Advances in Psychological Science ›› 2025, Vol. 33 ›› Issue (6): 887-904.doi: 10.3724/SP.J.1042.2025.0887
• Academic Papers of the 27th Annual Meeting of the China Association for Science and Technology • Next Articles
LIU Yongjin1, YANG Xue1, DU Xinxin1, JI Wenqi1, ZANG Yinyin2, GUAN Ruiyuan3, SONG Sen4, QIAN Mingyi2, MU Wenting5
Received:
2024-08-04
Online:
2025-06-15
Published:
2025-04-09
CLC Number:
LIU Yongjin, YANG Xue, DU Xinxin, JI Wenqi, ZANG Yinyin, GUAN Ruiyuan, SONG Sen, QIAN Mingyi, MU Wenting. Neurophysiological mechanisms and interventions of subthreshold depression by integrating machine learning techniques[J]. Advances in Psychological Science, 2025, 33(6): 887-904.
[1] 何筱衍, 李春波, 钱洁, 崔海松, 吴文源.(2010). 广泛性焦虑量表在综合性医院的信度和效度研究. 上海精神医学, 22(4), 200-203. https://doi.org/10.3969/j.issn.1002-0829. 2010.04.002 [2] 刘振焘, 向春妮, 刘陈陵, 钟宝亮, 黄海, 彭志昆, .. 丁钟. (2023). 基于语音的抑郁检测研究综述. 信号处理, 39 2023.04.003 [3] 邱林, 郑雪, 王雁飞. (2008). 积极情感消极情感量表(PANAS)的修订.应用心理学, 14(3), 249-254. [4] Acharya U. R., Sudarshan V. K., Adeli H., Santhosh J., Koh J. E., & Adeli A. (2015). Computer-aided diagnosis of depression using EEG signals. European Neurology, 73(5-6), 329-336. https://doi.org/10.1159/000381950 [5] Arıkan M. K., İlhan R., Orhan Ö., Esmeray M. T., Turan Ş., Gica Ş., .. Metin, B.(2024). P300 parameters in major depressive disorder: A systematic review and meta-analysis. World Journal of Biological Psychiatry, 252024.2321554 [6] Bassett, D. (2016). A literature review of heart rate variability in depressive and bipolar disorders. Australian and New Zealand Journal of Psychiatry, 50(6), 511-519. https://doi.org/10.1177/0004867415622689 [7] Besteher B., Gaser C., & Nenadić I. (2020). Brain structure and subclinical symptoms: A dimensional perspective of psychopathology in the depression and anxiety spectrum. Neuropsychobiology, 79(4-5), 270-283. https://doi.org/10.1159/000501024 [8] Bos, E. H., & De Jonge, P. (2014). “Critical slowing down in depression” is a great idea that still needs empirical proof. Proceedings of the National Academy of Sciences, 111(10), E878. https://doi.org/10.1073/pnas.1323672111 [9] Brunoni A. R., Kemp A. H., Dantas E. M., Goulart A. C., Nunes M. A., Boggio P. S., .. Benseñor I. M. (2013). Heart rate variability is a trait marker of major depressive disorder: Evidence from the sertraline vs. electric current therapy to treat depression clinical study. International Journal of Neuropsychopharmacology, 16(9), 1937-1949. https://doi.org/10.1017/s1461145713000497 [10] Chen J., Chan N. Y., Li C.-T., Chan J. W. Y., Liu Y., Li S. X., .. Wing Y.-K. (2024). Multimodal digital assessment of depression with actigraphy and app in Hong Kong Chinese. Translational Psychiatry, 14(1), 150. https://doi.org/10.1038/s41398-024-02873-4 [11] Chen S., Wang H., Yue J., Guan N.,& Wang, X.(2022). Intervention methods for improving reduced heart rate variability in patients with major depressive disorder: A systematic review and meta-analysis. Comprehensive Psychiatry, 119, 152347. https://doi.org/10.1016/j.comppsych.2022.152347 [12] Chivu A., Pascal S. A., Damborská A., & Tomescu M. I. (2024). EEG microstates in mood and anxiety disorders: A meta-analysis. Brain Topography, 37(3), 357-368. https://doi.org/10.1007/s10548-023-00999-0 [13] Cuijpers P., Koole S. L., van Dijke A., Roca M., Li J., & Reynolds, C. F. III. (2014). Psychotherapy for subclinical depression: Meta-analysis. British Journal of Psychiatry, 205(4), 268-274. https://doi.org/10.1192/bjp.bp.113.138784 [14] Cuijpers P., Miguel C., Harrer M., Plessen C. Y., Ciharova M., Papola D., .. Karyotaki, E.(2023). Psychological treatment of depression: A systematic overview of a ‘meta-analytic research domain’. Journal of Affective Disorders, 335, 141-151. https://doi.org/10.1016/j.jad.2023.05.011 [15] Cuijpers P., Noma H., Karyotaki E., Cipriani A.,& Furukawa, T. A.