心理科学进展 ›› 2025, Vol. 33 ›› Issue (7): 1181-1198.doi: 10.3724/SP.J.1042.2025.1181 cstr: 32111.14.2025.1181
收稿日期:
2024-08-19
出版日期:
2025-07-15
发布日期:
2025-04-27
通讯作者:
刘源, E-mail: lyuuan@swu.edu.cn基金资助:
Received:
2024-08-19
Online:
2025-07-15
Published:
2025-04-27
摘要:
“趋势”和“动态”是追踪研究中两大研究问题。趋势研究描述心理构念的系统性变化, 动态研究关注多次测量之间的历时性影响, 而近年来也发展出同时考查趋势和动态的模型, 将这两类研究问题进行整合。介绍了趋势、动态以及结合趋势与动态研究的研究问题及其定义, 分别梳理了它们在面板数据、密集追踪数据中使用的统计模型和注意事项, 通过一个健康与退休研究案例数据详细介绍了上述模型如何建模、如何解释。对诸多的纵向模型的关系进行比较与梳理, 指出了模型选择中的问题, 最终给出了模型选择的框架。
中图分类号:
刘源, 姚志晨. (2025). 追踪研究中的趋势与动态:模型发展、整合与分化. 心理科学进展 , 33(7), 1181-1198.
LIU Yuan, YAO Zhichen. (2025). Trends and dynamics in longitudinal research: Model development, integration, and differentiation. Advances in Psychological Science, 33(7), 1181-1198.
模型 | 测量误差 | 截距 | 斜率 | 移动平均 |
---|---|---|---|---|
累积模型(观测变量模型) | ||||
广义交叉滞后模型(GCLM) | √a | √ | ||
动态面板模型(DPM) | √b | |||
自回归潜轨迹模型(ALT) | √b | √ | ||
潜变量自回归潜轨迹模型(LV-ALT) | √ | √b | √ | |
残差模型 | ||||
随机截距自回归移动平均(RI-ARMA) | √ | √b | √ | |
随机截距模型(RI-CLM) | √ | √b | ||
特质−状态−误差模型(TSE) | √c | √b | ||
结构化残差潜增长模型(LCM-SR) | √ | √b | √ |
表1 结合趋势与动态的模型构成一览
模型 | 测量误差 | 截距 | 斜率 | 移动平均 |
---|---|---|---|---|
累积模型(观测变量模型) | ||||
广义交叉滞后模型(GCLM) | √a | √ | ||
动态面板模型(DPM) | √b | |||
自回归潜轨迹模型(ALT) | √b | √ | ||
潜变量自回归潜轨迹模型(LV-ALT) | √ | √b | √ | |
残差模型 | ||||
随机截距自回归移动平均(RI-ARMA) | √ | √b | √ | |
随机截距模型(RI-CLM) | √ | √b | ||
特质−状态−误差模型(TSE) | √c | √b | ||
结构化残差潜增长模型(LCM-SR) | √ | √b | √ |
拟合 指数 | 潜增长模型(LGM) | 交叉滞后模型(CLPM) | 自回归潜轨迹 模型(ALT) | 结构化残差潜 增长模型(LCM-SR) | 动态面板模型(DPM) | 随机截距模型(RI-CLM) |
---|---|---|---|---|---|---|
χ2 | 449.95 | 1368.54 | 172.12 | 211.71 | 294.79 | 241.66 |
df | 41 | 36 | 26 | 32 | 31 | 33 |
AIC | 397705 | 398634 | 397457 | 397485 | 397570 | 397513 |
BIC | 397873 | 398837 | 397730 | 397716 | 397808 | 397737 |
RMSEA | 0.035 | 0.068 | 0.026 | 0.026 | 0.032 | 0.028 |
SRMR | 0.030 | 0.084 | 0.029 | 0.022 | 0.035 | 0.027 |
CFI | 0.977 | 0.924 | 0.992 | 0.990 | 0.985 | 0.988 |
TLI | 0.975 | 0.907 | 0.986 | 0.986 | 0.979 | 0.984 |
表2 追踪模型整体拟合一览
拟合 指数 | 潜增长模型(LGM) | 交叉滞后模型(CLPM) | 自回归潜轨迹 模型(ALT) | 结构化残差潜 增长模型(LCM-SR) | 动态面板模型(DPM) | 随机截距模型(RI-CLM) |
---|---|---|---|---|---|---|
χ2 | 449.95 | 1368.54 | 172.12 | 211.71 | 294.79 | 241.66 |
df | 41 | 36 | 26 | 32 | 31 | 33 |
AIC | 397705 | 398634 | 397457 | 397485 | 397570 | 397513 |
BIC | 397873 | 398837 | 397730 | 397716 | 397808 | 397737 |
RMSEA | 0.035 | 0.068 | 0.026 | 0.026 | 0.032 | 0.028 |
SRMR | 0.030 | 0.084 | 0.029 | 0.022 | 0.035 | 0.027 |
CFI | 0.977 | 0.924 | 0.992 | 0.990 | 0.985 | 0.988 |
TLI | 0.975 | 0.907 | 0.986 | 0.986 | 0.979 | 0.984 |
估计参数 | 自回归潜轨迹模型 (累积模型) | 结构化残差潜增长模型 (残差模型) | 动态面板模型 (累积模型) | 随机截距模型 (残差模型) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Est. | S.E. | p | Est. | S.E. | p | Est. | S.E. | p | Est. | S.E. | p | ||
