心理科学进展 ›› 2025, Vol. 33 ›› Issue (3): 465-476.doi: 10.3724/SP.J.1042.2025.0465 cstr: 32111.14.2025.0465
收稿日期:
2024-07-11
出版日期:
2025-03-15
发布日期:
2025-01-24
通讯作者:
张连成, E-mail: zlc-hhht@163.com基金资助:
GUO Yi, ZHANG Lian-cheng(), TAO Ying-ying, ZHU Liang-hao, WANG Ting
Received:
2024-07-11
Online:
2025-03-15
Published:
2025-01-24
摘要:
运动可以提升机体脑源性神经营养因子(Brain derived neurotrophic factor, BDNF)水平, 而BDNF又与认知表现密切相关。由此引出一个问题, BDNF是运动促进认知的生物学机制吗?根据来自动物模型和人体的生物学机理及部分实验研究证据推论, 运动确可通过增加机体BDNF水平提高认知功能。然而, 也有人体研究得出不一致结论, 如运动未能引起BDNF的相应增加, 或者运动后认知表现与BDNF的变化步调不一致等。值得注意的是, 前人研究结论均为间接推导, 尚未深入探讨BDNF与认知表现随运动变化的时间进程, 且BDNF的诸多影响因素削弱了众研究结果的准确性和可比性, 阻碍了理论的发展和BDNF的实践应用。因此, 通过整理和分析相关证据与挑战, 未来研究需进一步明确研究主题, 设计严谨的中介实验、开展中介效应的元分析, 严格控制运动方案、被试人群、测量手段等额外变量的影响, 细化潜在调节效应测试, 进而检验BDNF在运动促进认知过程中的介导作用, 揭示运动通过BDNF促进认知的量效关系, 探究BDNF与不同认知功能增益的背后作用机制。这将为运动认知效益的生物学机制研究提供理论指导和有效补充, 为运动实践带来新视角, 助力健康中国建设。
中图分类号:
郭艺, 张连成, 陶莹莹, 朱良昊, 王婷. (2025). BDNF是运动促进认知的生物学机制吗?证据、挑战与展望. 心理科学进展 , 33(3), 465-476.
GUO Yi, ZHANG Lian-cheng, TAO Ying-ying, ZHU Liang-hao, WANG Ting. (2025). Is BDNF an underlying biological mechanism in exercise-induced cognition? Evidence, challenges, and prospects. Advances in Psychological Science, 33(3), 465-476.
[1] | 刘瑾彦, 刘向云, 陈佩杰, 王茹. (2018). 易筋经对老年人认知功能和外周血BDNF水平的影响. 上海体育学院学报, 42(2), 109-112. |
[2] | 路毅, 邓文冲. (2021). 不同运动方式对大脑结构及认知功能的调节作用及差异. 中国组织工程研究, 25(20), 3252-3258. |
[3] | 满晓霞, 魏高峡. (2021). 运动重塑大脑海马:来自神经科学的研究证据与发展展望. 武汉体育学院学报, 55(4), 74-81. |
[4] |
夏海硕, 丁晴雯, 庄岩, 陈安涛. (2018). 体育锻炼促进认知功能的脑机制. 心理科学进展, 26(10), 1857-1868.
doi: 10.3724/SP.J.1042.2018.01857 |
[5] | 于涛. (2020). 运动从外周调控脑内BDNF表达促进认知的研究进展. 中国体育科技, 56(11), 71-77. |
[6] | 张晓羽, 赵海滨. (2024). 基于增强现实技术的八段锦训练对老年高血压患者认知功能的影响. 现代中医临床, 31(2), 19-27. |
[7] |
Babaei, P., Damirchi, A., Mehdipoor, M., & Tehrani, B. S. (2014). Long term habitual exercise is associated with lower resting level of serum BDNF. Neuroscience Letters, 566, 304-8.
