Advances in Psychological Science ›› 2025, Vol. 33 ›› Issue (6): 948-964.doi: 10.3724/SP.J.1042.2025.0948
• Academic Papers of the 27th Annual Meeting of the China Association for Science and Technology • Previous Articles Next Articles
XI Meng1, LIU Yue-Yue2, LI Xin1, LI Jia-Xin1, SHI Jia-Zhen1
Received:
2024-07-09
Online:
2025-06-15
Published:
2025-04-09
CLC Number:
XI Meng, LIU Yue-Yue, LI Xin, LI Jia-Xin, SHI Jia-Zhen. The influence of algorithmic human resource management on employee algorithmic coping behavior and job performance[J]. Advances in Psychological Science, 2025, 33(6): 948-964.
[1] 杜严勇. (2022). 厌恶算法还是欣赏算法?——人工智能时代的算法认知差异与算法信任建构.哲学分析, 13(3), 151-165. [2] 蒋路远, 曹李梅, 秦昕, 谭玲, 陈晨, 彭小斐. (2022). 人工智能决策的公平感知.心理科学进展, 30(5), 1078-1092. [3] 李燕萍, 李乐, 胡翔. (2021). 数字化人力资源管理: 整合框架与研究展望.科技进步与对策, 38(23), 151-160. [4] 李游, 梁哲浩, 常亚平. (2022). 用户对人工智能产品的算法厌恶研究述评及展望.管理学报, 19(11), 1725-1732. [5] 刘善仕, 裴嘉良, 葛淳棉, 刘小浪, 谌一璠. (2022). 在线劳动平台算法管理: 理论探索与研究展望. 管理世界, 38(2), 225-239+14-16. [6] 罗文豪, 霍伟伟, 赵宜萱, 王震. (2022). 人工智能驱动的组织与人力资源管理变革: 实践洞察与研究方向.中国人力资源开发, 39(1), 4-16. [7] 裴嘉良, 刘善仕, 钟楚燕, 谌一璠. (2021). AI 算法决策能提高员工的程序公平感知吗?.外国经济与管理, 43(11), 41-55. [8] 魏昕, 黄鸣鹏, 李欣悦. (2021). 算法决策、员工公平感与偏差行为: 决策有利性的调节作用.外国经济与管理, 43(11), 56-69. [9] 席猛, 邓文明. (2021). 零工经济下基于算法监视的自我实现循环文献述评与研究展望.人力资源管理评论, (1), 142-154. [10] 谢小云, 左玉涵, 胡琼晶. (2021). 数字化时代的人力资源管理: 基于人与技术交互的视角.管理世界, 37(1), 200-216. [11] 张建民, 顾春节, 杨红英. (2022). 人工智能技术与人力资源管理实践: 影响逻辑与模式演变.中国人力资源开发, 39(1), 17-34. [12] 张志学, 赵曙明, 施俊琦, 秦昕, 贺伟, 赵新元, 吴刚. (2021). 数字经济下组织管理研究的关键科学问题——第254期“双清论坛”学术综述.中国科学基金, (05), 774-781. [13] 赵宜萱, 赵曙明, 栾佳锐. (2020). 基于人工智能的人力资源管理: 理论模型与研究展望.南京社会科学, 31(2), 36-43. [14] 周恋, 雷雪, 后锐, 陈越. (2022). 在线用工平台算法管理的消极影响和控制策略研究: 算法技术属性视角.中国人力资源开发, 39(6), 8-22. [15] Acikgoz Y., Davison K. H., Compagnone M., & Laske M. (2020). Justice perceptions of artificial intelligence in selection.International Journal of Selection and Assessment, 28(4), 399-416. [16] Alexander V., Blinder C., & Zak P. J. (2018). Why trust an algorithm? Performance, cognition, and neurophysiology.Computers in Human Behavior, 89, 279-288. [17] Bellamy R. K., Dey K., Hind M., Hoffman S. C., Houde S., Kannan K., .. Zhang Y. (2019). AI fairness 360: An extensible toolkit for detecting and mitigating algorithmic bias.IBM Journal of Research and Development, 63(4/5), 4-1. [18] Berger B., Adam M., Rühr A., & Benlian A. (2021). Watch me improve—Algorithm aversion and demonstrating the ability to learn.Business & Information Systems Engineering, 63(1), 55-68. [19] Bhave D. P., Teo L. H., & Dalal R. S. (2020). Privacy at work: A review and a research agenda for a contested terrain.Journal of Management, 46(1), 127-164. [20] Buhmann A., Paßmann J., & Fieseler C. (2020). Managing algorithmic accountability: Balancing reputational concerns, engagement strategies, and the potential of rational discourse.Journal of Business Ethics, 163(2), 265-280. [21] Castelo N., Bos M. W., & Lehmann D. R. (2019). Task-dependent algorithm aversion.Journal of Marketing Research, 56(5), 809-825. [22] Cheng, M., & Foley, C. (2019). Algorithmic management: The case of Airbnb.International Journal of Hospitality Management, 83, 33-36. [23] Cheng, M. M., & Hackett, R. D. (2021). A critical review of algorithms in HRM: Definition, theory, and practice.Human Resource Management Review, 31(1), 100698. [24] Chowdhury S., Joel-Edgar S., Dey P. K., Bhattacharya S., & Kharlamov A. (2023). Embedding transparency in artificial intelligence machine learning models: Managerial implications on predicting and explaining employee turnover.The International Journal of Human Resource Management, 34(14), 2732-2764. [25] Colbert A., Yee N., & George G. (2016). The digital workforce and the workplace of the future.Academy of Management Journal, 59(3), 731-739. [26] Corbett-Davies S., Gaebler J. D., Nilforoshan H., Shroff R., & Goel