自回归 | |||||||||||||
工作→工作 | 0.27 | 0.04 | <0.001 | 0.32 | 0.03 | <0.001 | 0.44 | 0.02 | <0.001 | 0.41 | 0.02 | <0.001 | |
散步→散步 | 0.06 | 0.02 | 0.011 | 0.04 | 0.02 | 0.026 | 0.07 | 0.01 | <0.001 | 0.06 | 0.01 | <0.001 | |
交叉滞后 | |||||||||||||
散步→工作 | 0.08 | 0.01 | <0.001 | −0.001 | 0.01 | 0.944 | 0.07 | 0.01 | <0.001 | 0.01 | 0.01 | 0.377 | |
工作→散步 | 0.09 | 0.01 | <0.001 | 0.01 | 0.02 | 0.691 | 0.08 | 0.01 | <0.001 | 0.03 | 0.01 | 0.017 | |
因子均值 | |||||||||||||
工作截距 | 10.05 | 0.61 | <0.001 | 14.38 | 0.24 | <0.001 | /a | / | |||||
工作斜率 | −1.03 | 0.08 | <0.001 | −1.21 | 0.07 | <0.001 | / | / | |||||
散步截距 | 6.22 | 0.28 | <0.001 | 7.30 | 0.14 | <0.001 | / | / | |||||
散步斜率 | −0.15 | 0.08 | 0.045 | −0.02 | 0.05 | 0.629 | / | / | |||||
因子方差 | |||||||||||||
工作截距 | 195.84 | 29.26 | <0.001 | 300.21 | 10.21 | <0.001 | 65.47 | 6.73 | <0.001 | 227.87 | 6.18 | <0.001 | |
工作斜率 | 3.58 | 1.85 | 0.053 | 4.64 | 0.93 | <0.001 | / | / | |||||
散步截距 | 30.45 | 14.82 | 0.040 | 55.90 | 3.40 | <0.001 | 38.37 | 2.73 | <0.001 | 47.43 | 1.68 | <0.001 | |
散步斜率 | −1.38 | 1.50 | 0.359 | 1.39 | 0.50 | 0.005 | / | / |
表3 主要追踪模型参数估计结果
估计参数 | 自回归潜轨迹模型 (累积模型) | 结构化残差潜增长模型 (残差模型) | 动态面板模型 (累积模型) | 随机截距模型 (残差模型) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Est. | S.E. | p | Est. | S.E. | p | Est. | S.E. | p | Est. | S.E. | p | ||
自回归 | |||||||||||||
工作→工作 | 0.27 | 0.04 | <0.001 | 0.32 | 0.03 | <0.001 | 0.44 | 0.02 | <0.001 | 0.41 | 0.02 | <0.001 | |
散步→散步 | 0.06 | 0.02 | 0.011 | 0.04 | 0.02 | 0.026 | 0.07 | 0.01 | <0.001 | 0.06 | 0.01 | <0.001 | |
交叉滞后 | |||||||||||||
散步→工作 | 0.08 | 0.01 | <0.001 | −0.001 | 0.01 | 0.944 | 0.07 | 0.01 | <0.001 | 0.01 | 0.01 | 0.377 | |
工作→散步 | 0.09 | 0.01 | <0.001 | 0.01 | 0.02 | 0.691 | 0.08 | 0.01 | <0.001 | 0.03 | 0.01 | 0.017 | |
因子均值 | |||||||||||||
工作截距 | 10.05 | 0.61 | <0.001 | 14.38 | 0.24 | <0.001 | /a | / | |||||
工作斜率 | −1.03 | 0.08 | <0.001 | −1.21 | 0.07 | <0.001 | / | / | |||||
散步截距 | 6.22 | 0.28 | <0.001 | 7.30 | 0.14 | <0.001 | / | / | |||||
散步斜率 | −0.15 | 0.08 | 0.045 | −0.02 | 0.05 | 0.629 | / | / | |||||
因子方差 | |||||||||||||
工作截距 | 195.84 | 29.26 | <0.001 | 300.21 | 10.21 | <0.001 | 65.47 | 6.73 | <0.001 | 227.87 | 6.18 | <0.001 | |
工作斜率 | 3.58 | 1.85 | 0.053 | 4.64 | 0.93 | <0.001 | / | / | |||||
散步截距 | 30.45 | 14.82 | 0.040 | 55.90 | 3.40 | <0.001 | 38.37 | 2.73 | <0.001 | 47.43 | 1.68 | <0.001 | |
散步斜率 | −1.38 | 1.50 | 0.359 | 1.39 | 0.50 | 0.005 | / | / |
[1] | 邓宇泽, 杨佳奇, 朱芷滢, 王烨晖. (2025). 小学生社会情感能力、师生关系和同伴关系: 一项交叉滞后研究. 心理发展与教育, (3), 322-331. |
[2] | 刁惠悦, 宋继文, 吴伟. (2019). 经验取样法在组织行为学和人力资源管理研究中的贡献、应用误区与展望. 中国人力资源开发, 36(1), 16-34. |
[3] |
方杰, 温忠麟. (2022). 纵向数据的调节效应分析. 心理科学进展, 30(11), 2461-2475.
