Acta Psychologica Sinica ›› 2025, Vol. 57 ›› Issue (5): 805-819.doi: 10.3724/SP.J.1041.2025.0805
• Reports of Empirical Studies • Previous Articles Next Articles
LI Yangzhuo1,2, ZHANG Ruqian4, SONG Sensen5, LI Xianchun3(), LUO Junlong1,2(
)
Published:
2025-05-25
Online:
2025-03-06
Contact:
LI Xianchun,LUO Junlong
E-mail:xcli@psy.ecnu.edu.cn;luo831023@163.com
LI Yangzhuo, ZHANG Ruqian, SONG Sensen, LI Xianchun, LUO Junlong. (2025). Interactive Feedback in persuader-persuadee interaction Enhances Persuasion: An fNIRS hyperscanning study. Acta Psychologica Sinica, 57(5), 805-819.
Add to citation manager EndNote|Ris|BibTeX
URL: https://journal.psych.ac.cn/acps/EN/10.3724/SP.J.1041.2025.0805
Figure 1. Experimental process, task, and optode placement. (A) Experimental Process Diagram. The sections marked by dashed boxes indicate the differences between the experimental group and the two control groups. (B) Experimental Materials (Arctic Survival Task) Diagram. This section shows the specific context and item selection for the Arctic Survival Task. (C) fNIRS Detection Locations. The diagram shows the layout of the fNIRS detectors, with the light emitters (orange) and light receivers (blue) positioned over the prefrontal cortex and left temporoparietal junction (with a 30 mm distance between detectors). The red hollow circles represent the reference points where the optodes are placed. For color images, please refer to the electronic version.
Figure 4. Brain-Brain Synchrony Combined with Audiovisual Decoding Results. (A) Schematic of manual frame-by-frame coding. The colored shaded regions represent the periods when the persuader or persuadee is speaking during the stage, with different colored bars above indicating the two different persuasion strategies. (B) Schematic of supportive and rebuttal persuasion strategies. (C) Dynamic schematic of the two persuasion strategies during the task. (D) Comparison of BBS differences between the two strategies. (E) Schematic of dynamic changes in BBS 8 seconds before and after the persuasion strategy was presented.
Figure 2. Behavioral and audiovisual decoding results. (A) Persuasion outcomes. (B) Perceived persuasion ratings. (C) Comparison of two types of persuasion strategies (counter-arguing strategy vs supportive strategy). (D) Illustration of grouping participants into high/low groups based on persuasion outcome enhancement (Stage 2 - Stage 1). (E) Comparison of two persuasion strategies in high/low scoring groups.
Figure 3. Brain-to-Brain Synchrony Results. (A) Interaction effect F-values of 2116 channel pairs. The three significant channel pairs after FDR correction are highlighted by white circles. (B) Spatial locations of the three significant channel pairs. Based on the spatial distribution of the brain regions where the channel pairs are located, the two adjacent channel pairs CH39_CH1 and CH39_CH5 are merged and named as Cluster 1, while CH39_CH26 is named as Cluster 2. (C) BBS interaction effects for the merged Cluster 1 and Cluster 2. (D-F) Validity check of BBS. D. Validity test of brain-to-brain synchrony using the “no shuffling within subject pairs, but shuffling within stages” method. E. The BBS interaction effect for the real dataset is significantly higher than the BBS null distribution under random shuffling. The red dashed line represents the 95% confidence interval, and the blue solid line represents the position of the real BBS coherence value. F. The interaction effect (F-value) for the original pairing is significantly higher than the null distribution under random pairing conditions. The blue solid line represents the real interaction effect value.