(2019). Effectiveness and acceptability of cognitive behavior therapy delivery formats in adults with depression: A network meta-analysis. JAMA Psychiatry, 762019.0268 [16] Cuijpers P., Pineda B. S., Ng M. Y., Weisz J. R., Muñoz R. F., Gentili C., .. Karyotaki, E.(2021). A meta-analytic review: Psychological treatment of subthreshold depression in children and adolescents. Journal of the American Academy of Child & Adolescent Psychiatry, 602020.11.024 [17] Cuijpers, P., & Smit, F. (2004). Subthreshold depression as a risk indicator for major depressive disorder: A systematic review of prospective studies. Acta Psychiatrica Scandinavica, 109(5), 325-331. https://doi.org/10.1111/j.1600-0447.2004.00301.x [18] Cummins N., Scherer S., Krajewski J., Schnieder S., Epps J.,& Quatieri, T. F.(2015). A review of depression and suicide risk assessment using speech analysis. Speech Communication, 71, 10-49. https://doi.org/10.1016/j.specom.2015.03.004 [19] Curtiss J. E., Mischoulon D., Fisher L. B., Cusin C., Fedor S., Picard R. W., & Pedrelli P. (2023). Rising early warning signals in affect associated with future changes in depression: A dynamical systems approach. Psychological Medicine, 53(7), 3124-3132. https://doi.org/10.1017/s0033291721005183 [20] Dablander F., Pichler A., Cika A., & Bacilieri A. (2023). Anticipating critical transitions in psychological systems using early warning signals: Theoretical and practical considerations. Psychological Methods, 28(4), 765-790. https://doi.org/10.1037/met0000450 [21] Dell’Acqua, C., Brush, C. J., Burani, K., Santopetro, N. J., Klawohn, J., MesserottiBenvenuti, S., & Hajcak, G.(2022). Reduced electrocortical responses to pleasant pictures in depression: A brief report on time-domain and time-frequency delta analyses. Biological Psychology, 170, 108302. https://doi.org/10.1016/j.biopsycho.2022.108302 [22] Dell’Acqua C., Bò E. D., Benvenuti S. M., & Palomba D. (2020). Reduced heart rate variability is associated with vulnerability to depression. Journal of Affective Disorders Reports. 1, 100006.https://doi.org/10.1101/2020.09.22.20199356 [23] Dell'Acqua, C., Ghiasi, S., Messerotti Benvenuti, S., Greco, A., Gentili, C., & Valenza, G.(2021). Increased functional connectivity within alpha and theta frequency bands in dysphoria: A resting-state EEG study. Journal of Affective Disorders, 281, 199-207.https://doi.org/10.1016/j.jad.2020.12.015 [24] Feng Y., Huang W., Tian T. F., Wang G., Hu C., Chiu H. F., .. Xiang, Y. T.(2016). The psychometric properties of the Quick Inventory of Depressive Symptomatology-Self-Report (QIDS-SR) and the Patient Health Questionnaire-9 (PHQ-9) in depressed inpatients in China. Journal of Psychiatric Research, 243, 92-96. https://doi.org/10.1016/j.psychres.2016.06.021 [25] Fonzo G. A., Etkin A., Zhang Y., Wu W., Cooper C., Chin-Fatt C., .. Trivedi M. H. (2019). Brain regulation of emotional conflict predicts antidepressant treatment response for depression. Nature Human Behaviour, 3(12), 1319-1331. https://doi.org/10.1038/s41562-019-0732-1 [26] Fusar-Poli P., Correll C. U., Arango C., Berk M., Patel V., & Ioannidis, J. P. A. (2021). Preventive psychiatry: A blueprint for improving the mental health of young people. World Psychiatry, 20(2), 200-221. https://doi.org/10.1002/wps.20869 [27] Galin S.,& Keren, H.(2024). The predictive potential of heart rate variability for depression. Neuroscience, 546, 88-103. https://doi.org/10.1016/j.neuroscience.2024.03.013 [28] GBD2019 Mental Disorders Collaborators.(2022). Global, regional, and national burden of 12 mental disorders in 204 countries and territories, 1990-2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet Psychiatry, 9(2), 137-150. https://doi.org/10.1016/s2215-0366(21)00395-3 [29] Ghiasi S.,Dell'Acqua, C., Benvenuti, S. M., Scilingo, E. P., Gentili, C., Valenza, G., & Greco, A.(2021). Classifying subclinical depression using EEG spectral and connectivity measures. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2050-2053. https://doi.org/10.1109/embc46164.2021.9630044 [30] Godlewska, B. R., & Harmer, C. J. (2021). Cognitive neuropsychological theory of antidepressant action: A modern-day approach to depression and its treatment. Psychopharmacology, 238(5), 1265-1278. https://doi.org/10.1007/s00213-019-05448-0 [31] Groen R. N., Wichers M., Wigman J. T. W., & Hartman C. A. (2019). Specificity of psychopathology across levels of severity: A transdiagnostic network analysis. Scientific Reports, 9(1), 18298. https://doi.org/10.1038/s41598-019-54801-y [32] Gullett N., Zajkowska Z., Walsh A., Harper R.,& Mondelli, V.(2023). Heart rate variability (HRV) as a way to understand associations between the autonomic nervous system (ANS) and affective states: A critical review of the literature. International Journal of Psychophysiology, 192, 35-42. https://doi.org/10.1016/j.ijpsycho.2023.08.001 [33] Hao X., Jia Y., Chen J., Zou C., & Jiang C. (2023). Subthreshold depression: A systematic review and network meta-analysis of non-pharmacological interventions. Neuropsychiatric Disease and Treatment, 19, 2149-2169. https://doi.org/10.2147/NDT.S425509 [34] Hayes, A. M., & Andrews, L. A. (2020). A complex systems approach to the study of change in psychotherapy. BMC Medicine, 18(1), 197. https://doi.org/10.1186/s12916-020-01662-2 [35] He R., Wei J., Huang K., Yang H., Chen Y., Liu Z., .. Chen, L.(2022). Nonpharmacological interventions for subthreshold depression in adults: A systematic review and network meta-analysis. Psychiatry Research, 317, 114897. https://doi.org/10.1016/j.psychres.2022.114897 [36] Helmich M. A., Olthof M., Oldehinkel A. J., Wichers M., Bringmann L. F.,& Smit, A. C.(2021). Early warning signals and critical transitions in psychopathology: Challenges and recommendations. Current Opinion in Psychology, 41, 51-58. https://doi.org/10.1016/j.copsyc.2021.02.008 [37] Helmich M. A., Smit A. C., Bringmann L. F., Schreuder M. J., Oldehinkel A. J., Wichers M., & Snippe E. (2023). Detecting impending symptom transitions using early-warning signals in individuals receiving treatment for depression. Clinical Psychological Science, 11(6), 994-1010. https://doi.org/10.1177/21677026221137006 [38] Helmich M. A., Snippe E., Kunkels Y. K., Riese H., Smit A. C., & Wichers M. (2021). Transitions in Depression (TRANS-ID) recovery: Study protocol for a repeated intensive longitudinal n=1 study design to search for personalized early warning signals of critical transitions towards improvement in depression. PsyArXiv. https://doi.org/10.31234/osf.io/fertq [39] Hofmann S. G., Curtiss J., & McNally R. J. (2016). A complex network perspective on clinical science. Perspectives on Psychological Science, 11(5), 597-605. https://doi.org/10.1177/1745691616639283 [40] Huckvale K., Venkatesh S., & Christensen H. (2019). Toward clinical digital phenotyping: A timely opportunity to consider purpose, quality, and safety. NPJ Digital Medicine, 2(1), 88. https://doi.org/10.1038/s41746-019-0166-1 [41] Husen K., Rafaeli E., Rubel J. A.,Bar-Kalifa, E., & Lutz, W.(2016). Daily affect dynamics predict early response in CBT: Feasibility and predictive validity of EMA for outpatient psychotherapy. Journal of Affective Disorders, 206, 305-314. https://doi.org/10.1016/J.JAD.2016.08.025 [42] Hébert M., Mérette C., Gagné A. M., Paccalet T., Moreau I., Lavoie J.,& Maziade, M.(2020). The Electroretinogram may differentiate schizophrenia from bipolar disorder. Biological Psychiatry, 872019.06.014 [43] Ingber L.,& Nunez, P. L.(2011). Neocortical dynamics at multiple scales: EEG standing waves, statistical mechanics, and physical analogs. Mathematical Biosciences, 2292010.12.003 [44] Javaheripour N., Li M., Chand T., Krug A., Kircher T., Dannlowski U., .. Wagner G. (2021). Altered resting-state functional connectome in major depressive disorder: A mega-analysis from the PsyMRI consortium. Translational Psychiatry, 11(1), 511. https://doi.org/10.1038/s41398-021-01619-w [45] Jazaery M. A.,& Guo, G.