doi: 10.3724/SP.J.1042.2022.02461 |
[4] | 方杰, 温忠麟. (2023). 中介效应和调节效应模型进阶. 教育科学出版社. |
[5] | 方杰, 温忠麟, 邱皓政. (2021). 纵向数据的中介效应分析. 心理科学, (4), 989-996. |
[6] |
黄顺森, 来枭雄, 张彩, 赵心媚, 代欣然, 祁梦迪..., 王耘. (2024). 青少年手机压力与心理健康的关系:基于多元宇宙样分析和密集追踪方法. 心理学报, 56(6), 745-758.
doi: 10.3724/SP.J.1041.2024.00745 |
[7] | 贾金玲, 卢林鑫, 邱天龙, 宋海迎, 周瀚翔, 吕向彬..., 蔺秀云. (2024). 视障青少年生命意义追寻与生命意义感的相生相克:基于随机截距交叉滞后模型. 中国特殊教育 (6), 44-55. |
[8] | 刘旭, 刘宇潇, 陈倩, 曹敏, 彭霁, 周宗奎. (2024). 儿童友谊质量与主观幸福感和孤独感的双向关系:一项纵向研究. 心理科学, (4), 819-828. |
[9] |
刘源. (2021). 多变量追踪研究的模型整合与拓展: 考察往复式影响与增长趋势. 心理科学进展, 29(10), 1755-1772.
doi: 10.3724/SP.J.1042.2021.01755 |
[10] |
刘源, 都弘彦, 方杰, 温忠麟. (2022). 国内追踪数据分析方法研究与模型发展. 心理科学进展, 30(8), 1734-1746.
doi: 10.3724/SP.J.1042.2022.01734 |
[11] |
刘源, 刘红云. (2018). 非连续性与异质性——多阶段混合增长模型在语言发展研究中的应用. 华东师范大学学报(教育科学版), (1), 137-148+166.
doi: 10.16382/j.cnki.1000-5560.2018.01.017 |
[12] | 马敏, 雷媛, 张丽. (2025). 师生关系与儿童数学焦虑的双向关系: 一项纵向研究. 心理发展与教育, (3), 377-385. |
[13] |
吴凡, 胡月琴. (2023). 人格动态性:过程与特质整合视角. 心理科学进展, 31(7), 1269-1287.
doi: 10.3724/SP.J.1042.2023.01269 |
[14] | 王燕. (2022). 应用时间序列分析 (第6版). 中国人民大学出版社. |
[15] |
王阳, 温忠麟, 付媛姝. (2020). 等效性检验——结构方程模型评价和测量不变性分析的新视角. 心理科学进展, 28(11), 1961-1969.
doi: 10.3724/SP.J.1042.2020.01961 |
[16] | 王苑芮, 黄时华, 金艳, 鲁丹凤. (2023). 基于潜变量增长模型的大学生利他行为变化轨迹. 中国心理卫生杂志, (10), 887-893. |
[17] |
温聪聪. (2025). 惩罚对齐法:测量不变性检验的新方法. 心理科学进展, 33(1): 176-190.
doi: 10.3724/SP.J.1042.2025.0176 |
[18] |
温忠麟, 王一帆, 马鹏, 孟进. (2024). 变量之间的影响关系和多重影响因素的共同作用类型. 心理学报, 56(10), 1462-1470.