Group model | estimate | β | (corrected-p) |
---|---|---|---|
Experimental condition(n = 33) | |||
Phase 1 | R2 = 0.085 | Cluster 1 = ?0.04 | 0.644 |
F = 0.89 | Cluster 2 = ?0.08 | 0.596 | |
p = 0.943 | |||
Phase 2 | R2 = 0.386 | Cluster 1 = 0.49 | 0.026 |
F = 4.56 | Cluster 2 = 0.24 | 0.092 | |
p = 0.024 | |||
Phase 2 - Phase 1 | R2 = 0.401 | Cluster 1 = 0.41 | 0.033 |
F = 4.12 | Cluster 2 = 0.21 | 0.108 | |
p = 0.032 | |||
Control group 1 (n = 28) | |||
Phase 1 | R2 = 0.08 | Cluster 1 = ?0.18 | 0.241 |
F = 0.04 | Cluster 2 = 0.03 | 0.633 | |
p = 0.943 | |||
Phase 2 | R2 = 0.105 | Cluster 1 = ?0.16 | 0.279 |
F = 1.46 | Cluster 2 = ?0.07 | 0.543 | |
p = 0.694 | |||
Phase 2 - Phase 1 | R2 = 0.104 | Cluster 1 = ?0.03 | 0.714 |
F = 0.56 | Cluster 2 = 0.10 | 0.369 | |
p = 0.889 | |||
Control group 2 (n = 30) | |||
Phase 1 | R2 = 0.188 | Cluster 1 = 0.13 | 0.269 |
F = 1.16 | Cluster 2 = 0.05 | 0.643 | |
p = 0.623 | |||
Phase2 | R2 = 0.06 | Cluster 1 = 0.05 | 0.677 |
F = 0.69 | Cluster 2 = ?0.05 | 0.609 | |
p = 0.842 | |||
Phase 2 - Phase1 | R2 = 0.113 | Cluster 1 = ?0.19 | 0.247 |
F = 1.07 | Cluster 2 = 0.17 | 0.288 | |
p = 0.746 |
Table 1 Brain-Brain Synchrony Predicts Persuasion Outcomes
Group model | estimate | β | (corrected-p) |
---|---|---|---|
Experimental condition(n = 33) | |||
Phase 1 | R2 = 0.085 | Cluster 1 = ?0.04 | 0.644 |
F = 0.89 | Cluster 2 = ?0.08 | 0.596 | |
p = 0.943 | |||
Phase 2 | R2 = 0.386 | Cluster 1 = 0.49 | 0.026 |
F = 4.56 | Cluster 2 = 0.24 | 0.092 | |
p = 0.024 | |||
Phase 2 - Phase 1 | R2 = 0.401 | Cluster 1 = 0.41 | 0.033 |
F = 4.12 | Cluster 2 = 0.21 | 0.108 | |
p = 0.032 | |||
Control group 1 (n = 28) | |||
Phase 1 | R2 = 0.08 | Cluster 1 = ?0.18 | 0.241 |
F = 0.04 | Cluster 2 = 0.03 | 0.633 | |
p = 0.943 | |||
Phase 2 | R2 = 0.105 | Cluster 1 = ?0.16 | 0.279 |
F = 1.46 | Cluster 2 = ?0.07 | 0.543 | |
p = 0.694 | |||
Phase 2 - Phase 1 | R2 = 0.104 | Cluster 1 = ?0.03 | 0.714 |
F = 0.56 | Cluster 2 = 0.10 | 0.369 | |
p = 0.889 | |||
Control group 2 (n = 30) | |||
Phase 1 | R2 = 0.188 | Cluster 1 = 0.13 | 0.269 |
F = 1.16 | Cluster 2 = 0.05 | 0.643 | |
p = 0.623 | |||
Phase2 | R2 = 0.06 | Cluster 1 = 0.05 | 0.677 |
F = 0.69 | Cluster 2 = ?0.05 | 0.609 | |
p = 0.842 | |||
Phase 2 - Phase1 | R2 = 0.113 | Cluster 1 = ?0.19 | 0.247 |
F = 1.07 | Cluster 2 = 0.17 | 0.288 | |
p = 0.746 |
Salvaged Items |
---|
1. A small bottle of water purification tablets |
2. 250 meters of nylon rope (weight capacity: 50 lbs, approximately 23 kg) |
3. 13 matches |
4. A tin of honey |
5. A handgun |
6. A flashlight |
7. A bottle of sweet wine |
8. A parachute (red and white striped) |
9. A hand axe |
10. A magnetic compass |
11. A multifunctional alarm clock |
12. A sleeping bag for each person |
13. An inner tube for an aircraft tire |
14. A book titled Northern Region Navigation Star Charts |
15. A complete shaving kit with mirror |
Salvaged Items |
---|
