetting.Neuron, 97(1), 221-230. [43] Hill A. T., Clark G. M., Bigelow F. J., Lum J. A. G., & Enticott P. G. (2022). Periodic and aperiodic neural activity displays age-dependent changes across early-to-middle childhood.Developmental Cognitive Neuroscience, 54, 101076. [44] Hommel, B. (2015). Between persistence and flexibility: The Yin and Yang of action control. In A. J. Elliot (Ed.), Advances in motivation science (Vol. 2, pp. 33-67). Elsevier. [45] Hong, S. L., & Rebec, G. V. (2012). A new perspective on behavioral inconsistency and neural noise in aging: Compensatory speeding of neural communication.Frontiers in Aging Neuroscience, 4, 27. [46] Horváth C. G., Szalárdy O., Ujma P. P., Simor P., Gombos F., Kovács I., ... Bódizs R. (2022). Overnight dynamics in scale-free and oscillatory spectral parameters of NREM sleep EEG.Scientific Reports, 12(1), 18409. [47] Hu S., Zhang Z., Zhang X., Wu X., & Valdes-Sosa P. A. (2024). ξ-π: A nonparametric model for neural power spectra decomposition.IEEE Journal of Biomedical and Health Informatics, 28(5), 2624-2635. [48] Jach H. K., Feuerriegel D., & Smillie L. D. (2020). Decoding personality trait measures from resting EEG: An exploratory report.Cortex, 130, 158-171. [49] Jacob M. S., Roach B. J., Sargent K. S., Mathalon D. H., & Ford J. M. (2021). Aperiodic measures of neural excitability are associated with anticorrelated hemodynamic networks at rest: A combined EEG-fMRI study.NeuroImage, 245, 118705. [50] Kahana, M. J. (2006). The cognitive correlates of human brain oscillations.Journal of Neuroscience, 26(6), 1669-1672. [51] Kałamała P., Gyurkovics M., Bowie D. C., Clements G. M., Low K. A., Dolcos F., ... Gratton G. (2024). Event- induced modulation of aperiodic background EEG: Attention-dependent and age-related shifts in E:I balance, and their consequences for behavior.Imaging Neuroscience, 2, 1-18. [52] Kehrer C., Maziashvili N., Dugladze T., & Gloveli T. (2008). Altered excitatory-inhibitory balance in the NMDA-hypofunction model of schizophrenia.Frontiers in Molecular Neuroscience, 1, 6. [53] Klinzing J. G., Niethard N., & Born J. (2019). Mechanisms of systems memory consolidation during sleep.Nature Neuroscience, 22(10), 1598-1610. [54] Kluger D. S., Balestrieri E., Busch N. A., & Gross J. (2021). Respiration aligns perception with neural excitability.Elife, 10, e70907. [55] Kluger D. S., Forster C., Abbasi O., Chalas N., Villringer A., & Gross J. (2023). Modulatory dynamics of periodic and aperiodic activity in respiration-brain coupling.Nature Communications, 14(1), 4699. [56] Kluger, D. S., & Gross, J. (2021). Respiration modulates oscillatory neural network activity at rest.PLoS Biology, 19(11), e3001457. [57] Knudsen, E. I. (2004). Sensitive periods in the development of the brain and behavior.Journal of Cognitive Neuroscience, 16(8), 1412-1425. [58] Koolschijn R. S., Emir U. E., Pantelides A. C., Nili H., Behrens T. E., & Barron H. C. (2019). The hippocampus and neocortical inhibitory engrams protect against memory interference.Neuron, 101(3), 528-541. [59] Kopčanová M., Tait L., Donoghue T., Stothart G., Smith L., Flores-Sandoval A. A., ... Benwell C. S. (2024). Resting-state EEG signatures of Alzheimer's disease are driven by periodic but not aperiodic changes.Neurobiology of Disease, 190, 106380. [60] Kopf M., Martini J., Stier C., Ethofer S., Braun C., Li Hegner Y., ... Helfrich R. F. (2024). Aperiodic activity Indexes neural hyperexcitability in generalized epilepsy. ENeuro, 11(9). https://doi.org/10.1523/ENEURO.0242-24.2024 [61] Kriegseis A., Hennighausen E., Rösler F., & Röder B. (2006). Reduced EEG alpha activity over parieto-occipital brain areas in congenitally blind adults.Clinical Neurophysiology, 117(7), 1560-1573. [62] Laufs H., Krakow K., Sterzer P., Eger E., Beyerle A., Salek-Haddadi A., & Kleinschmidt A. (2003). Electroencephalographic signatures