doi: 10.3724/SP.J.1041.2024.01462 |
[19] | 邢晓沛, 赵新宇, 胡夏. (2024). 学前儿童执行功能与情绪调节的双向关系:基于交叉滞后与随机截距交叉滞后的分析. 心理科学, (1), 80-88. |
[20] | 邢璐, 骆南峰, 孙健敏, 李诗琪, 尹奎. (2019). 经验取样法的数据分析: 方法及应用. 中国人力资源开发, 36(1), 35-52. |
[21] | 袁帅, 曹文蕊, 张曼玉, 吴诗雅, 魏馨怡. (2021). 通向更精确的因果分析: 交叉滞后模型的新进展. 中国人力资源开发, 38(2), 23-41. |
[22] |
张斌, 张安琪, 邱致燕, 曾奕欣, 曾成伟, 熊思成..., 王亚楠. (2023). 青少年早期限制性饮食的发展轨迹:基于潜变量混合增长模型的分析. 心理与行为研究, (5), 621-628.
doi: 10.12139/j.1672-0628.2023.05.007 |
[23] | 张刚要, 俞犇. (2024). 探究社区对大学生在线自我调节学习的影响——基于潜变量增长模型的分析. 现代教育技术, 34 (5), 114-122. |
[24] |
郑舒方, 张沥今, 乔欣宇, 潘俊豪. (2021). 密集追踪数据分析:模型及其应用. 心理科学进展, 29(11), 1948-1972.
doi: 10.3724/SP.J.1042.2021.01948 |
[25] | Allison, P. D., Williams, R., & Moral-Benito, E. (2017). Maximum likelihood for cross-lagged panel models with fixed effects. Socius: Sociological Research for a Dynamic World, 3, 1-17. https://doi.org/10.1177/2378023117710578 |
[26] | Andersen, H. K. (2022). Equivalent approaches to dealing with unobserved heterogeneity in cross-lagged panel models? Investigating the benefits and drawbacks of the latent curve model with structured residuals and the random intercept cross-lagged panel model. Psychological Methods, 27(5), 730-751. |
[27] | Asendorpf, J., B. (2021). Modeling developmental processes. In J. F. Rauthmann (Ed) The handbook of personality dynamics and processes (pp. 815-835). Academic Press. |
[28] | Asparouhov, T., Hamaker, E. L., & Muthén, B. (2018). Dynamic structural equation models. Structural Equation Modeling: A Multidisciplinary Journal, 25(3), 359-388. |
[29] | Asparouhov, T., & Muthén, B. (2024, May 13). Continuous time dynamic structural equation models. Version 4. http://www.statmodel.com/download/CTRDSEM.pdf |
[30] | Asparouhov, T., & Muthén, B. (2020). Comparison of models for the analysis of intensive longitudinal data. Structural Equation Modeling: A Multidisciplinary Journal, 27(2), 275-297. |
[31] | Asparouhov, T., & Muthén, B. (2019). Latent variable centering of predictors and mediators in multilevel and time-series models. Structural Equation Modeling: A Multidisciplinary Journal, 26(1), 119-142. |
[32] | Asparouhov, T., & Muthén, B. (2023a). Multiple group alignment for exploratory and structural equation models. Structural Equation Modeling: A Multidisciplinary Journal, 30(2), 169-191. |
[33] | Asparouhov, T., & Muthén, B. (2023b). Residual structural equation models. Structural Equation Modeling: A Multidisciplinary Journal, 30(1), 1-31. |
[34] | Berry, D., & Willoughby, M. T. (2017). On the practical interpretability of cross‐lagged panel models: Rethinking a developmental workhorse. Child Development, 88(4), 1186-1206. |
[35] |
Bainter, S. A., & Howard, A. L. (2016). Comparing within- person effects from multivariate longitudinal models. Developmental Psychology, 52(12), 1955-1968.