1. A small bottle of water purification tablets |
2. 250 meters of nylon rope (weight capacity: 50 lbs, approximately 23 kg) |
3. 13 matches |
4. A tin of honey |
5. A handgun |
6. A flashlight |
7. A bottle of sweet wine |
8. A parachute (red and white striped) |
9. A hand axe |
10. A magnetic compass |
11. A multifunctional alarm clock |
12. A sleeping bag for each person |
13. An inner tube for an aircraft tire |
14. A book titled Northern Region Navigation Star Charts |
15. A complete shaving kit with mirror |
Channel | Anatom Label (AAL) | BrodmanArea (BA) |
---|---|---|
Frontal | ||
1 | Frontal_Mid_R | Middle Frontal Gyrus |
2 | Frontal_Sup_Medial_R | Muperior Frontal Gyrus |
3 | Frontal_Sup_L | Superior Frontal Gyrus |
4 | Frontal_Mid_L | Middle Frontal Gyrus |
5 | Frontal_Mid_R | Middle Frontal Gyrus |
6 | Frontal_Sup_R | Middle Frontal Gyrus |
7 | Frontal_Sup_Medial_L | Superior Frontal Gyrus |
8 | Frontal_Sup_L | Middle Frontal Gyrus |
9 | Frontal_Mid_L | Middle Frontal Gyrus |
10 | Frontal_Mid_R | Middle Frontal Gyrus |
11 | Frontal_Sup_R | Middle Frontal Gyrus |
12 | Frontal_Sup_L | Superior Frontal Gyrus |
13 | Frontal_Mid_L | Middle Frontal Gyrus |
14 | Frontal_Mid_R | Inferior Frontal Gyrus |
15 | Frontal_Sup_R | Middle Frontal Gyrus |
16 | Frontal_Sup_Medial_L | Superior Frontal Gyrus |
17 | Frontal_Sup_L | Middle Frontal Gyrus |
18 | Frontal_Mid_L | Inferior Frontal Gyrus |
19 | Frontal_Mid_Orb_R | Inferior Frontal Gyrus |
20 | Frontal_Sup_Orb_R | Middle Frontal Gyrus |
21 | Frontal_Mid_Orb_L | Superior Frontal Gyrus |
22 | Frontal_Mid_Orb_L | Middle Frontal Gyrus |
Left Temporoparietal | ||
23 | Precentral_L | Primary Motor Cortex |
24 | Postcentral_L | Primary Somatosensory Cortex |
25 | Parietal_Sup_L | Somatosensory Association Cortex |
26 | Parietal_Sup_L | Pre-Motor and Supplementary Motor Cortex |
27 | Precentral_L | Primary Somatosensory Cortex |
28 | Postcentral_L | Supramarginal gyrus part of Wernicke's area |
29 | Parietal_Inf_L | Angular gyrus, part of Wernicke's area |
30 | Angular_L | Primary Somatosensory Cortex |
31 | Postcentral_L | Supramarginal gyrus part of Wernicke's area |
32 | Parietal_Inf_L | Angular gyrus, part of Wernicke's area |
33 | Parietal_Inf_L | Subcentral area |
34 | Postcentral_L | Primary Somatosensory Cortex |
35 | SupraMarginal_L | Supramarginal gyrus part of Wernicke's area |
36 | SupraMarginal_L | Angular gyrus, part of Wernicke's area |
37 | Angular_L | Subcentral area |
38 | Postcentral_L | Supramarginal gyrus part of Wernicke's area |
39 | SupraMarginal_L | Superior Temporal Gyrus |
40 | SupraMarginal_L | Subcentral area |
41 | Postcentral_L | Superior Temporal Gyrus |
42 | Temporal_Sup_L | Superior Temporal Gyrus |
43 | Temporal_Mid_L | V3 |
44 | Temporal_Mid_L | Middle Temporal gyrus |
45 | Temporal_Mid_L | Middle Temporal gyrus |
46 | Temporal_Mid_L | Fusiform gyrus |
Channel | Anatom Label (AAL) | BrodmanArea (BA) |