doi: 10.1016/j.neulet.2014.02.011 pmid: 24572590 |
[8] | Banerjee, M., & Shenoy, R. R. (2023). Emphasizing roles of BDNF promoters and inducers in Alzheimer’s disease for improving impaired cognition and memory. Journal of Basic and Clinical Physiology and Pharmacology, 34(2), 125-136. |
[9] | Barde, Y. A., Edgar, D., & Thoenen, H. (1982). Purification of a new neurotrophic factor from mammalian brain. The EMBO Journal, 1(5), 549-553. |
[10] | Basso, J. C., Shang, A., Elman, M., Karmouta, R., & Suzuki, W. A. (2015). Acute exercise improves prefrontal cortex but not hippocampal function in healthy adults. Journal of the International Neuropsychological Society, 21(10), 791-801. |
[11] |
Buchman, A. S., Yu, L., Boyle, P. A., Julie, A., Schneider, P. L., De, Jager., & Bennett, D. A. (2016). Higher brain BDNF gene expression is associated with slower cognitive decline in older adults. Neurology, 86(8), 735-741.
doi: 10.1212/WNL.0000000000002387 pmid: 26819457 |
[12] |
Campos, C., Rocha, N. B., Lattari, E., Paes, F., Nardi, A. E., & Machado, S. (2016). Exercise-induced neuroprotective effects on neurodegenerative diseases: The key role of trophic factors. Expert Review of Neurotherapeutics, 16(6), 723-34.
doi: 10.1080/14737175.2016.1179582 pmid: 27086703 |
[13] | Castano, A., Albany, L., de Lima, V. C., Barbieri, J. F., de Lucena, E. G. P., Gaspari, A. F., … Uchida, M. C. (2022). Resistance training combined with cognitive training increases brain derived neurotrophic factor and improves cognitive function in healthy older adults. Frontiers in Psychology, 13, 870561 |
[14] | Castells-Sánchez, A., Roig-Coll, F., Dacosta-Aguayo, R., Lamonja-Vicente, N., Torán-Monserrat, P., Pera, G., ... Mataró, M. (2022). Molecular and brain volume changes following aerobic exercise, Cognitive and combined training in physically inactive healthy late-middle-aged adults: The projecte moviment randomized controlled trial. Frontiers in Human Neuroscience, 16, 854175. |
[15] |
Chang, Y. K., Labban, J. D., Gapin, J. I., & Etnier, J. L. (2012). The effects of acute exercise on cognitive performance: A meta-analysis. Brain Research, 1453, 87-101.
doi: 10.1016/j.brainres.2012.02.068 pmid: 22480735 |
[16] | Coles, K., & Tomporowski, P. D. (2008). Effects of acute exercise on executive processing, Short-term and long- term memory. Journal of Sports Sciences, 26(3), 333-344. |
[17] |
Cunha, C., Angelucci, A., D’ Antoni, A., Mate, D. D., Stephen, B. D., Nicoletta, B., & Brambilla, R. (2009). Brain-derived neurotrophic factor (BDNF) overexpression in the forebrain results in learning and memory impairments. Neurobiology of Disease, 33(3), 358-368.
doi: 10.1016/j.nbd.2008.11.004 pmid: 19095063 |
[18] |
Damirchi, A., Hosseini, F., & Babaei, P. (2018). Mental training enhances cognitive function and BDNF more than either physical or combined training in elderly women with MCI: A small-scale study. American Journal of Alzheimers Disease and Other Dementias, 33(1), 20-29.
doi: 10.1177/1533317517727068 pmid: 28946752 |
[19] | de Assis, G. G., & de Almondes, K. M. (2017). Exercise- dependent BDNF as a modulatory factor for the executive processing of individuals in course of cognitive decline: A systematic review. Frontiers in Psychology, 8, 584. |
[20] | de Azevedo, K. P. M., de Oliveira, V. H., de Medeiros, G. C. B. S., de Sousa Mata, A. N.., García, D. A., Martínez, D. G., … Piuvezam, G.,(2020). The effects of exercise on BDNF levels in adolescents: A systematic review with meta-analysis. International Journal of Environmental Research and Public Health, 17(17), 6056. |
[21] |
Dinoff, A., Herrmann, N., Swardfager, W., & Lanctot, K. L. (2017). The effect of acute exercise on blood concentrations of brain-derived neurotrophic factor in healthy adults: A meta-analysis. European Journal of Neuroscience, 46(1), 1635-1646.
doi: 10.1111/ejn.13603 pmid: 28493624 |
[22] |
Edelmann, E., Cepeda-Prado, E., Lichtenecker, P., Franck, M., Brigadski, T., & Leßmann, V. (2015). Theta burst firing recruits BDNF release and signaling in postsynaptic CA1 neurons in spike-timing-dependent LTP. Neuron, 86(4), 1041-1054.
