ISSN 1671-3710
CN 11-4766/R
主办:中国科学院心理研究所
出版:科学出版社

• •    

孤独症谱系障碍多模态磁共振脑影像模式识别(孤独症神经心理专栏)

单晓龙,陈华富,段旭君   

  1. 电子科技大学生命科学与技术学院
  • 收稿日期:2023-08-18 修回日期:2024-03-07 出版日期:2024-03-19 发布日期:2024-03-19
  • 通讯作者: 段旭君
  • 基金资助:
    国家社会科学基金重大项目

Multimodal Magnetic Resonance Imaging Pattern Recognition in Autism Spectrum Disorder

SHAN Xiaolong, CHEN Huafu, DUAN Xujun   

  • Received:2023-08-18 Revised:2024-03-07 Online:2024-03-19 Published:2024-03-19

摘要: 孤独症谱系障碍(Autism spectrum disorder, ASD)是一组高度复杂的神经发育障碍。ASD患病率日趋升高、异质性强、会造成终生影响,但其神经病理机制仍不清楚。磁共振多模态脑影像为揭示ASD的影像学脑机制提供了新的手段。基于单模态磁共振脑影像的研究已经发现了ASD在大脑结构、功能及脑网络层面都表现出了广泛的异常,其异常区域包括了杏仁核、梭状回、眶额皮层、内侧前额叶、前扣带、颞顶联合区以及脑岛等,这些脑区大多都涉及到了“社会脑”网络。虽然图像级融合、特征级融合、决策级融合的多模态脑影像分析框架在揭示被试神经机制过程中提供了多维度、多层级的信息,但是基于多模态磁共振脑影像融合的ASD研究还处于起步阶段。基于磁共振脑影像的ASD辅助诊断及亚型划分有望为临床诊疗提供客观依据。未来的研究可以构建一个融合多模态脑影像的分析框架,结合大脑功能、结构以及网络等多维度信息,全面刻画ASD发生发展规律,揭示其非典型神经发育机制。除此之外,未来的研究需要深入挖掘ASD “社会脑”网络异常机制,探索ASD社交障碍环路,寻找潜在精准神经调控靶点,助力临床实现ASD精准诊疗。

关键词: 孤独症谱系障碍, 多模态磁共振, 大脑功能和结构, 辅助诊断, 亚型分类

Abstract: Autism spectrum disorder (ASD) is a highly complex neurodevelopmental disorder characterized by high prevalence, heterogeneity, and lifelong impact. The underlying mechanisms of ASD remain largely unknown. Multimodal magnetic resonance imaging (MRI) has emerged as a novel tool to unveil the neuroimaging mechanisms of ASD. Studies based on single-modal MRI have already revealed widespread abnormalities in brain structure, function, and network connectivity in individuals with ASD. The affected regions encompass the amygdala, fusiform gyrus, orbitofrontal cortex, medial prefrontal cortex, anterior cingulate cortex, superior temporal sulcus, and insula, many of which are implicated in the "social brain" network. While frameworks for multimodal brain imaging analysis, involving image-level fusion, feature-level fusion, and decision-level fusion, offer multidimensional and multilevel information for understanding neural mechanisms in participants, research on ASD based on multimodal MRI fusion is still in its early stages. Moreover, ASD-assisted diagnosis and subtype classification models based on MRI features hold promise for providing objective evidence for clinical diagnosis and treatment. Future research should aim to construct an integrated analysis framework that fuses multimodal brain imaging, incorporating information from various dimensions such as brain function, structure, and networks. This approach will comprehensively delineate the developmental patterns of ASD and reveal its atypical neurodevelopmental mechanisms. Additionally, future studies need to delve into the abnormal mechanisms of the "social brain" network in ASD, explore social impairment circuits, and identify potential precision neural regulatory targets, thereby assisting clinical efforts in achieving precise diagnosis and treatment for ASD.

Key words: ASD, Multimodal magnetic resonance imaging, Brain structure and function, ASD-assisted diagnosis, Subtype classification