---|---|---|
Frontal | ||
1 | Frontal_Mid_R | Middle Frontal Gyrus |
2 | Frontal_Sup_Medial_R | Muperior Frontal Gyrus |
3 | Frontal_Sup_L | Superior Frontal Gyrus |
4 | Frontal_Mid_L | Middle Frontal Gyrus |
5 | Frontal_Mid_R | Middle Frontal Gyrus |
6 | Frontal_Sup_R | Middle Frontal Gyrus |
7 | Frontal_Sup_Medial_L | Superior Frontal Gyrus |
8 | Frontal_Sup_L | Middle Frontal Gyrus |
9 | Frontal_Mid_L | Middle Frontal Gyrus |
10 | Frontal_Mid_R | Middle Frontal Gyrus |
11 | Frontal_Sup_R | Middle Frontal Gyrus |
12 | Frontal_Sup_L | Superior Frontal Gyrus |
13 | Frontal_Mid_L | Middle Frontal Gyrus |
14 | Frontal_Mid_R | Inferior Frontal Gyrus |
15 | Frontal_Sup_R | Middle Frontal Gyrus |
16 | Frontal_Sup_Medial_L | Superior Frontal Gyrus |
17 | Frontal_Sup_L | Middle Frontal Gyrus |
18 | Frontal_Mid_L | Inferior Frontal Gyrus |
19 | Frontal_Mid_Orb_R | Inferior Frontal Gyrus |
20 | Frontal_Sup_Orb_R | Middle Frontal Gyrus |
21 | Frontal_Mid_Orb_L | Superior Frontal Gyrus |
22 | Frontal_Mid_Orb_L | Middle Frontal Gyrus |
Left Temporoparietal | ||
23 | Precentral_L | Primary Motor Cortex |
24 | Postcentral_L | Primary Somatosensory Cortex |
25 | Parietal_Sup_L | Somatosensory Association Cortex |
26 | Parietal_Sup_L | Pre-Motor and Supplementary Motor Cortex |
27 | Precentral_L | Primary Somatosensory Cortex |
28 | Postcentral_L | Supramarginal gyrus part of Wernicke's area |
29 | Parietal_Inf_L | Angular gyrus, part of Wernicke's area |
30 | Angular_L | Primary Somatosensory Cortex |
31 | Postcentral_L | Supramarginal gyrus part of Wernicke's area |
32 | Parietal_Inf_L | Angular gyrus, part of Wernicke's area |
33 | Parietal_Inf_L | Subcentral area |
34 | Postcentral_L | Primary Somatosensory Cortex |
35 | SupraMarginal_L | Supramarginal gyrus part of Wernicke's area |
36 | SupraMarginal_L | Angular gyrus, part of Wernicke's area |
37 | Angular_L | Subcentral area |
38 | Postcentral_L | Supramarginal gyrus part of Wernicke's area |
39 | SupraMarginal_L | Superior Temporal Gyrus |
40 | SupraMarginal_L | Subcentral area |
41 | Postcentral_L | Superior Temporal Gyrus |
42 | Temporal_Sup_L | Superior Temporal Gyrus |
43 | Temporal_Mid_L | V3 |
44 | Temporal_Mid_L | Middle Temporal gyrus |
45 | Temporal_Mid_L | Middle Temporal gyrus |
46 | Temporal_Mid_L | Fusiform gyrus |
[1] | Arceneaux, K., & Vander Wielen, R. J. (2017). Taming intuition:How reflection minimizes partisan reasoning and promotes democratic accountability. New York: Cambridge University Press. |
[2] |
Ayrolles, A., Brun, F., Chen, P., Djalovski, A., Beauxis, Y., Delorme, R., … Dumas, G. (2021). HyPyP: A Hyperscanning python pipeline for inter-brain connectivity analysis. Social Cognitive and Affective Neuroscience, 16(1-2), 72-83.
doi: 10.1093/scan/nsaa141 pmid: 33031496 |
[3] |
Baek, E. C., & Falk, E. B. (2018). Persuasion and influence: What makes a successful persuader? Current Opinion in Psychology, 24, 53-57.