of attentional and cognitive default modes in spontaneous brain activity fluctuations at rest.Proceedings of the National Academy of Sciences, 100(19), 11053-11058. [63] Lendner J. D., Helfrich R. F., Mander B. A., Romundstad L., Lin J. J., Walker M. P., ... Knight R. T. (2020). An electrophysiological marker of arousal level in humans.Elife, 9, e55092. [64] Lendner J. D., Niethard N., Mander B. A., van Schalkwijk F. J., Schuh-Hofer S., Schmidt H., ... Helfrich R. F. (2023). Human REM sleep recalibrates neural activity in support of memory formation. Science Advances, 9(34), eadj1895. [65] Levin A. R., Naples A. J., Scheffler A. W., Webb S. J., Shic F., Sugar C. A., ... Şentürk D. (2020). Day-to-day test-retest reliability of EEG profiles in children with autism spectrum disorder and typical development.Frontiers in Integrative Neuroscience, 14, 21. [66] Li N., Yang J., Long C., & Lei X. (2024). Test-retest reliability of EEG aperiodic components in resting and mental task states.Brain Topography, 37(6), 961-971. [67] Lubinus C., Orpella J., Keitel A., Gudi-Mindermann H., Engel A. K., Roeder B., & Rimmele J. M. (2021). Data-driven classification of spectral profiles reveals brain region-specific plasticity in blindness.Cerebral Cortex, 31(5), 2505-2522. [68] Mahjoory K., Cesnaite E., Hohlefeld F. U., Villringer A., & Nikulin V. V. (2019). Power and temporal dynamics of alpha oscillations at rest differentiate cognitive performance involving sustained and phasic cognitive control.NeuroImage, 188, 135-144. [69] Mahjoory K., Schoffelen J. M., Keitel A., & Gross J. (2020). The frequency gradient of human resting-state brain oscillations follows cortical hierarchies.Elife, 9, e53715. [70] Mander B. A., Rao V., Lu B., Saletin J. M., Lindquist J. R., Ancoli-Israel S., ... Walker M. P. (2013). Prefrontal atrophy, disrupted NREM slow waves and impaired hippocampal-dependent memory in aging.Nature Neuroscience, 16(3), 357-364. [71] Maquet, P., & Phillips, C. (1998). Functional brain imaging of human sleep.Journal of Sleep Research, 7(S1), 42-47. [72] Mariani J., Coppola G., Zhang P., Abyzov A., Provini L., Tomasini L., ... Vaccarino F. M. (2015). FOXG1- dependent dysregulation of GABA/glutamate neuron differentiation in autism spectrum disorders.Cell, 162(2), 375-390. [73] Martin S., Iturrate I., Chavarriaga R., Leeb R., Sobolewski A., Li A. M., ... Millán, J. D. R. (2018). Differential contributions of subthalamic beta rhythms and 1/f broadband activity to motor symptoms in Parkinson's disease.NPJ Parkinson's Disease, 4(1), 32. [74] Mazard A., Laou L., Joliot M., & Mellet E. (2005). Neural impact of the semantic content of visual mental images and visual percepts.Cognitive Brain Research, 24(3), 423-435. [75] McKeown D. J., Finley A. J., Kelley N. J., Cavanagh J. F., Keage H. A., Baumann O., ... Angus D. J. (2024). Test-retest reliability of spectral parameterization by 1/f characterization using SpecParam. Cerebral Cortex, 34(1), bhad482. https://doi.org/10.1093/cercor/bhad482 [76] McSweeney M., Morales S., Valadez E. A., Buzzell G. A., & Fox N. A. (2021). Longitudinal age- and sex-related change in background aperiodic activity during early adolescence.Developmental Cognitive Neuroscience, 52, 101035. [77] Meghdadi A. H., Stevanović Karić M., McConnell M., Rupp G., Richard C., Hamilton J., ... Berka C. (2021). Resting state EEG biomarkers of cognitive decline associated with Alzheimer’s disease and mild cognitive impairment.PloS One, 16(2), e0244180. [78] Merkin A., Sghirripa S., Graetz L., Smith A. E., Hordacre B., Harris R., ... Goldsworthy M. (2023). Do age-related differences in aperiodic neural activity explain differences in resting EEG alpha?Neurobiology of Aging, 121, 78-87. [79] Miskovic V., Macdonald K. J., Rhodes L. J., & Cote K. A. (2019). Changes in EEG multiscale entropy and power- law frequency scaling during the