doi: S0896-6273(15)00336-0 pmid: 25959732 |
[23] | El Hayek, L., Khalifeh, M., Zibara, V., Abi Assaad, X., Emmanuel, X., Karnib, N., ... Sleiman, X. F. (2019). Lactate mediates the effects of exercise on learning and memory through SIRT1-dependent Activation of hippocampal brain-derived neurotrophic factor (BDNF). The Journal of Neuroscience, 39(13), 2369-2382. |
[24] | Etnier, J. L., Wideman, L., Labban, J. D., Piepmeier, A.T., Pendleton, D. M., Dvorak, K. K., Becofsky, K. (2016). The effects of acute exercise on memory and brain-derived neurotrophic factor (BDNF). Journal of Sport and Exercise Psychology, 38(4), 331-340. |
[25] | Farrukh, S., Habib, S., Rafaqat, A., Sarfraz, A., Sarfraz, Z., & Tariq, H. (2023). Association of exercise, Brain-derived neurotrophic factor, and cognition among older women: A systematic review and meta-analysis. Archives of Gerontology and Geriatrics, 114, 105068. |
[26] | Fernández-Rodríguez, R., Álvarez-Bueno, C., Martínez- Ortega, I. A., Martínez-Vizcaíno, V., Eumann Mesas, A., & Notario-Pacheco, B. (2022). Immediate effect of high-intensity exercise on brain-derived neurotrophic factor in healthy young adults: A systematic review and meta-analysis. Journal of Sport and Health Science, 11(3), 367-375. |
[27] | Goda, A., Ohgi, S., Kinpara, K., Shigemori, K., Fukuda, K., & Schneider, E. B. (2013). Changes in serum BDNF levels associated with moderate-intensity exercise in healthy young Japanese men. SpringerPlus, 2(1), 678. |
[28] | Grégoire, C. A., Berryman, N., St-Onge, F, Minh Vu, T. T., Bosquet, L., Arbour, N., & Bherer, L. (2019). Gross motor skills training leads to increased brain-derived neurotrophic factor levels in healthy older adults: A pilot study. Frontiers in Physiology, 10, 410. |
[29] |
Hamilton, G. F., & Rhodes, J. S. (2015). Exercise regulation of cognitive function and neuroplasticity in the healthy and diseased brain. Progress in Molecular Biology and Translational Science, 135, 381-401.
doi: 10.1016/bs.pmbts.2015.07.004 pmid: 26477923 |
[30] |
Huang, H., Li, W., Qin, Z., Shen, H., Li, X., & Wang, W. (2021). Physical exercise increases peripheral brain- derived neurotrophic factors in patients with cognitive impairment: A meta-analysis. Restorative Neurology and Neuroscience, 39(3), 159-171.
doi: 10.3233/RNN-201060 pmid: 33998558 |
[31] |
Hwang, J., Brothers, R. M., Castelli, D. M., Elizabeth, M., Glowacki, Yen, T. Chen, Mandy, M. Salinas, ... Calvert, H. (2016). Acute high-intensity exercise-induced cognitive enhancement and brain-derived neurotrophic factor in young, healthy adults. Neuroscience Letters, 630, 247-253.
doi: S0304-3940(16)30527-4 pmid: 27450438 |
[32] |
Inoue, S., D., Monteiro, P. A., Gerosa-Neto, J., Santana, P. R., Peres, F. P., ... Lira, F. S. (2020). Acute increases in brain-derived neurotrophic factor following high or moderate-intensity exercise is accompanied with better cognition performance in obese adults. Scientific Reports, 10, 13493.
doi: 10.1038/s41598-020-70326-1 pmid: 32778721 |
[33] | Jaberi, S., & Fahnestock, M. (2023). Mechanisms of the beneficial effects of exercise on brain-derived neurotrophic factor expression in Alzheimer’s disease. Biomolecules, 13 (11), 1577. |
[34] | Jemni, M., Zaman, R., Carrick, F. R., Clarke, N. D., Marina, M., Bottoms, L., ... Konukman, F. (2023). Exercise improves depression through positive modulation of brain-derived neurotrophic factor (BDNF): A review based on 100 manuscripts over 20 years. Frontiers in Physiology, 14, 1102526. |
[35] |
Komulainen, P., Pedersen, M., Hänninen, T., Bruunsgaard, H., Lakka, T. A., Kivipelto, M., ... Rauramaa, R. (2008). BDNF is a novel marker of cognitive function in ageing women: The DR’s EXTRA study. Neurobiology of Learning and Memory, 90(4), 596-603.