doi: S2352-250X(17)30287-7 pmid: 29803961 |
[4] | Barasch, A., & Berger, J. (2014). Broadcasting and narrowcasting: How audience size affects what people share. Journal of Marketing Research, 51(3), 286-299. |
[5] |
Barnett, L., & Seth, A. K. (2014). The MVGC multivariate granger causality toolbox: A new approach to granger causal inference. Journal of Neuroscience Methods, 223, 50-68.
doi: 10.1016/j.jneumeth.2013.10.018 pmid: 24200508 |
[6] | Berger, J. (2014). Word of mouth and interpersonal communication: A review and directions for future research. Journal of Consumer Psychology, 24(4), 586-607. |
[7] | Binder, A., Naderer, B., & Matthes, J. (2021). Shaping healthy eating habits in children with persuasive strategies: Toward a typology. Frontiers in Public Health, 9, 676127. |
[8] |
Cacioppo, J. T., Cacioppo, S., & Petty, R. E. (2018). The neuroscience of persuasion: A review with an emphasis on issues and opportunities. Social Neuroscience, 13(2), 129-172.
doi: 10.1080/17470919.2016.1273851 pmid: 28005461 |
[9] |
Cacioppo, J. T., Petty, R. E., & Kao, C. F. (1984). The efficient assessment of need for cognition. Journal of Personality Assessment, 48(3), 306-307.
doi: 10.1207/s15327752jpa4803_13 pmid: 16367530 |
[10] | Cascio, C. N., Scholz, C., & Falk, E. B. (2015). Social influence and the brain: Persuasion, susceptibility to influence and retransmission. Current Opinion in Behavioral Sciences, 3, 51-57. |
[11] | Cope, M., & Delpy, D. T. (1988). System for long-term measurement of cerebral blood and tissue oxygenation on newborn infants by near infrared transillumination. Medical and Biological Engineering and Computing, 26(3), 289-294. |
[12] | Cooper, J., Blackman, S., & Keller, K. (2015). The Science of attitudes. New York, NY: Routledge. |
[13] |
Couzin, I. D. (2018). Synchronization: The key to effective communication in animal collectives. Trends in Cognitive Sciences, 22(10), 844-846.
doi: S1364-6613(18)30179-7 pmid: 30266143 |
[14] | Dai, B., Chen, C., Long, Y., Zheng, L., Zhao, H., Bai, X.,... Lu, C. (2018). Neural mechanisms for selectively tuning in to the target speaker in a naturalistic noisy situation. Nature Communications, 9(1), 2405. |
[15] | Di Plinio, S., Aquino, A., Haddock, G., Alparone, F. R., & Ebisch, S. J. (2023). Brain and behavioral contributions to individual choices in response to affective-cognitive persuasion. Cerebral Cortex, 33(5), 2361-2374. |
[16] | Dietvorst, R. C., Verbeke, W. J. M, Bagozzi, R. P., Yoon, C., Smits, M., & van der Lugt, A. (2009). A sales force-specific theory-of-mind scale: Tests of its validity by classical methods and functional magnetic resonance imaging. Journal of Marketing Research, 46(5), 653-668. |
[17] |
Dikker, S., Wan, L., Davidesco, I., Kaggen, L., Oostrik, M., McClintock, J.,... Poeppel, D. (2017). Brain-to-brain synchrony tracks real-world dynamic group interactions in the classroom. Current Biology, 27(9), 1375-1380.
doi: S0960-9822(17)30411-6 pmid: 28457867 |
[18] | Dmochowski, J. P., Bezdek, M. A., Abelson, B. P., Johnson, J. S., Schumacher, E. H., & Parra, L. C. (2014). Audience preferences are predicted by temporal reliability of neural processing. Nature Communications, 5(1), 4567. |
[19] |
Duan, L., Zhao, Z., Lin, Y., Wu, X., Luo, Y., & Xu, P. (2018). Wavelet-based method for removing global physiological noise in functional near-infrared spectroscopy. Biomedical Optics Express, 9(8), 3805-3820.