(2021). Video-based depression level analysis by encoding deep spatiotemporal features. IEEE Transactions on Affective Computing, 122018.2870884 [46] Judd L. L., Schettler P. J., & Akiskal H. S. (2002). The prevalence, clinical relevance, and public health significance of subthreshold depressions. Psychiatric Clinics of North America, 25(4), 685-698. https://doi.org/10.1016/s0193-953x(02)00026-6 [47] Kaiser R. H.,Andrews-Hanna, J. R, Wager, T. D., & Pizzagalli, D. A.(2015). Large-scale network dysfunction in major depressive disorder: A meta-analysis of resting-state functional connectivity. JAMA Psychiatry. 722015.0071 [48] Kalsi N., Altavilla D., Tambelli R., Aceto P., Trentini C.,Di Giorgio, C., & Lai, C.(2017). Neural correlates of outcome of the psychotherapy compared to antidepressant therapy in anxiety and depression disorders: A meta-analysis. Frontiers in Psychology, 8, 927. https://doi.org/10.3389/fpsyg.2017.00927 [49] Kessler R. C., Aguilar-Gaxiola S., Alonso J., Chatterji S., Lee S., Ormel J., .. Wang P. S. (2009). The global burden of mental disorders: An update from the WHO World Mental Health (WMH) surveys. Epidemiology and Psychiatric Sciences, 18(1), 23-33. https://doi.org/10.1017/s1121189x00001421 [50] Kim A. Y., Jang E. H., Kim S., Choi K. W., Jeon H. J., Yu H. Y., & Byun S. (2018). Automatic detection of major depressive disorder using electrodermal activity. Scientific Reports, 8(1), 17030. https://doi.org/10.1038/s41598-018-35147-3 [51] Kim K., Ryu J. I., Lee B. J., Na E., Xiang Y. T., Kanba S., .. Park S. C. (2022). A machine-learning-algorithm-based prediction model for psychotic symptoms in patients with depressive disorder. Journal of Personalized Medicine, 12(8), 1218. https://doi.org/10.3390/jpm12081218 [52] Klawohn J., Burani K., Bruchnak A., Santopetro N., & Hajcak G. (2021). Reduced neural response to reward and pleasant pictures independently relate to depression. Psychological Medicine, 51(5), 741-749. https://doi.org/10.1017/S0033291719003659 [53] Koch C., Wilhelm M., Salzmann S., Rief W., & Euteneuer F. (2019). A meta-analysis of heart rate variability in major depression. Psychological Medicine, 49(12), 1948-1957. https://doi.org/10.1017/S0033291719001351 [54] Kunkels Y. K., Smit A. C., Minaeva O., Snippe E., George S. V., van Roon A. M., …Riese H. (2023). Risk ahead: Actigraphy-based early-warning signals of increases in depressive symptoms during antidepressant discontinuation. Clinical Psychological Science, 11(5), 942-953. https://doi.org/10.1177/21677026221148101 [55] Lee T. R., Kim G. H., & Choi M. T. (2024). Geriatric depression and anxiety screening via deep learning using activity tracking and sleep data. International Journal of Geriatric Psychiatry, 39(2), e6071. https://doi.org/10.1002/gps.6071 [56] Lee, Y. Y., Stockings, E. A., Harris, M. G., Doi, S. A. R., Page, I. S., Davidson, S. K., & Barendregt, J. J. (2019). The risk of developing major depression among individuals with subthreshold depression: A systematic review and meta-analysis of longitudinal cohort studies. Psychological Medicine, 49(1), 92-102. https://doi.org/10.1017/s0033291718000557 [57] Legemaat A. M., Semkovska M., Brouwer M., Geurtsen G. J., Burger H., Denys D., & Bockting C. L. (2021). Effectiveness of cognitive remediation in depression: A meta-analysis. Psychological Medicine, 52(16), 1-16. https://doi.org/10.1017/s0033291721001100 [58] Lei L., Liu Z., Zhang Y., Guo M., Liu P., Hu X., .. Zhang, K.(2022). EEG microstates as markers of major depressive disorder and predictors of response to SSRIs therapy. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 116, 110514. https://doi.org/10.1016/j.pnpbp.2022.110514 [59] Lewinsohn P. M., Munoz R. F., Youngren, M. A. & Zeiss, A. M. (Eds). (1992). Control Your Depression. New York: Touchstone [60] Liao Y., Zhang H., Guo L., Fan B., Wang W., Teopiz K. M., .. McIntyre, R. S.(2022). Impact of cognitive-affective and somatic symptoms in subthreshold depression transition in adults: Evidence from Depression Cohort in China (DCC). Journal of Affective Disorders, 315, 274-281. https://doi.org/10.1016/j.jad.2022.08.009 [61] Liu X., Zhang H., Cui Y., Zhao T., Wang B., Xie X., .. Zhang, L.(2024). EEG-based major depressive disorder recognition by neural oscillation and asymmetry. Frontiers in Neuroscience, 18, 1362111. https://doi.org/10.3389/fnins.2024.1362111 [62] Lyu H., Huang H., He J., Zhu S., Hong W., Lai J., .. Hu S. (2024). Task-state skin potential abnormalities can distinguish major depressive disorder and bipolar depression from healthy controls. Translational Psychiatry, 14(1), 110. https://doi.org/10.1038/s41398-024-02828-9 [63] Markiewicz R., Markiewicz-Gospodarek A., & Dobrowolska B. (2022). Galvanic skin response features in psychiatry and mental disorders: A narrative review. International Journal of Environmental Research and Public Health, 19(20), 13428. https://doi.org/10.3390/ijerph192013428 [64] Markon K. E., Chmielewski M., & Miller C. J. (2011). The reliability and validity of discrete and continuous measures of psychopathology: A quantitative review. Psychological Bulletin, 137(5), 856-879. https://doi.org/10.1037/a0023678 [65] McGorry P. D., Hartmann J. A., Spooner R., & Nelson B. (2018). Beyond the "at risk mental state" concept: Transitioning to transdiagnostic psychiatry. World Psychiatry, 17(2), 133-142. https://doi.org/10.1002/wps.20514 [66] Meeks T. W., Vahia I. V., Lavretsky H., Kulkarni G.,& Jeste, D. V.(2011). A tune in "a minor" can "b major": A review of epidemiology, illness course, and public health implications of subthreshold depression in older adults. Journal of Affective Disorders, 1292010.09.015 [67] Moretta, T., & Messerotti Benvenuti, S. (2023). Familial risk for depression is associated with reduced P300 and late positive potential to affective stimuli and prolonged cardiac deceleration to unpleasant stimuli. Scientific Reports, 13, 6432. https://doi.org/10.1038/s41598-023-33534-z [68] Mu W., Li K., Tian Y., Perlman G., Michelini G., Watson D., .. Kotov R. (2023). Dynamic risk for first onset of depressive disorders in adolescence: Does change matter? Psychological Medicine, 53(6), 2352-2360. https://doi.org/10.1017/S0033291721004190 [69] Mulcahy, J. S., Larsson, D. E.O., Garfinkel, S. N., & Critchley, H. D.(2019). Heart rate variability as a biomarker in health and affective disorders: A perspective on neuroimaging studies. NeuroImage, 202, 116072. https://doi.org/10.1016/j.neuroimage.2019.116072 [70] Murphy M., Whitton A. E., Deccy S., Ironside M. L., Rutherford A., Beltzer M., .. Pizzagalli D. A. (2020). Abnormalities in electroencephalographic microstates are state and trait markers of major depressive disorder. Neuropsychopharmacology, 45(12), 2030-2037. https://doi.org/10.1038/s41386-020-0749-1 [71] Myin-Germeys I., Oorschot M., Collip D., Lataster J., Delespau P., & van Os J. (2009). Experience sampling research in psychopathology: Opening the black box of daily life. Psychological Medicine, 39(9), 1533-1547. https://doi.org/10.1017/s0033291708004947 [72] Nelson J., Klumparendt A., Doebler P., & Ehring T. (2017). Childhood maltreatment and characteristics of adult depression: Meta-analysis. British Journal of Psychiatry, 210(2), 96-104. https://doi.org/10.1192/bjp.bp.115.180752 [73] Nemesure M. D., Heinz M. V., Huang R., & Jacobson N. C. (2021). Predictive modeling of depression and anxiety using electronic health records and a novel machine learning approach with artificial intelligence. Scientific Reports, 11(1), 1980. https://doi.org/10.1038/s41598-021-81368-4 [74] Nobis A., Zalewski D., & Waszkiewicz N. (2020). Peripheral markers of depression. Journal of Clinical Medicine, 9(12), 3793. https://doi.org/10.3390/jcm9123793 [75] Olthof M., Hasselman F., & Lichtwarck-Aschoff A. (2020). Complexity in psychological self-ratings: Implications for research and practice. BMC Medicine, 18(1), 317. https://doi.org/10.1186/s12916-020-01727-2 [76] Pampouchidou A., Simantiraki O., Vazakopoulou C. M., Chatzaki C., Pediaditis M., Maridaki A., .. Tsiknakis, M.