doi: 10.1016/j.nlm.2008.07.014 pmid: 18707012 |
[36] | Kovacevic, A., Fenesi, B., Paolucci, E., & Heisz, J. J. (2020). The effects of aerobic exercise intensity on memory in older adults. Applied Physiology, Nutrition, and Metabolism, 45(6), 591-600. |
[37] |
Lambourne, K., & Tomporowski, P. (2010). The effect of exercise-induced arousal on cognitive task performance: A meta-regression analysis. Brain Research, 1341, 12-24.
doi: 10.1016/j.brainres.2010.03.091 pmid: 20381468 |
[38] | Lipsey, M. W., & Wilson, D. B. (2001). Practical meta- analysis. Sage Publications. |
[39] |
Liu, Y., Yan, T., Chu, J. M. T., Chen, Y., Dunnett, S., Ho, Y. S., ... Chang, R. C. C. (2019). The beneficial effects of physical exercise in the brain and related pathophysiological mechanisms in neurodegenerative diseases. Laboratory Investigation, 99(7), 943-957.
doi: 10.1038/s41374-019-0232-y pmid: 30808929 |
[40] | Loprinzi, P. D. (2019). Does brain-derived neurotrophic factor mediate the effects of exercise on memory? Physician and Sportsmedicine, 47(4), 395-405. |
[41] | Lourenco, M. V., Ribeiro, F. C., Sudo, F. K., Drummond, C., Assunção, N., Vanderborght, B., ... Ferreira, S. T. (2020). Cerebrospinal fluid irisin correlates with amyloid-β, BDNF, and cognition in Alzheimer’s disease. Alzheimer’s Dementia, 12, e12034. |
[42] | Máderová, D., Krumpolec, P., Slobodová, L., Schön, M., Tirpáková, V., Kovaničová, Z., ... Ukropec, J. (2019). Acute and Regular Exercise Distinctly Modulate Serum, Plasma, and Skeletal Muscle BDNF in the Elderly. Neuropeptides, 78, 101961. |
[43] |
Marinus, N., Hansen, D., Feys, P., Meesen, R., Timmermans, A., & Spildooren, J. (2019). The impact of different types of exercise training on peripheral blood brain-derived neurotrophic factor concentrations in older adults: A meta-analysis. Sports Medicine, 49(10), 1529-1546.
doi: 10.1007/s40279-019-01148-z pmid: 31270754 |
[44] |
Miranda, M., Morici, J. F., Zanoni, M. B., & Bekinschtein, P. (2019). Brain-derived neurotrophic factor: A key molecule for memory in the healthy and the pathological brain. Frontiers in Cellular Neuroscience, 13, 363.
doi: 10.3389/fncel.2019.00363 pmid: 31440144 |
[45] | Moreira, A., Aoki, M. S., Arruda, A. F. S. D., Machado, D. G. D. S., Elsangedy, H. M., & Okano, A. H. (2018). Salivary BDNF and cortisol responses during high-Intensity exercise and official basketball matches in sedentary individuals and elite players. Journal of Human Kinetics, 65(1), 139-149. |
[46] | Morris, S. B. (2008). Estimating effect sizes from pretest- posttest-control group designs. Organizational Research Methods, 11(2), 364-386. |
[47] | Müller, P., Duderstadt, Y., Lessmann, V., & Notger, G. M. (2020). Lactate and BDNF: Key mediators of exercise induced neuroplasticity? Journal of Clinical Medicine, 9(4), 1136. |
[48] |
Nofuji, Y., Suwa, M., Moriyama, Y., Nakano, H., Ichimiya, A., Nishichi, A., ... Kumagai, S. (2008). Decreased serum brain-derived neurotrophic factor in trained men. Neuroscience Letters, 437(1), 29-32.