doi: 10.1364/BOE.9.003805 pmid: 30338157 |
[20] |
Eagly, A. H. (2009). The his and hers of prosocial behavior: An examination of the social psychology of gender. American Psychologist, 64(8), 644-658.
doi: 10.1037/0003-066X.64.8.644 pmid: 19899859 |
[21] | Eisend, M. (2006). Two-sided advertising: A meta-analysis. International Journal of Research in Marketing, 23(2), 187-198. |
[22] | Eisend, M. (2010). Explaining the joint effect of source credibility and negativity of information in two-sided messages. Psychology & Marketing, 27(11), 1032-1049. |
[23] |
Falk, E. B., Berkman, E. T., Whalen, D., & Lieberman, M. D. (2011). Neural activity during health messaging predicts reductions in smoking above and beyond self-report. Health Psychology, 30(2), 177-185.
doi: 10.1037/a0022259 pmid: 21261410 |
[24] | Falk, E. B., Cascio, C. N., & Coronel, J. C. (2015). Neural prediction of communication relevant outcomes. Communication Methods and Measures, 9(1-2), 30-54. |
[25] | Falk, E. B., & Scholz, C. (2018). Persuasion, influence, and value: Perspectives from communication and social neuroscience. Annual Review of Psychology, 69(1), 329-356. |
[26] | Gosling, S. D., Rentfrow, P. J., & Swann, Jr W. B. (2003). A very brief measure of the Big-Five personality domains. Journal of Research in Personality, 37(6), 504-528. |
[27] | Grinsted, A., Moore, J. C., & Jevrejeva, S. (2004). Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Process Geophys, 11(5/6), 561-566. |
[28] |
Imhof, M. A., Schmälzle, R., Renner, B., & Schupp, H. T. (2020). Strong health messages increase audience brain coupling. NeuroImage, 216, 16527.
doi: S1053-8119(20)30014-8 pmid: 31954843 |
[29] |
Jensen, B. (1973). Human reciprocity: An arctic exemplification. American Journal of Orthopsychiatry, 43(3), 447-458.
doi: 10.1111/j.1939-0025.1973.tb00816.x pmid: 4711088 |
[30] |
Kingsbury, L., Huang, S., Wang, J., Gu, K., Golshani, P., Wu, Y. E., & Hong, W. (2019). Correlated neural activity and encoding of behavior across brains of socially interacting animals. Cell, 178(2), 429-446.
doi: S0092-8674(19)30550-1 pmid: 31230711 |
[31] | Koriat, A., & Adiv, S. (2011). The construction of attitudinal judgments: Evidence from attitude certainty and response latency. Social Cognition, 29(5), 577-611. |
[32] | Jiang, J., Chen, C., Dai, B., Shi, G., Ding, G., Liu, L., & Lu, C. (2015). Leader emergence through interpersonal neural synchronization. Proceedings of the National Academy of Sciences of the United States of America, 112(14), 4274-4279. |
[33] | Li, R., & Sundar, S. S. (2022). Can interactive media attenuate psychological reactance to health messages? A study of the role played by user commenting and audience metrics in persuasion. Health Communication, 37(11), 1355-1367. |
[34] | Li, Y., Luo, X., Wang, K., & Li, X. (2023). Persuader-receiver neural coupling underlies persuasive messaging and predicts persuasion outcome. Cerebral Cortex, 33(11), 6818-6833. |
[35] | Limbu, Y. B., Jayachandran, C., Babin, B. J., & Peterson, R. T. (2016). Empathy, nonverbal immediacy, and salesperson performance: The mediating role of adaptive selling behavior. Journal of Business & Industrial Marketing, 31(5), 654-667. |
[36] | Liu, Y., & Shrum, L. J. (2009). A dual-process model of interactivity effects. Journal of Advertising, 38(2), 53-68. |
[37] |
Lloyd-Fox, S., Blasi, A., & Elwell, C. E. (2010). Illuminating the developing brain: The past, present and future of functional near infrared spectroscopy. Neuroscience and Biobehavioral Reviews, 34(3), 269-284.