S. (2023). The measure and mismeasure of fairness.The Journal of Machine Learning Research, 24(1), 14730-14846. [27] Deci, E. L., & Ryan, R. M. (2012). Self-determination theory.Handbook of Theories of Social Psychology, 1(20), 416-436. [28] Dery K., Hall R., Wailes N., & Wiblen S. (2013). Lost in translation? An actor-network approach to HRIS implementation.The Journal of Strategic Information Systems, 22(3), 225-237. [29] Dietvorst B. J., Simmons J. P., & Massey C. (2015). Algorithm aversion: People erroneously avoid algorithms after seeing them err.Journal of Experimental Psychology: General, 144(1), 114-126. [30] Dietvorst B. J., Simmons J. P., & Massey C. (2018). Overcoming algorithm aversion: People will use imperfect algorithms if they can (even slightly) modify them.Management Science, 64(3), 1155-1170. [31] Duggan J., Sherman U., Carbery R., & McDonnell A. (2020). Algorithmic management and app‐work in the gig economy: A research agenda for employment relations and HRM.Human Resource Management Journal, 30(1), 114-132. [32] Dzindolet M. T., Pierce L. G., Beck H. P., & Dawe L. A. (2002). The perceived utility of human and automated aids in a visual detection task.Human Factors, 44(1), 79-94. [33] Edwards J. S., Duan Y., & Robins P. C. (2000). An analysis of expert systems for business decision making at different levels and in different roles.European Journal of Information Systems, 9(1), 36-46. [34] Fügener A., Grahl J., Gupta A., & Ketter W. (2022). Cognitive challenges in human-artificial intelligence collaboration: Investigating the path toward productive delegation.Information Systems Research, 33(2): 678-696. [35] Helberger N., Araujo T.,& de Vreese, C. H.(2020). Who is the fairest of them all? Public attitudes and expectations regarding automated decision-making. Computer Law & Security Review, 39, 105456. https://doi.org/10.1016/j.clsr.2020.105456 [36] Highhouse, S. (2008). Stubborn reliance on intuition and subjectivity in employee selection.Industrial and Organizational Psychology, 1(3), 333-342. [37] Hoff, K. A., & Bashir, M. (2015). Trust in automation: Integrating empirical evidence on factors that influence trust.Human Factors, 57(3), 407-434. [38] Huselid, M. A. (2018). The science and practice of workforce analytics: Introduction to the HRM special issue.Human Resource Management, 57(3), 679-684. [39] Jarrahi M. H.,& Sutherland, W. (2019, March 31-April 3). Algorithmic management and algorithmic competencies: Understanding and appropriating algorithms in gig work. In Information in Contemporary Society: 14th International Conference [Proceedings], Springer International Publishing, Washington, DC, USA. [40] Kawaguchi, K. (2021). When will workers follow an algorithm? A field experiment with a retail business.Management Science, 67(3), 1670-1695. [41] Kellogg K. C., Valentine M. A., & Christin A. (2020). Algorithms at work: The new contested terrain of control.Academy of Management Annals, 14(1), 366-410. [42] Kim S., Wang Y., & Boon C. (2021). Sixty years of research on technology and human resource management: Looking back and looking forward.Human Resource Management, 60(1), 229-247. [43] Kryscynski D., Reeves C., Stice-Lusvardi R., Ulrich M., & Russell G. (2018). Analytical abilities and the performance of HR professionals.Human Resource Management, 57(3), 715-738. [44] Lambrecht, A., & Tucker, C. (2019). Algorithmic bias? An empirical study of apparent gender-based discrimination in the display of STEM career ads.Management Science, 65(7), 2966-2981. [45] Langer M.,& König, C. J.(2023). Introducing a multi-stakeholder perspective on opacity, transparency and strategies to reduce opacity in algorithm-based human resource management. Human Resource Management Review, 332021. 