ISSN 1671-3710
CN 11-4766/R
主办:中国科学院心理研究所
出版:科学出版社

• •    

人工智能反馈寻求行为的驱动机制及其影响效应

孙芳, 李绍龙, 龙立荣, 雷宣, 曾祥麟, 黄夏虹   

  1. 湖北经济学院工商管理学院, 湖北 430205 中国
    武汉大学经济与管理学院, 湖北 430072 中国
    华中科技大学管理学院, 湖北 430074 中国
  • 收稿日期:2024-10-30 修回日期:2025-03-23 接受日期:2025-04-24
  • 基金资助:
    人工智能反馈寻求行为的驱动机制和双刃剑效应研究(72302082); 基于价值共创共享的平台型企业的组织行为研究:组织协同力视角(72132001); 从“秋后算账”到“及时指点”:数智赋能的敏捷绩效反馈系统研究(72272114)

Driving mechanisms and impact effects of AI feedback-seeking behavior: A research proposal

SUN Fang, LI Shaolong, LONG Lirong, LEI Xuan, ZENG Xianglin, HUANG Xiahong   

  1. Business School, Hubei University of Economics 430205, China
    Economics and Management School, Wuhan University 430072, China
    School of Management, Huazhong University of Science and Technology 430074, China
  • Received:2024-10-30 Revised:2025-03-23 Accepted:2025-04-24

摘要: 面对高度易变、不确定、复杂和模糊的乌卡时代,员工需要主动寻求反馈来发展自己以提升职场竞争力。人工智能技术为员工主动寻求反馈提供了新契机,甲骨文公司的调研报告显示超过50%的员工倾向于主动向人工智能寻求反馈。然而传统反馈寻求行为的研究未将人工智能纳入反馈寻求目标,员工向人工智能寻求反馈的驱动机制和影响效果尚不明晰。同时,人工智能反馈的研究刚兴起,且主要把员工作为反馈的客体,缺乏对员工主动寻求反馈的关注。因此,本文欲融合传统反馈寻求行为和新兴人工智能反馈的研究,拓展反馈寻求行为的概念,将人工智能纳入人类员工寻求反馈的对象之中。围绕人工智能反馈寻求行为,本文欲探究人工智能系统的透明性和拟人性特征对其的驱动机制,并探讨其对员工绩效改善的影响效果。在此基础上,本文能为“新兴技术与员工的心理与行为”等前沿方向提供一些研究证据,并为相关管理实践提供启示。

关键词: 人工智能反馈寻求行为, 透明性, 拟人性, 绩效改善

Abstract: In the current VUCA (volatility, uncertainty, complexity, ambiguity) era, employees must proactively seek feedback to develop and enhance their workplace competitiveness. Artificial intelligence (AI) offers new opportunities for proactive feedback-seeking, with a recent Oracle report indicating that over 50% of employees prefer to seek feedback from AI. However, traditional research on feedback-seeking behavior has not incorporated AI as a feedback source, leaving the driving mechanisms and effects of employee feedback-seeking from AI underexplored. Moreover, emerging studies on AI feedback primarily position employees as passive feedback recipients, lacking attention to employees’ active feedback-seeking behavior. This study aims to bridge the gap by integrating insights from traditional feedback-seeking behavior with emerging research on AI feedback, expanding the concept of feedback-seeking to include AI as a viable source for employee feedback. We explore the driving mechanisms of AI system characteristics, such as transparency and anthropomorphism, on feedback-seeking from AI, and examine the impact of feedback-seeking from AI on employee performance improvement. This research provides evidence for the burgeoning field of “emerging technologies and employee psychology and behavior” and offers practical implications for management practices.

Key words: feedback-seeking from AI, transparency, anthropomorphism, performance improvement