pmid: 27762566 |
[36] | Bianconcini, S., & Bollen, K. A. (2018). The latent variable- autoregressive latent trajectory model: A general framework for longitudinal data analysis. Structural Equation Modeling: A Multidisciplinary Journal, 25(5), 791-808. |
[37] | Blanke, E. S., Neubauer, A. B., Houben, M., Erbas, Y., & Brose, A. (2022). Why do my thoughts feel so bad? Getting at the reciprocal effects of rumination and negative affect using dynamic structural equation modeling. Emotion, 22(8), 1773-1786. |
[38] | Bollen, K. A., & Curran, P. J. (2004). Autoregressive Latent Trajectory (ALT) models a synthesis of two traditions. Sociological Methods & Research, 32(3), 336-383. |
[39] | Braun, L., Göllner, R., Rieger, S., Trautwein, U., & Spengler, M. (2021). How state and trait versions of self-esteem and depressive symptoms affect their interplay: A longitudinal experimental investigation. Journal of Personality and Social Psychology, 120(1), 206-225. |
[40] | Bühler, J. L., & Orth, U. (2022). Rank-order stability of relationship satisfaction: A meta-analysis of longitudinal studies. Journal of Personality and Social Psychology, 123(5), 1138-1165. |
[41] | Castro-Alvarez, S., Tendeiro, J. N., de Jonge, P., Meijer, R. R., & Bringmann, L. F. (2022). Mixed-effects trait-state- occasion model: Studying the psychometric properties and the person-situation interactions of psychological dynamics. Structural Equation Modeling: A Multidisciplinary Journal, 29(3), 438-451. |
[42] | Castro-Alvarez, S., Tendeiro, J. N., Meijer, R. R., & Bringmann, L. F. (2022). Using structural equation modeling to study traits and states in intensive longitudinal data. Psychological Methods, 27(1), 17-43. |
[43] | Chen, D. Y., Di, X., & Biswal, B. (2024). Cerebrovascular reactivity increases across development in multiple networks as revealed by a breath-holding task: A longitudinal fMRI study. Human Brain Mapping, 45(1), e26515. https://doi.org/10.1002/hbm.26515 |
[44] | Curran, P., J., & Bollen, K. A. (2001). The best of both worlds:Combining autoregressive and latent curve models. In L. M. Collins & A. G. Sayer (Eds.), New methods for the analysis of change. (pp. 107-135). American Psychological Association. |
[45] |
Curran, P. J., Howard, A. L., Bainter, S. A., Lane, S. T., & McGinley, J. S. (2014). The separation of between-person and within-person components of individual change over time: A latent curve model with structured residuals. Journal of Consulting and Clinical Psychology, 82(5), 879-894.
doi: 10.1037/a0035297 pmid: 24364798 |
[46] | Dishop, C. R., & DeShon, R. P. (2022). A tutorial on Bollen and Brand’s approach to modeling dynamics while attending to dynamic panel bias. Psychological Methods, 27(6), 1089-1107. |
[47] |
Driver, C. C., & Voelkle, M. C. (2018). Hierarchical Bayesian continuous time dynamic modeling. Psychological Methods, 23(4), 774-799.
doi: 10.1037/met0000168 pmid: 29595295 |
[48] |
Ernst, A. F., Albers, C. J., Jeronimus, B. F., & Timmerman, M. E. (2020). Inter-individual differences in multivariate time-series. European Journal of Psychological Assessment, 36(3). 482-491.
doi: 10.1027/1015-5759/a000578 |
[49] | Ernst, A. F., Albers, C. J., & Timmerman, M. E. (2024). A comprehensive model framework for between-individual differences in longitudinal data. Psychological Methods, 29(4), 748-766. |
[50] | Ernst, A. F., Timmerman, M. E., Ji, F., Jeronimus, B. F., & Albers, C. J. (2024). Mixture multilevel vector-autoregressive modeling. Psychological Methods, 29(1), 137-154. |
[51] | Falkenström, F., Solomonov, N., & Rubel, J. (2023). To detrend, or not to detrend, that is the question? The effects of detrending on cross-lagged effects in panel models. Psychological Methods. https://doi.org/10.1037/met0000632 |
[52] | Goldstein, H., & Woodhouse, G. (2001). Modelling repeated measurements. In A. H. Leyland & H. Goldstein (Eds.), Multilevel modeling of health statistics (pp. 13-26). John Wiley & Son, Ltd. |
[53] | Greenberg, D. F., & Kessler, R. C. (1982). Equilibrium and identification in linear panel models. Sociological Methods & Research, 10(4), 435-451. |
[54] | Guo, K., Zhao, X., Luo, J., Ren, Y., Liu, Y., & Yang, J. (2024). Relationship of sleep with diurnal cortisol rhythm considering sleep measurement and cortisol sampling schemes. Psychoneuroendocrinology, 162. https://doi.org/10.1016/j.psyneuen.2023.106952 |
[55] | Hamaker, E. L. (2005). Conditions for the equivalence of the autoregressive latent trajectory model and a latent growth curve model with autoregressive disturbances. Sociological Methods & Research, 33(3), 404-416. |