human sleep cycle.Human Brain Mapping, 40(2), 538-551. [80] Motokawa, K. (1949). Energy of brain waves and energetics of the brain.The Tohoku Journal of Experimental Medicine, 51(1-2), 119-129. [81] Neufang S., Specht K., Hausmann M., Güntürkün O., Herpertz-Dahlmann B., Fink G. R., & Konrad K. (2009). Sex differences and the impact of steroid hormones on the developing human brain.Cerebral Cortex, 19(2), 464-473. [82] Newbury C. R., Crowley R., Rastle K., & Tamminen J. (2021). Sleep deprivation and memory: Meta-analytic reviews of studies on sleep deprivation before and after learning.Psychological Bulletin, 147(11), 1215-1240. [83] Newson, J. J., & Thiagarajan, T. C. (2019). EEG frequency bands in psychiatric disorders: A review of resting state studies.Frontiers in Human Neuroscience, 12, 521. [84] Ossandón J. P., Stange L., Gudi-Mindermann H., Rimmele J. M., Sourav S., Bottari D., ... Röder B. (2023). The development of oscillatory and aperiodic resting state activity is linked to a sensitive period in humans.NeuroImage, 275, 120171. [85] Ostlund B., Donoghue T., Anaya B., Gunther K. E., Karalunas S. L., Voytek B., & Pérez-Edgar K. E. (2022). Spectral parameterization for studying neurodevelopment: How and why.Developmental Cognitive Neuroscience, 54, 101073. [86] Ott L. R., Penhale S. H., Taylor B. K., Lew B. J., Wang Y. P., Calhoun V. D., ... Wilson T. W. (2021). Spontaneous cortical MEG activity undergoes unique age- and sex-related changes during the transition to adolescence.NeuroImage, 244, 118552. [87] Ouyang G., Hildebrandt A., Schmitz F., & Herrmann C. (2020). Decomposing alpha and 1/f brain activities reveals their differential associations with cognitive processing speed.NeuroImage, 205, 116304. [88] Pacheco L. B., Feuerriegel D., Jach H. K., Robinson E., Duong V. N., Bode S., & Smillie L. D. (2024). Disentangling periodic and aperiodic resting EEG correlates of personality.NeuroImage, 293, 120628. [89] Pascual-marqui R. D., Valdes-sosa P. A., & Alvarez-amador A. (1988). A parametric model for multichannel EEG spectra. International Journal of Neuroscience, 40(1-2), 89-99. [90] Pathania A., Euler M. J., Clark M., Cowan R. L., Duff K., & Lohse K. R. (2022). Resting EEG spectral slopes are associated with age-related differences in information processing speed.Biological Psychology, 168, 108261. [91] Pi Y., Yan J., Pscherer C., Gao S., Mückschel M., Colzato L., ... Beste C. (2024). Interindividual aperiodic resting- state EEG activity predicts cognitive-control styles.Psychophysiology, 61(8), e14576. [92] Podvalny E., Noy N., Harel M., Bickel S., Chechik G., Schroeder C. E., ... Malach R. (2015). A unifying principle underlying the extracellular field potential spectral responses in the human cortex.Journal of Neurophysiology, 114(1), 505-519. [93] Pótári A., Ujma P. P., Konrad B. N., Genzel L., Simor P., Körmendi J., ... Bódizs R. (2017). Age-related changes in sleep EEG are attenuated in highly intelligent individuals.Neuroimage, 146, 554-560. [94] Racz F. S., Czoch A., Kaposzta Z., Stylianou O., Mukli P., & Eke A. (2022). Multiple-resampling cross-spectral analysis: An unbiased tool for estimating fractal connectivity with an application to neurophysiological signals.Frontiers in Physiology, 13, 817239. [95] Raichle M. E., MacLeod A. M., Snyder A. Z., Powers W. J., Gusnard D. A., & Shulman G. L. (2001). A default mode of brain function.Proceedings of the National Academy of Sciences, 98(2), 676-682. [96] Robertson M. M., Furlong S., Voytek B., Donoghue T., Boettiger C. A., & Sheridan M. A. (2019). EEG power spectral slope differs by ADHD status and stimulant medication exposure in early childhood.Journal of Neurophysiology, 122(6), 2427-2437. [97] Roche K. J., LeBlanc J. J., Levin A. R., O’Leary H. M., Baczewski L. M., & Nelson C. A. (2019). Electroencephalographic spectral power as a marker of cortical