100881 [46] Lazarus, R. S. (1991). Progress on a cognitive-motivational-relational theory of emotion.American Psychologist, 46(8), 819-834. [47] Lee, M. K. (2018). Understanding perception of algorithmic decisions: Fairness, trust, and emotion in response to algorithmic management. Big Data & Society, 5(1), 2053951718756684. https://doi.org/10.1177/2053951718756684 [48] Leonardi, P. M. (2011). When flexible routines meet flexible technologies: Affordance, constraint, and the imbrication of human and material agencies.MIS Quarterly, 35(1), 147-167. [49] Logg J. M., Minson J. A., & Moore D. A. (2019). Algorithm appreciation: People prefer algorithmic to human judgment.Organizational Behavior and Human Decision Processes, 151, 90-103. [50] Longoni C., Bonezzi A., & Morewedge C. K. (2019). Resistance to medical artificial intelligence.Journal of Consumer Research, 46(4), 629-650. [51] Longoni, C., & Cian, L. (2022). Artificial intelligence in utilitarian vs. hedonic contexts: The “word-of-machine” effect.Journal of Marketing, 86(1), 91-108. [52] Luo X., Qin M. S., Fang Z., & Qu Z. (2021). Artificial intelligence coaches for sales agents: Caveats and solutions.Journal of Marketing, 85(2), 14-32. [53] Meijerink J., Boons M., Keegan A., & Marler J. (2021). Algorithmic human resource management: Synthesizing developments and cross-disciplinary insights on digital HRM.The International Journal of Human Resource Management, 32(12), 2545-2562. [54] Meijerink J.,& Bondarouk, T.(2023). The duality of algorithmic management: Toward a research agenda on HRM algorithms, autonomy and value creation. Human Resource Management Review, 332021.100876 [55] Miller, S. M., & Keiser, L. R. (2021). Representative bureaucracy and attitudes toward automated decision making.Journal of Public Administration Research and Theory, 31(1), 150-165. [56] Newman D. T., Fast N. J., & Harmon D. J. (2020). When eliminating bias isn’t fair: Algorithmic reductionism and procedural justice in human resource decisions.Organizational Behavior and Human Decision Processes, 160, 149-167. [57] Parent-Rocheleau, X., & Parker, S. K. (2022). Algorithms as work designers: How algorithmic management influences the design of jobs.Human Resource Management Review, 32(3), 100838. [58] Prahl, A., & Van Swol, L. (2017). Understanding algorithm aversion: When is advice from automation discounted?.Journal of Forecasting, 36(6), 691-702. [59] Roy D. K., Barzegar R., Quilty J.,& Adamowski, J.(2020). Using ensembles of adaptive neuro-fuzzy inference system and optimization algorithms to predict reference evapotranspiration in subtropical climatic zones. Journal of Hydrology, 591, 125509. https://doi.org/10.1016/j.jhydrol.2020.125509 [60] Ruel H. J., Bondarouk T. V., & Van der Velde, M. (2007). The contribution of e-HRM to HRM effectiveness: Results from a quantitative study in a Dutch Ministry.Employee Relations, 29(3), 280-291. [61] Schildt, H. (2017). Big data and organizational design-the brave new world of algorithmic management and computer augmented transparency.Innovation, 19(1), 23-30. [62] Shin, D. (2020). How do users interact with algorithm recommender systems? The interaction of users, algorithms, and performance. Computers in Human Behavior, 109, 106344. https://doi.org/10.1016/j.chb.2020.106344 [63] Sienkiewicz, Ł. (2021). Algorithmic human resources management-perspectives and challenges.Annales Universitatis Mariae Curie-Skłodowska, Sectio H Oeconomia, 55(2), 95-105. [64] Silverman, R. E., & Waller, N. (2015). The algorithm that tells the boss who might quit. Wall Street Journal. Retrieved from https://www.wsj.com/articles/the-algorithm-thattells-the-boss-who-might-quit-1426287935 [65] Stieglitz S., Mirbabaie M., Möllmann N. R., & Rzyski J. (2022). Collaborating with virtual assistants in organizations: Analyzing social loafing tendencies and responsibility attribution.Information Systems Frontiers, 