[56] | Hamaker, E. L. (2023). The within-between dispute in cross- lagged panel research and how to move forward. Psychological Methods. https://doi.org/10.1037/met0000600 |
[57] |
Hamaker, E. L., Kuiper, R. M., & Grasman, R. P. (2015). A critique of the cross-lagged panel model. Psychological Methods, 20(1), 102-116. https://doi.org/10.1037/a0038889
doi: 10.1037/a0038889 URL pmid: 25822208 |
[58] | Hamilton, J., D. (1994). State-space models. In R. F. Engle & D. L. McFadden (Eds.), Handbook of Econometrics (Vol. 4, pp. 3039-3080). Elsevier. |
[59] | Hecht, M., Walther, J., Arnold, M., & Zitzmann, S. (2023). Finding the optimal number of persons (n) and time points (t) for maximal power in dynamic longitudinal models given a fixed budget. Structural Equation Modeling: A Multidisciplinary Journal, 31(3), 535-551. |
[60] | Hecht, M., & Zitzmann, S. (2021a). Exploring the unfolding of dynamic effects with continuous-time models: Recommendations concerning statistical power to detect peak cross-lagged effects. Structural Equation Modeling: A Multidisciplinary Journal, 28(6), 894-902. |
[61] | Hecht, M., & Zitzmann, S. (2021b). Sample size recommendations for continuous-time models: Compensating shorter time series with larger numbers of persons and vice versa. Structural Equation Modeling: A Multidisciplinary Journal, 28(2), 229-236. |
[62] | Hsiao, C. (2022). Analysis of panel data (4th ed). Cambridge University Press. |
[63] | Hori, K., & Miyazaki, Y. (2023a). Cross-level covariance approach to the disaggregation of between-person effect and within-person effect. Psychological Methods. https://doi.org/10.1037/met0000548 |
[64] | Hori, K., & Miyazaki, Y. (2023b). Latent curve detrending for disaggregating between-person effect and within-person effect. Structural Equation Modeling: A Multidisciplinary Journal, 30(2), 192-213. |
[65] | Hoyle, R. H. (2023). Handbook of structural equation modeling (2nd ed). Guilford Press. |
[66] | Jongerling, J., & Hamaker, E. L. (2011). On the trajectories of the predetermined ALT model: What are we really modeling? Structural Equation Modeling: A Multidisciplinary Journal, 18(3), 370-382. |
[67] | Kenny, D. A., & Harackiewicz, J. M. (1979). Cross-lagged panel correlation: Practice and promise. Journal of Applied Psychology, 64(4), 372-379. |
[68] | Kenny, D., A., & Zautra, A. (2001). Trait-state models for longitudinal data. In L. M. Collins & A. G. Sayer (Eds.), New methods for the analysis of change (pp. 243-263). American Psychological Association. |
[69] | Kim, E., Cao, C., Liu, S., Wang, Y., & Dedrick, R. (2023). Testing measurement invariance over time with intensive longitudinal data and identifying a source of non- invariance. Structural Equation Modeling: A Multidisciplinary Journal, 30(3), 393-411. |
[70] |
Li, W., Liu, Y., Qiu, J., & Li, Y. (2023). Bidirectional relationship between insular grey matter volume and alexithymia: Evidence from a longitudinal study. Journal of Affective Disorders, 339, 799-806.
doi: 10.1016/j.jad.2023.07.041 pmid: 37442449 |
[71] | Lohmann, J. F., Zitzmann, S., & Hecht, M. (2024). Studying between-subject differences in trends and dynamics: Introducing the random coefficients continuous-time latent curve model with structured residuals. Structural Equation Modeling: A Multidisciplinary Journal. 31(1), 151-164. |
[72] | Lohmann, J. F., Zitzmann, S., Voelkle, M. C., & Hecht, M. (2022). A primer on continuous-time modeling in educational research: An exemplary application of a continuous-time latent curve model with structured residuals (CT-LCM-SR) to PISA Data. Large-Scale Assessments in Education, 10, 5. https://doi.org/10.1186/s40536-022-00126-8 |
[73] | Luo, X., & Hu, Y. (2023). Temporal misalignment in intensive longitudinal data: Consequences and solutions based on dynamic structural equation models. Structural Equation Modeling: A Multidisciplinary Journal. 31(1), 118-131. |
[74] |
Lucas, R. E., & Donnellan, M. B. (2007). How stable is happiness? Using the STARTS model to estimate the stability of life satisfaction. Journal of Research in Personality, 41(5), 1091-1098.
pmid: 18836511 |
[75] | Lütkepohl, H. (2005). New introduction to multiple time series analysis. Springer Science & Business Media. |
[76] |
McArdle, J. J., & Epstein, D. (1987). Latent growth curves within developmental structural equation models. Child Development, 58(1), 110-133.