function and disease severity in girls with Rett syndrome.Journal of Neurodevelopmental Disorders, 11(1), 15. [98] Rosenblum Y., Shiner T., Bregman N., Giladi N., Maidan I., Fahoum F., & Mirelman A. (2023). Decreased aperiodic neural activity in Parkinson’s disease and dementia with Lewy bodies.Journal of Neurology, 270(8), 3958-3969. [99] Saby, J. N., & Marshall, P. J. (2012). The utility of EEG band power analysis in the study of infancy and early childhood.Developmental Neuropsychology, 37(3), 253-273. [100] Salinas, E., & Sejnowski, T. J. (2001). Correlated neuronal activity and the flow of neural information.Nature Reviews Neuroscience, 2(8), 539-550. [101] Samaha J., Iemi L., Haegens S., & Busch N. A. (2020). Spontaneous brain oscillations and perceptual decision- making.Trends in Cognitive Sciences, 24(8), 639-653. [102] Samuel I. B. H., Wang C., Hu Z., & Ding M. (2018). The frequency of alpha oscillations: Task-dependent modulation and its functional significance.Neuroimage, 183, 897-906. [103] Sarlo, G. L., & Holton, K. F. (2021). Brain concentrations of glutamate and GABA in human epilepsy: A review.Seizure, 91, 213-227. [104] Schaworonkow, N., & Voytek, B. (2021). Longitudinal changes in aperiodic and periodic activity in electrophysiological recordings in the first seven months of life.Developmental Cognitive Neuroscience, 47, 100895. [105] Schneider B., Szalárdy O., Ujma P. P., Simor P., Gombos F., Kovács I., ... Bódizs R. (2022). Scale-free and oscillatory spectral measures of sleep stages in humans.Frontiers in Neuroinformatics, 16, 989262. [106] Smesny S., Gussew A., Biesel N. J., Schack S., Walther M., Rzanny R., ... Reichenbach J. R. (2015). Glutamatergic dysfunction linked to energy and membrane lipid metabolism in frontal and anterior cingulate cortices of never treated first-episode schizophrenia patients.Schizophrenia Research, 168(1-2), 322-329. [107] Tran T. T., Rolle C. E., Gazzaley A., & Voytek B. (2020). Linked sources of neural noise contribute to age-related cognitive decline.Journal of Cognitive Neuroscience, 32(9), 1813-1822. [108] Tröndle M., Popov T., Dziemian S., & Langer N. (2022). Decomposing the role of alpha oscillations during brain maturation.Elife, 11, e77571. [109] Turrigiano, G. G., & Nelson, S. B. (2004). Homeostatic plasticity in the developing nervous system.Nature Reviews Neuroscience, 5(2), 97-107. [110] Ujma P. P., Konrad B. N., Gombos F., Simor P., Pótári A., Genzel L., ... Dresler M. (2017). The sleep EEG spectrum is a sexually dimorphic marker of general intelligence.Scientific Reports, 7(1), 18070. [111] Ujma P. P., Simor P., Steiger A., Dresler M., & Bódizs R. (2019). Individual slow-wave morphology is a marker of aging.Neurobiology of Aging, 80, 71-82. [112] Vogels, T. P., & Abbott, L. F. (2009). Gating multiple signals through detailed balance of excitation and inhibition in spiking networks.Nature Neuroscience, 12(4), 483-491. [113] Voytek, B., & Knight, R. T. (2015). Dynamic network communication as a unifying neural basis for cognition, development, aging, and disease.Biological Psychiatry, 77(12), 1089-1097. [114] Wan W., Gao Z., Zhang Q., Gu Z., Chang C., Peng C. K., & Cui X. (2023). Resting state EEG complexity as a predictor of cognitive performance.Physica A: Statistical Mechanics and its Applications, 624, 128952. [115] Wang Z., Liu A., Yu J., Wang P., Bi Y., Xue S., ... Zhang W. (2024). The effect of aperiodic components in distinguishing Alzheimer’s disease from frontotemporal dementia.Geroscience, 46(1), 751-768. [116] Wang Z., Mo Y., Sun Y., Hu K., Peng C., Zhang S., & Xue S. (2022). Separating the aperiodic and periodic components of neural activity in Parkinson's disease.European Journal of Neuroscience, 56(6), 4889-4900. [117] Waschke L., Kloosterman N. A., Obleser J., & Garrett D. D. (2021). Behavior needs neural variability.Neuron, 109(5), 