ISSN 1671-3710
CN 11-4766/R
主办:中国科学院心理研究所
出版:科学出版社

• •    

认知功能和中央执行网络对疼痛心理韧性的作用和预测机制

游贝贝, 顾怀飞, 文宏伟   

  1. 贵州医科大学护理学院, 贵州 561113 中国
    川北医学院医学影像学院, 四川 637100 中国
  • 收稿日期:2025-09-24 修回日期:2025-10-31 接受日期:2025-12-04
  • 基金资助:
    国家自然科学基金地区科学基金项目(32460209); 贵州医科大学国家自然科学基金培育项目(22NSFCP41); 贵州省科技计划项目(黔科合基础-[2024]青年241)

The Role and Predictive Mechanisms of Cognitive Function and the Central Executive Network in Pain Resilience

YOU Beibei, GU Huaifei, WEN Hongwei   

  1. , 561113, China
    , 637100, China
  • Received:2025-09-24 Revised:2025-10-31 Accepted:2025-12-04

摘要: 慢性疼痛严重影响患者的身心健康和社会功能,亟需有效的应对与管理策略。心理韧性对缓解疼痛的负面影响至关重要,提升疼痛心理韧性成为患者应对身心挑战的关键,然而哪些因素对疼痛心理韧性的提升具有关键作用及其机制尚未明确。基于以往研究发现心理韧性与认知功能水平正相关且认知功能干预能够提升心理韧性,申请人前期采用神经影像和机器学习技术发现中央执行网络皮层区的灰质体积和功能活动性与疼痛心理韧性相关。因此本研究假设“认知功能与中央执行网络不仅对提升疼痛心理韧性具有关键作用,还能预测其发展”,并拟采用多中心多时间点的自我报告和脑功能MRI数据,①运用交叉滞后分析揭示认知功能与疼痛心理韧性的关联模式;②探索中央执行网络的静息态功能连接在认知功能与疼痛心理韧性关系中的中介角色;③运用门控循环单元这一时序数据建模的深度学习算法构建并验证疼痛心理韧性的多模态预测模型。本研究为探索慢性疼痛应对的神经影像学基础开辟了新的视角,为开发更有效的疼痛管理和精准治疗策略提供科学依据。

关键词: 疼痛, 脑网络, 疼痛韧性, 认知功能, 功能磁共振成像

Abstract: Chronic pain profoundly undermines patients’ physical, psychological, and social functioning, highlighting the urgent need for effective coping and management strategies. Psychological resilience plays a pivotal role in mitigating the adverse impact of pain, and enhancing resilience has become essential for patients to facing biopsychosocial challenges. However, the key factors that promote pain resilience and their underlying mechanisms remain unclear. Previous studies indicate a positive association between cognitive function and resilience, with interventions targeting cognitive interventions shown to strengthen resilience. Our preliminary neuroimaging and machine learning work further revealed that gray matter volume and functional activity within cortical regions of the central executive network (CEN) are associated with pain resilience. Building on these findings, we hypothesize that cognitive function and the central executive network are not only pivotal for enhancing pain resilience but also predictive of its development. To test this, we will conduct a multicenter, longitudinal study combining self-report assessments and functional MRI data. Specifically, we will: 1) apply cross-lagged panel analysis to uncover temporal associations between cognitive function and pain resilience; 2) examine the mediating role of resting-state functional connectivity within the central executive network in the relationship between cognitive function and pain resilience; and 3) employ a Gated Recurrent Unit (GRU)–based deep learning algorithm for temporal data modeling to construct and validate a multimodal predictive model of pain resilience. This study offers a novel neuroimaging perspective on chronic pain coping and provides a scientific foundation for developing more effective pain management and precision treatment strategies.

Key words: pain, brain networks, pain resilience, cognitive function, functional magnetic resonance imaging