pmid: 3816341 |
[77] | McNeish, D., & Hamaker, E. L. (2020). A primer on two- level dynamic structural equation models for intensive longitudinal data in Mplus. Psychological Methods, 25(5), 610-635. |
[78] | Mills, T. C. (2011). The formal modelling of stationary time series: Wold and the Russians. In T. C. Mills, The foundations of modern time series analysis. Palgrave advanced texts in econometrics series (pp. 142-182). Palgrave Macmillan. |
[79] | Mulder, J. D., & Hamaker, E. L. (2021). Three extensions of the random intercept cross-lagged panel model. Structural Equation Modeling: A Multidisciplinary Journal, 28(4), 638-648. |
[80] | Murayama, K., & Gfrörer, T. (2024). Thinking clearly about time-invariant confounders in cross-lagged panel models: A guide for choosing a statistical model from a causal inference perspective. Psychological Methods. https://doi.org/10.1037/met0000647 |
[81] | Muthén, B., & Asparouhov, T. (2011). Beyond multilevel regression modeling:Multilevel analysis in a general latent variable framework. In J. Hox & J. K. Roberts (Eds) Handbook of advanced multilevel analysis (pp. 15-40). |
[82] | Muthén, B., & Asparouhov, T. (2018). Recent methods for the study of measurement invariance with many groups: Alignment and random effects. Sociological Methods & Research, 47(4), 637-664. |
[83] | Muthén, B., & Asparouhov, T. (2024). Can cross-lagged panel modeling be relied on to establish cross-lagged effects? The case of contemporaneous and reciprocal effects. Psychological Methods. https://doi.org/10.1037/met0000661 |
[84] | Muthén, B., Asparouhov, T., & Keijsers, L. (2024). Dynamic structural equation modeling with cycles. Structural Equation Modeling: A Multidisciplinary Journal, 32(2), 264-286. https://doi.org/10.1080/10705511.2024.2406510 |
[85] | Núñez-Regueiro, F., Juhel, J., Bressoux, P., & Nurra, C. (2022). Identifying reciprocities in school motivation research: A review of issues and solutions associated with cross-lagged effects models. Journal of Educational Psychology, 114(5), 945-965. |
[86] | Orth, U., Clark, D. A., Donnellan, M. B., & Robins, R. W. (2021). Testing prospective effects in longitudinal research: Comparing seven competing cross-lagged models. Journal of Personality and Social Psychology, 120(4), 1013-1034. |
[87] |
Orth, U., Krauss, S., & Back, M. D. (2024). Development of narcissism across the life span: A meta-analytic review of longitudinal studies. Psychological Bulletin, 150(6), 643-665.
doi: 10.1037/bul0000436 pmid: 38990657 |
[88] | Persons, W. M. (1917). On the variate difference correlation method and curve-fitting. Publications of the American Statistical Association, 15(118), 602-642. |
[89] |
Roberts, B. W., & DelVecchio, W. F. (2000). The rank-order consistency of personality traits from childhood to old age: A quantitative review of longitudinal studies. Psychological Bulletin, 126(1), 3-25.
doi: 10.1037/0033-2909.126.1.3 pmid: 10668348 |
[90] | Roberts, B., W., & Nickel, L. B. (2021). Personality development across the life course:A neo-socioanalytic perspective. In O. P. John & R. W. Robins (Eds.), Handbook of personality: Theory and research (4th ed., pp. 259-283). The Guilford Press. |
[91] | Rogosa, D. R., & Willett, J. B. (1985). Understanding correlates of change by modeling individual differences in growth. Psychometrika, 50, 203-228. |
[92] | Rovine, M., J., & Walls, T. A. (2006). Multilevel autoregressive modeling of interindividual differences in the stability of a process. In T. A. Walls & J. L. Schafer (Eds.), Models for intensive longitudinal data (pp. 124-147). Oxford University Press. |
[93] | Steyer, R., Mayer, A., Geiser, C., & Cole, D. A. (2015). A theory of states and traits—Revised. Annual Review of Clinical Psychology, 11(1), 71-98. |
[94] |
Trzesniewski, K. H., Donnellan, M. B., & Robins, R. W. (2003). Stability of self-esteem across the life span. Journal of Personality and Social Psychology, 84(1), 205-220.
pmid: 12518980 |
[95] | Tseng, M.-C. (2024). Fitting cross-lagged panel models with the residual structural equations approach. Structural Equation Modeling: A Multidisciplinary Journal, 31(5), 923-931. |
[96] | Usami, S. (2021). On the differences between general cross- lagged panel model and random-intercept cross-lagged panel model: Interpretation of cross-lagged parameters and model choice. Structural Equation Modeling: A Multidisciplinary Journal, 28(3), 331-344. |
[97] | Usami, S., Hayes, T., & McArdle, J. J. (2016). Inferring longitudinal relationships between variables: Model selection between the latent change score and autoregressive cross-lagged factor models. Structural Equation Modeling: A Multidisciplinary Journal, 23(3), 331-342. |
[98] |
Usami, S., Murayama, K., & Hamaker, E. L. (2019). A unified framework of longitudinal models to examine reciprocal relations. Psychological Methods, 24(5), 637-657.
doi: 10.1037/met0000210 pmid: 30998041 |
[99] |
Voelkle, M. C., Gische, C., Driver, C. C., & Lindenberger, U. (2018). The role of time in the quest for understanding psychological mechanisms. Multivariate Behavioral Research, 53(6), 782-805.