751-766. [118] Watrous A. J., Miller J., Qasim S. E., Fried I., & Jacobs J. (2018). Phase-tuned neuronal firing encodes human contextual representations for navigational goals.Elife, 7, e32554. [119] Weisz N., Wühle A., Monittola G., Demarchi G., Frey J., Popov T., & Braun C. (2014). Prestimulus oscillatory power and connectivity patterns predispose conscious somatosensory perception.Proceedings of the National Academy of Sciences of the United States of America, 111(4), E417-E425. [120] Wen, H., & Liu, Z. (2016a). Broadband electrophysiological dynamics contribute to global resting-state fMRI signal.Journal of Neuroscience, 36(22), 6030-6040. [121] Wen, H., & Liu, Z. (2016b). Separating fractal and oscillatory components in the power spectrum of neurophysiological signal.Brain Topography, 29(1), 13-26. [122] Weng Y., Liu X., Hu H., Huang H., Zheng S., Chen Q., ... Huang R. (2020). Open eyes and closed eyes elicit different temporal properties of brain functional networks.Neuroimage, 222, 117230. [123] Whitten T. A., Hughes A. M., Dickson C. T., & Caplan J. B. (2011). A better oscillation detection method robustly extracts EEG rhythms across brain state changes: The human alpha rhythm as a test case.Neuroimage, 54(2), 860-874. [124] Wilkinson, C. L., & Nelson, C. A. (2021). Increased aperiodic gamma power in young boys with Fragile X Syndrome is associated with better language ability.Molecular Autism, 12(1), 17. [125] Wilson L. E., da Silva Castanheira J., & Baillet S. (2022). Time-resolved parameterization of aperiodic and periodic brain activity.Elife, 11, e77348. [126] Wilt, J., & Revelle, W. (2015). Affect, behavior, cognition and desire in the Big Five: An analysis of item content and structure.European Journal of Personality, 29(4), 478-497. [127] Winawer J., Kay K. N., Foster B. L., Rauschecker A. M., Parvizi J., & Wandell B. A. (2013). Asynchronous broadband signals are the principal source of the bold response in human visual cortex.Current Biology, 23(13), 1145-1153. [128] Xiang C., Fan X., Bai D., Lv K., & Lei X. (2024). A resting-state EEG dataset for sleep deprivation.Scientific Data, 11(1), 427. [129] Xu, J. (2015). Implications of cortical balanced excitation and inhibition, functional heterogeneity, and sparseness of neuronal activity in fMRI.Neuroscience & Biobehavioral Reviews, 57, 264-270. [130] Yizhar O., Fenno L. E., Prigge M., Schneider F., Davidson T. J., O’shea D. J., ... Deisseroth K. (2011). Neocortical excitation/inhibition balance in information processing and social dysfunction.Nature, 477(7363), 171-178. [131] Zarahn E., Aguirre G. K., & D'Esposito M. (1997). Empirical analyses of BOLD fMRI statistics.Neuroimage, 5(3), 179-197. [132] Zelano C., Jiang H., Zhou G., Arora N., Schuele S., Rosenow J., & Gottfried J. A. (2016). Nasal respiration entrains human limbic oscillations and modulates cognitive function.Journal of Neuroscience, 36(49), 12448-12467. [133] Zempel J. M., Politte D. G., Kelsey M., Verner R., Nolan T. S., Babajani-Feremi A., ... Larson-Prior L. J. (2012). Characterization of scale-free properties of human electrocorticography in awake and slow wave sleep states.Frontiers in Neurology, 3, 76. [134] Zhang C., Stock A. K., Mückschel M., Hommel B., & Beste C. (2023). Aperiodic neural activity reflects metacontrol.Cerebral Cortex, 33(12), 7941-7951. |
[1] | LEI Xu, WENG Linman, YU Jing. Memory consolidation during wakeful rest: Evidence from EEG and fMRI [J]. Advances in Psychological Science, 2025, 33(5): 729-743. |
[2] | YUE Tong; HUANG Xiting. The neurobiological underpinnings of trait empathy [J]. Advances in Psychological Science, 2016, 24(9): 1368-1376. |
[3] | FENG Xiaoxia; LI Le; DING Guosheng. Abnormal inter-regional brain connectivity in developmental dyslexia [J]. Advances in Psychological Science, 2016, 24(12): 1864-1872. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||