(2017). Facial geometry and speech analysis for depression detection. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 1433-1436. https://doi.org/10.1109/embc.2017.8037103 [77] Perna G., Riva A., Defillo A., Sangiorgio E., Nobile M.,& Caldirola, D.(2020). Heart rate variability: Can it serve as a marker of mental health resilience?. Journal of Affective Disorders, 263, 754-761. https://doi.org/10.1016/j.jad.2019.10.017 [78] Rohde P., Lewinsohn P. M., Klein D. N., Seeley J. R., & Gau J. M. (2013). Key characteristics of major depressive disorder occurring in childhood, adolescence, emerging adulthood, adulthood. Clinical Psychological Science, 1(1), 41-53. https://doi.org/10.1177/2167702612457599 [79] Rykov Y., Thach T. Q., Bojic I., Christopoulos G., & Car J. (2021). Digital biomarkers for depression screening with wearable devices: Cross-sectional study with machine learning modeling. JMIR MHealth and UHealth, 9(10), e24872. https://doi.org/10.2196/24872 [80] Sankar A., Melin A., Lorenzetti V., Horton P., Costafreda S. G.,& Fu, C. H. Y.(2018). A systematic review and meta-analysis of the neural correlates of psychological therapies in major depression. Psychiatry Research Neuroimaging, 279, 31-39. https://doi.org/10.1016/j.pscychresns.2018.07.002 [81] Scherer S., Stratou G., Gratch J., & Morency L.-P. (2013). Investigating voice quality as a speaker-independent indicator of depression and PTSD. Interspeech, 847-851. https://doi.org/10.21437/Interspeech.2013-240 [82] Scherer S., Stratou G., Lucas G. M., Mahmoud M. M., Boberg J., Gratch J., .. Morency, L.(2014). Automatic audiovisual behavior descriptors for psychological disorder analysis. Image and Vision Computing, 32, 648-658. https://doi.org/10.1016/j.imavis.2014.06.001 [83] Schiweck C., Piette D., Berckmans D., Claes S., & Vrieze E. (2019). Heart rate and high frequency heart rate variability during stress as biomarker for clinical depression. A systematic review. Psychological Medicine, 49(2), 200-211. https://doi.org/10.1017/S0033291718001988 [84] Schreuder M. J., Wigman J. T. W., Groen R. N., Weinans E., Wichers M., & Hartman C. A. (2022). Anticipating the direction of symptom progression using critical slowing down: A proof-of-concept study. BMC psychiatry, 22(1), 49. https://doi.org/10.1186/s12888-022-03686-9 [85] Sheehan D. V., Lecrubier Y., Sheehan K. H., Amorim P., Janavs J., Weiller E., .. Dunbar G. C. (1998). The Mini-International Neuropsychiatric Interview (M.I.N.I.): The development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. Journal of Clinical Psychiatry, 59(Suppl 20), 22-33. https://pubmed.ncbi.nlm.nih.gov/9881538/ [86] Sheline, Y. I. (2000). 3D MRI studies of neuroanatomic changes in unipolar major depression: The role of stress and medical comorbidity. Biological Psychiatry, 48(8), 791-800. https://doi.org/10.1016/s0006-3223(00)00994-x [87] Shen J., Zhang X., Wang G., Ding Z.,& Hu, B.(2022). An improved empirical mode decomposition of electroencephalogram signals for depression detection. IEEE Transactions on Affective Computing, 132019.2934412 [88] Shen Y., Yang H.,& Lin, L.(2022). Automatic depression detection: An emotional audio-textual corpus and a Gru/Bilstm-based model. ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing, 6247-6251. https://doi.org/10.1109/ICASSP43922.2022.9746569 [89] Siddi S., Bailon R., Giné-Vázquez I., Matcham F., Lamers F., Kontaxis S., … Haro J. M. (2023). The usability of daytime and night-time heart rate dynamics as digital biomarkers of depression severity. Psychological Medicine. 