doi: 10.1080/00273171.2018.1496813 pmid: 30668172 |
[100] | Walther, J. K., Hecht, M., Nagengast, B., & Zitzmann, S. (2024). To be long or to be wide: How data format influences convergence and estimation accuracy in multilevel structural equation modeling. Structural Equation Modeling: A Multidisciplinary Journal, 31(5), 759-774. |
[101] |
Yan, N., Liu, Y., Ansari, A., Li, K., & Li, X. (2021). Mothers’ depressive symptoms and children’s internalizing and externalizing behaviors: Examining reciprocal trait-state effects from age 2 to 15. Child Development, 92(6), 2496-2508.
doi: 10.1111/cdev.13609 pmid: 34156703 |
[102] | Zhao, X., Hu, W., Liu, Y., Guo, K., Liu, Y., & Yang, J. (2023). Separating the influences of means and daily variations of sleep on the stress-induced salivary cortisol response. Psychoneuroendocrinology, 151. https://doi.org/10.1016/j.psyneuen.2023.106059 |
[103] | Zyphur, M. J., Allison, P. D., Tay, L., Voelkle, M. C., Preacher, K. J., Zhang, Z.,... Diener, E. (2020). From data to causes I: Building a general cross-lagged panel model (GCLM). Organizational Research Methods, 23(4), 651-687. |
[104] | Zyphur, M. J., Voelkle, M. C., Tay, L., Allison, P. D., Preacher, K. J., Zhang, Z.,... Diener, E. (2020). From data to causes II: Comparing approaches to panel data analysis. Organizational Research Methods, 23(4), 688-716. |
[1] | 何鸿, 张馨月, 石京鸿, 刘强. 转回努力训练对心智游移的影响及其机制探索[J]. 心理科学进展, 2025, 33(7): 1077-1090. |
[2] | 吴丽丽, 李泽, 毕天一, 付饶. 失能老人潜在心理需求的识别与满足:基于定制化资源配置的动态优化[J]. 心理科学进展, 2025, 33(5): 766-779. |
[3] | 方杰, 温忠麟, 董育铭, 王晓洁. 密集追踪数据的中介效应分析[J]. 心理科学进展, 2025, 33(4): 717-728. |
[4] | 方霞, 潘之禾. 动态序列情境对面部表情知觉的影响和作用机制[J]. 心理科学进展, 2025, 33(1): 1-10. |
[5] | 肖悦, 刘红云, 徐永泽. 密集追踪成对数据分析的模型建构探索[J]. 心理科学进展, 2024, 32(9): 1450-1462. |
[6] | 何婷, 胡惠南, 乔璐, 杨靓靓, 李明英, 蔺秀云. 父母应对社会化如何影响儿童青少年适应:基于长时与实时时间轴的视角[J]. 心理科学进展, 2024, 32(8): 1342-1353. |
[7] | 周琦玮, 李倩, 梁爽. 员工对企业数字化转型的反应研究: 基于压力的理论视角[J]. 心理科学进展, 2024, 32(4): 594-615. |
[8] | 罗晓慧, 刘红云. 密集追踪研究中测验信度的估计:多层结构和动态特性的视角[J]. 心理科学进展, 2024, 32(4): 700-714. |
[9] | 李精精, 张剑, 张娜. 团队工作激情如何影响团队创造力?动态计算视角下的多层次因果环机制探究[J]. 心理科学进展, 2024, 32(2): 206-227. |
[10] | 郭鸣谦, 潘晚坷, 胡传鹏. 认知建模中模型比较的方法[J]. 心理科学进展, 2024, 32(10): 1736-1756. |
[11] | 党敏, 蔡文琦, 陈发坤, 王小娟, 杨剑峰. 加工需求驱动下词汇阅读神经通路的动态协作机制[J]. 心理科学进展, 2024, 32(1): 118-130. |
[12] | 王玉婷, 黄伟, 唐颖, 任伟, 颜红梅. 基于扩展卷积长短时记忆网络的动态视频脑信息分类解码研究[J]. 心理科学进展, 2023, 31(suppl.): 41-41. |
[13] | 温芳芳, 柯文琳, 方泽鸣, 王阳, 雷雅甜, 佐斌. 性别偏格对青少年同伴评价的影响及动态演化[J]. 心理科学进展, 2023, 31(8): 1331-1341. |
[14] | 吴凡, 胡月琴. 人格动态性:过程与特质整合视角[J]. 心理科学进展, 2023, 31(7): 1269-1287. |
[15] | 方俊燕, 温忠麟. 追踪研究中的内生性问题:来源与应对[J]. 心理科学进展, 2023, 31(4): 507-518. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||