doi: 10.1016/j.neulet.2008.03.057 pmid: 18420345 |
[49] | Oztasyonar, Y. (2016). Interaction between different sports branches such as taekwondo, Box, Athletes and serum brain derived neurotrophic factor (BDNF) levels. Journal of Sports Medicine and Physical Fitness, 57(4), 457-460. |
[50] | Park, M., Song, R., Ju, K., Shin, J. C., Seo, J., Fan, X., ... Li, Y. L. (2023). Effects of Tai Chi and Qigong on cognitive and physical functions in older adults: Systematic review, Meta-analysis, and meta-regression of randomized clinical trials. BMC Geriatrics, 23(1), 352. |
[51] | Qing, L., Zhang, L., Zhang, Z. G., Wang, Y. H., Zuo, C. W., & Bo, S. M. (2022). A shorter-bout of HIIT is more effective to promote serum BDNF and VEGF-A levels and improve cognitive function in healthy young men. Frontiers in Physiology, 13, 898603. |
[52] | Rodríguez-Gutiérrez, Eva, Torres-Costoso, A., Saz-Lara, A., Bizzozero-Peroni, B., Guzmán-Pavón, M. G., ... Martínez- Vizcaíno, V. (2023). Effectiveness of high-intensity interval training on peripheral brain-derived neurotrophic factor in adults: A systematic review and network meta-analysis. Scandinavian Journal of Medicine & Science in Sports, 34(1), 14496. |
[53] | Rondão, C. A. D. M., Mota, M. P., Oliveira, M. M., Peixoto, F., & Esteves, D. (2022). Multicomponent exercise program effects on fitness and cognitive function of elderlies with mild cognitive impairment: Involvement of oxidative stress and BDNF. Frontiers in Aging Neuroscience, 14, 950937. |
[54] | Seifert, T., Brassard, P., Rasmussen, P., Nordby, P., Stallknecht, B., ... Secher, N. H. (2010). Endurance training enhances BDNF release from the human brain. American Journal of Physiology Regulatory Integrative & Comparative Physiology, 298, R372-R377. |
[55] | Setayesh, S., & Rahimi, G. R. M. (2023). The impact of resistance training on brain-derived neurotrophic factor and depression among older adults aged 60 years or older: A systematic review and meta-analysis of randomized controlled trials. Geriatric Nursing 54, 23-31. |
[56] | Sleiman, S. F., Henry, J., Al-Haddad, R., Hayek, L. E., Haidar, E. A., Stringer, T., ... Moses, V. C. (2016). Exercise promotes the expression of brain derived neurotrophic factor (BDNF) through the action of the ketone body β-hydroxybutyrate. eLife, 5, e15092. |
[57] | Stringham, N. T., Holmes, P. V., & Stringham, J. M. (2019). Effects of macular xanthophyll supplementation on brain-derived neurotrophic factor, Proinflammatory cytokines, and cognitive performance. Physiology & Behavior, 211, 112650. |
[58] | Sungkarat, S., Boripuntakul, S., Kumfu, S., Stephen, R. L., & Chattipakorn, N. (2018). Tai Chi improves cognition and plasma BDNF in older adults with mild cognitive impairment: A randomized controlled trial. Neurorehabilitation and Neural Repair, 32(2), 142-149. |
[59] | Tao, J., Chen, X., Egorova, N., Liu, J., Xue, X., Wang, Q., ... Kong, J. (2017). Tai Chi Chuan and Baduanjin practice modulates functional connectivity of the cognitive control network in older adults. Scientific Reports, 7(1), 41581. |