53(8), 3249-3260. https://doi.org/10.1017/S0033291723001034 [90] Singh, J., & Sharma, D. (2023). Automated detection of mental disorders using physiological signals and machine learning: A systematic review and scientometric analysis. Multimedia Tools and Applications, 83, 73329-73361. https://doi.org/10.1007/s11042-023-17504-1 [91] Solomon A., Haaga D. A., & Arnow B. A. (2001). Is clinical depression distinct from subthreshold depressive symptoms? A review of the continuity issue in depression research. Journal of Nervous and Mental Disease, 189(8), 498-506. https://doi.org/10.1097/00005053-200108000-00002 [92] Toenders Y. J., Kottaram A., Dinga R., Davey C. G., Banaschewski T., Bokde A. L.W., .. Schmaal, L.(2022). Predicting depression onset in young people based on clinical, cognitive, environmental, and neurobiological data. Biological Psychiatry. Cognitive Neuroscience and Neuroimaging, 72021.03.005 [93] Triantafyllidis, A. K., & Tsanas, A. (2019). Applications of machine learning in real-life digital health interventions: Review of the literature. Journal of Medical Internet Research, 21(4), e12286. https://doi.org/10.2196/12286 [94] Trivedi, M. H. (2006). Major depressive disorder: Remission of associated symptoms. Journal of Clinical Psychiatry, 67, 27-32. https://pubmed.ncbi.nlm.nih.gov/16848674/ [95] Tuithof M., Ten Have M., van Dorsselaer S., Kleinjan M., Beekman A., & de Graaf R. (2018). Course of subthreshold depression into a depressive disorder and its risk factors. Journal of Affective Disorders, 241, 206-215. https://doi.org/10.1016/j.jad.2018.08.010 [96] van de Leemput, I. A., Wichers M., Cramer A. O., Borsboom D., Tuerlinckx F., Kuppens P., .. Scheffer M. (2014). Critical slowing down as early warning for the onset and termination of depression. Proceedings of the National Academy of Sciences U S A, 111(1), 87-92. https://doi.org/10.1073/pnas.1312114110 [97] van Os, J. (2013). The dynamics of subthreshold psychopathology: Implications for diagnosis and treatment. American Journal of Psychiatry, 170(7), 695-698. https://doi.org/10.1176/appi.ajp.2013.13040474 [98] Vázquez F. L., Torres A., Blanco V., Díaz O., Otero P.,& Hermida, E.(2012). Comparison of relaxation training with a cognitive-behavioural intervention for indicated prevention of depression in university students: A randomized controlled trial. Journal of Psychiatric Research, 46 2012.08.007 [99] Vittengl J. R., Clark L. A., & Jarrett R. B. (2009). Continuation-phase cognitive therapy's effects on remission and recovery from depression. Journal of Consulting and Clinical Psychology, 77(2), 367-371. https://doi.org/10.1037/a0015238 [100] Volz H.-P., Stirnweiß J., Kasper S., Möller H.-J.,& Seifritz, E.(2023). Subthreshold depression -Concept, operationalisation and epidemiological data. A scoping review. International Journal of Psychiatry in Clinical Practice, 27 2022.2087530 [101] Wang W., Bian Q., Zhao Y., Li X., Wang W., Du J.,… Zhao, M.(2014). Reliability and validity of the Chinese version of the Patient Health Questionnaire (PHQ-9) in the general population. General Hospital Psychiatry, 362014.05.021 [102] Watts D., Pulice R. F., Reilly J., Brunoni A. R., Kapczinski F., & Passos I. C. (2022). Predicting treatment response using EEG in major depressive disorder: A machine-learning meta-analysis. Translational Psychiatry, 12(1), 332. https://doi.org/10.1038/s41398-022-02064-z [103] Wesselhoeft R., Sørensen M. J., Heiervang E. R.,& Bilenberg, N.(2013). Subthreshold depression in children and adolescents -A systematic review. Journal of Affective Disorders, 151 2013.06.010 [104] Wichers, M., & Groot, P. C. (2016). Critical slowing down as a personalized early warning signal for depression. Psychotherapy and Psychosomatics, 85(2), 114-116. https://doi.org/10.1159/000441458 [105] Wichers M., Smit A. C.,& Snippe, E.