24(3), 745-770. [66] Stone D. L., Deadrick D. L., Lukaszewski K. M., & Johnson R. (2015). The influence of technology on the future of human resource management.Human Resource Management Review, 25(2), 216-231. [67] Strohmeier, S. (2020). Smart HRM-a Delphi study on the application and consequences of the Internet of Things in Human Resource Management.The International Journal of Human Resource Management, 31(18), 2289-2318. [68] Sundar, S. S., & Nass, C. (2001). Conceptualizing sources in online news.Journal of Communication, 51(1), 52-72. [69] Tambe P., Cappelli P., & Yakubovich V. (2019). Artificial intelligence in human resources management: Challenges and a path forward.California Management Review, 61(4), 15-42. [70] Tang P. M., Koopman J., McClean S. T., Zhang J. H., Li C. H., De Cremer D., .. Ng, C. T. S. (2022). When conscientious employees meet intelligent machines: An integrative approach inspired by complementarity theory and role theory.Academy of Management Journal, 65(3), 1019-1054. [71] Wesche J. S., Hennig F., Kollhed C. S., Quade J., Kluge S., & Sonderegger A. (2024). People’s reactions to decisions by human vs. algorithmic decision-makers: The role of explanations and type of selection tests.European Journal of Work and Organizational Psychology, 33(2), 1469-157. [72] Wilson, H. J., & Daugherty, P. R. (2018). Collaborative intelligence: Humans and AI are joining forces.Harvard Business Review, 96(4), 1149-123. [73] Yeomans M., Shah A., Mullainathan S., & Kleinberg J. (2019). Making sense of recommendations.Journal of Behavioral Decision Making, 32(4), 403-414. |
[1] | LIU Geng, HAN Yi, LU Junyang. The connotation and multi-level effect of leader listening [J]. Advances in Psychological Science, 2025, 33(1): 25-41. |
[2] | SHI Yanwei, XIE Julan, WANG Yani, ZHAGN Nan. Digital job crafting and its positive impact on job performance: The perspective of individual-task-technology fit [J]. Advances in Psychological Science, 2023, 31(7): 1133-1145. |
[3] | SHENG Xiaotian, LIU Zihan, ZHANG Xichao, GUO Heng, DA Shu, ZHOU Shiyi. Sleep and work: The interactive mechanism [J]. Advances in Psychological Science, 2018, 26(10): 1844-1856. |
[4] | LI Yingwu; YU Zhou; HAN Xiao; LIU Tinganxu. General Mental Ability Predicts Performance: The State and Mechanism [J]. Advances in Psychological Science, 2015, 23(3): 448-459. |
[5] | QIN Feng;XU Fang. Machiavellians’ Job Performance and Career Success in Workplaces: A Meta-Analysis [J]. Advances in Psychological Science, 2013, 21(9): 1542-1553. |
[6] | LI Chaoping. Resonant Leadership: Dimension, Measurement and Its Mechanism [J]. Advances in Psychological Science, 2013, 21(12): 2103-2109. |
[7] | ZHANG Chun-Yu;WEI Jia;CHEN Xie-Ping;ZHANG Jin-Fu. Employee’s Job Crafting: A New Perspective of Job Design [J]. Advances in Psychological Science, 2012, 20(8): 1305-1313. |
[8] | HONG Yan;WANG Duan-Xu. Leader Deviance Behavior in Organizations: A Theoretical Framework of Antecedents and Consequences [J]. , 2012, 20(3): 424-432. |
[9] | CHEN Meng;BIAN Ran;WANG Li-Na;CHE Hong-Sheng;LIN Xuan-Hui. The Relationship Between Emotional Intelligence and Job Performance [J]. , 2012, 20(3): 412-423. |
[10] | WANG Meng-Cheng;CHU Yan-Min;DAI Xiao-Yang. Conscientiousness and Its Applications [J]. , 2011, 19(3): 440-448. |
[11] | WU Xin-Hui; YUAN Deng-Hua. Adaptive Performance: A Domain Remains to be Further Studied [J]. , 2010, 18(2): 339-347. |
[12] |
Tian Jianquan.
The Reference of Project A for the Soldier’s Selection and Placement System of the PLA [J]. , 2006, 14(2): 164-. |
[13] | Luo Zheng xue;Miao Danmin. Review on the Predictive Research of Job Performance [J]. , 2005, 13(6): 798-805. |
[14] | Li Ye,Long Lirong,Liu Ya. Review Of Organizational Justice Research [J]. , 2003, 11(1): 78-84. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||