[60] | Traylor, M. K., Bauman, A. J., Saiyasit, N., Frizell, C. A., Hill, B. D., Nelson, A. R., & Keller, J. L. (2022). An examination of the relationship among plasma brain derived neurotropic factor, Peripheral vascular function, and body composition with cognition in midlife African Americans/Black Individuals. Frontiers in Aging Neuroscience 14, 980561. |
[61] | Vecchio, L., M., Meng, Y., Xhima, K., Lipsman, N., Hamani, C., & Aubert, I. (2018). The neuroprotective effects of exercise: Maintaining a healthy brain throughout aging. Brain Plasticity, 4(1), 17-52. |
[62] | Walsh, J. J., & Tschakovsky, M. E. (2018). Exercise and circulating BDNF: Mechanisms of release and implications for the design of exercise interventions. Applied Physiology, Nutrition, and Metabolism, 43(11), 1095-1104. |
[63] | Wang, Y. H., Zhou, H. H., Luo, Q. & Cui, S. (2022). The effect of physical exercise on circulating brain-derived neurotrophic factor in healthy subjects: A meta-analysis of randomized controlled trials. Brain and Behavior, 12(4), e2544. |
[64] | Wheeler, M. J., Green, D. J., Kathryn, A. E., Cerin, E., Heinonen, I., ... Dunstan, D. W. (2020). Distinct effects of acute exercise and breaks in sitting on working memory and executive function in older adults: A three-arm, randomised cross-over trial to evaluate the effects of exercise with and without breaks in sitting on cognition. British Journal of Sports Medicine, 54(13), 776. |
[65] | Yang, Z., Zhang, W., Liu, D., Zhang, S., Tang, Y., Song, J., ... Ding, F. (2022). Effects of sport stacking on neuropsychological, Neurobiological, and brain function performances in patients with mild Alzheimer’s disease and mild cognitive impairment: A randomized controlled trial. Frontiers in Aging Neuroscience, 14, 910261. |
[66] | Zhou, B., Wang, Z., Zhu, L., Huang, G., Li, B., Chen, C., ... Liu, C. Y. T. (2022). Effects of different physical activities on brain-derived neurotrophic factor: A systematic review and Bayesian network meta-analysis. Frontiers in Aging Neuroscience, 14, 981002. |
[1] | 黄雷, 张军恒, 姬鸣. 视觉线索受限环境导航中认知地图的动态加工机制*[J]. 心理科学进展, 2025, 33(4): 673-689. |
[2] | 程晓荣, 仇式明, 定险峰, 范炤. 动作如何影响元认知?——基于认知模型和神经机制的探讨[J]. 心理科学进展, 2025, 33(3): 425-438. |
[3] | 巩芳颍, 孙逸梵, 贺琴, 石可, 刘伟, 陈宁. 教学互动中师生脑间同步性及其调节因素[J]. 心理科学进展, 2025, 33(3): 452-464. |
[4] | 夏熠, 张婕, 张火垠, 雷怡, 窦皓然. 焦虑个体趋避冲突失调的认知神经机制[J]. 心理科学进展, 2025, 33(3): 477-493. |
[5] | 肖瑶, 王雪珂, 冯廷勇. 人类为什么会拖延?基于多模态多组学视角的解读[J]. 心理科学进展, 2025, 33(3): 520-536. |
[6] | 周爱保, 袁月. 高功能孤独症自我加工的机制与干预[J]. 心理科学进展, 2025, 33(2): 212-222. |
[7] | 刘豫, 毕丹丹, 赵凯宾, 史怡明, Hanna Y. Adamseged, 晋争. 儿童挑食行为的认知机制[J]. 心理科学进展, 2025, 33(2): 305-321. |
[8] | 昌思琴, 黄辰, 戴元富, 蒋长好. VR训练对轻度认知障碍老年人认知功能的影响及神经机制[J]. 心理科学进展, 2025, 33(2): 322-335. |
[9] | 吴际, 李会杰. 认知空间映射及其神经机制[J]. 心理科学进展, 2025, 33(1): 62-76. |
[10] | 温秀娟, 马毓璟, 谭斯祺, 李芸, 刘文华. 身体还是认知努力的损害?抑郁症努力奖赏动机评估及计算模型应用[J]. 心理科学进展, 2025, 33(1): 107-122. |
[11] | 李兴珊, 张淇玮, 黄林洁琼. 中文词汇语义加工过程的计算模拟与实验验证[J]. 心理科学进展, 2024, 32(9): 1379-1392. |
[12] | 黄景, 刘丽聪, 李明钰, 龙奕名, 李小俚. 基于眼动信号来源的认知老化差异性[J]. 心理科学进展, 2024, 32(9): 1408-1415. |
[13] | 刘月月, 何文广. 书写认知老化发生机制及神经机理[J]. 心理科学进展, 2024, 32(9): 1502-1513. |
[14] | 雷怡, 梅颖, 王金霞, 袁子昕. 焦虑青少年无意识恐惧的神经机制及干预[J]. 心理科学进展, 2024, 32(8): 1221-1232. |
[15] | 梁淑静, 杨光勇. 穷则思变, 富则思安? 金钱稀缺与富足感知对个体风险决策的影响[J]. 心理科学进展, 2024, 32(8): 1233-1249. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||