(2020). Early warning signals based on momentary affect dynamics can expose nearby transitions in depression: A confirmatory single-subject time-series study. Journal for Person-Oriented Research, 62020.22042 [106] Wu Z., Pan S., Chen F., Long G., Zhang C.,& Philip, S. Y.(2020). A comprehensive survey on graph neural networks. IEEE Transactions on Neural Networks and Learning Systems, 32 2020.2978386 [107] Wu W., Zhang Y., Jiang J., Lucas M. V., Fonzo G. A., Rolle C. E., … Etkin A. (2020). An electroencephalographic signature predicts antidepressant response in major depression. Nature Biotechnology, 38(4), 439-447. https://doi.org/10.1038/s41587-019-0397-3 [108] Xi Y., Chen Y., Meng T., Lan Z.,& Zhang, L.(2025). Depression detection based on the temporal-spatial-frequency feature fusion of EEG. Biomedical Signal Processing and Control, 100, 106930. https://doi.org/10.1016/j.bspc.2024.106930 [109] Yang Z., Xia L., Fu Y., Zheng Y., Zhao M., Feng Z., & Shi C. (2024). Altered EEG microstates dynamics in individuals with subthreshold depression when generating negative future events. Brain Topography, 37(1), 52-62. https://doi.org/10.1007/s10548-023-01011-5 [110] Yasin S., Hussain S. A., Aslan S., Raza I., Muzammel M.,& Othmani, A.(2021). EEG based major depressive disorder and bipolar disorder detection using neural networks: A review. Computer Methods and Programs in Biomedicine, 202, 106007. https://doi.org/10.1016/j.cmpb.2021.106007 [111] Ying Y., Ji Y., Kong F., Wang M., Chen Q., Wang L., .. Ruan L. (2023). Efficacy of an internet-based cognitive behavioral therapy for subthreshold depression among Chinese adults: A randomized controlled trial. Psychological Medicine, 53(9), 3932-3942. https://doi.org/10.1017/S0033291722000599 [112] Zang, C., & Wang, F. (2020). Neural dynamics on complex networks. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining(pp.892-902). https://doi.org/10.1145/3394486.3403132 [113] Zhang Z., Cui P.,& Zhu, W.(2020). Deep learning on graphs: A survey. IEEE Transactions on Knowledge and Data Engineering, 342020.2981333 [114] Zhang Y., Folarin A. A., Sun S., Cummins N., Bendayan R., Ranjan Y., .. Consortium R. (2021). Relationship between major depression symptom severity and sleep collected using a wristband wearable device: Multicenter longitudinal observational study. JMIR mHealth and uHealth, 9(4), e24604. https://doi.org/10.2196/24604 [115] Zhang R., Peng X., Song X., Long J., Wang C., Zhang C., .. Lee, T. M. C. (2023). The prevalence and risk of developing major depression among individuals with subthreshold depression in the general population. Psychological Medicine, 53(8), 3611-3620. https://doi.org/10.1017/S0033291722000241 [116] Zhou L., Liu Z., Shangguan Z., Yuan X., Li Y.,& Hu, B.(2023). TAMFN: Time-aware attention multimodal fusion network for depression detection. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 31, 669-679. https://doi.org/10.1109/TNSRE.2022.3224135 |
[1] | Shiming Qiu, Xun Xiao, Gaoxing Mei. Perceptual bias to sad faces in subthreshold depression during binocular rivalry [J]. Advances in Psychological Science, 2019, 27(suppl.): 108-108. |
[2] | Shiyu Chen, Mofen Cen, Gaoxing Mei. Lower contrast discrimination sensitivity in subthreshold depression: a longitudinal study [J]. Advances in Psychological Science, 2019, 27(suppl.): 28-28. |
[3] | ZENG Xiang-Long;LIU Xiang-Ping;YU Shi. The Theoretical Background, Empirical Study and Future Development of the Acceptance and Commitment Therapy [J]. , 2011, 19(7): 1020-1026. |
[4] | REN Zhi-Hong;LI Dong-Ping;JIANG Guang-Rong. Computerized Cognitive Behavioral Therapy for Depression [J]. , 2011, 19(4): 545-555. |
[5] | LIN Wen-Wen;CUI Li-Xia. Theory and Practice of Schema Therapy [J]. , 2008, 16(4): 576-581. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||