doi: 10.1016/j.neubiorev.2009.07.008 pmid: 19632270 |
[38] | Modic, D., Anderson, R., & Palomäki, J. (2018). We will make you like our research: The development of a susceptibility-to-persuasion scale. PloS One, 13(3), e0194119. |
[39] |
Molavi, B., & Dumont, G. A. (2012). Wavelet-based motion artifact removal for functional near-infrared spectroscopy. Physiological Measurement, 33(2), 259-270.
doi: 10.1088/0967-3334/33/2/259 pmid: 22273765 |
[40] | O'Keefe, D. J. (Ed). (2016). Persuasion and social influence. The international encyclopedia of communication theory and philosophy (pp.1-19). Northwestern University Press. |
[41] | Pan, Y., Cheng, X., & Hu, Y. (2023). Three heads are better than one: Cooperative learning brains wire together when a consensus is reached. Cerebral Cortex, 33(4), 1155-1169. |
[42] | Petty, R. E., & Briñol, P. (2015). Emotion and persuasion: Cognitive and meta-cognitive processes impact attitudes. Cognition and Emotion, 29(1), 1-26. |
[43] |
Pinti, P., Merla, A., Aichelburg, C., Lind, F., Power, S., Swingler, E.,... Tachtsidis, I. (2017). A novel GLM-based method for the Automatic IDentification of functional Events (AIDE) in fNIRS data recorded in naturalistic environments. Neuroimage, 155, 291-304.
doi: S1053-8119(17)30391-9 pmid: 28476662 |
[44] |
Reinero, D. A., Dikker, S., & Van Bavel, J. J. (2021). Inter-brain synchrony in teams predicts collective performance. Social Cognitive and Affective Neuroscience, 16(1-2), 43-57.
doi: 10.1093/scan/nsaa135 pmid: 32991728 |
[45] |
Reiss, A. L., Bryant, D. M., Glover, G. H., Liu, N., & Cui, X. (2015). Inferring deep-brain activity from cortical activity using functional near-infrared spectroscopy. Biomedical Optics Express, 6(3), 1074-1089.
doi: 10.1364/BOE.6.001074 pmid: 25798327 |
[46] |
Samson, D., Apperly, I. A., Chiavarino, C., & Humphreys, G. W. (2004). Left temporoparietal junction is necessary for representing someone else's belief. Nature Neuroscience, 7(5), 499-500.
doi: 10.1038/nn1223 pmid: 15077111 |
[47] |
Sasai, S., Homae, F., Watanabe, H., & Taga, G. (2011). Frequency-specific functional connectivity in the brain during resting state revealed by NIRS. NeuroImage, 56(1), 252-257.
doi: 10.1016/j.neuroimage.2010.12.075 pmid: 21211570 |
[48] |
Schmälzle, R., Häcker, F. E., Honey, C. J., & Hasson, U. (2015). Engaged listeners: Shared neural processing of powerful political speeches. Social Cognitive and Affective Neuroscience, 10(8), 1137-1143.
doi: 10.1093/scan/nsu168 pmid: 25653012 |
[49] | Scholz, C., Baek, E. C., O’Donnell, M. B., Kim, H. S., Cappella, J. N., & Falk, E. B. (2017). A neural model of valuation and information virality. Proceedings of the National Academy of Sciences of the United States of America, 114(11), 2881-2886. |
[50] |
Shamay-Tsoory, S. G., & Mendelsohn, A. (2019). Real-life neuroscience: An ecological approach to brain and behavior research. Perspectives on Psychological Science, 14(5), 841-859.
doi: 10.1177/1745691619856350 pmid: 31408614 |
[51] |
Singh, A. K., Okamoto, M., Dan, H., Jurcak, V., & Dan, I. (2005). Spatial registration of multichannel multi-subject fNIRS data to MNI space without MRI. NeuroImage, 27(4), 842-851.
doi: 10.1016/j.neuroimage.2005.05.019 pmid: 15979346 |
[52] |
Tsuzuki, D., Jurcak, V., Singh, A. K., Okamoto, M., Watanabe, E., & Dan, I. (2007). Virtual spatial registration of stand-alone fNIRS data to MNI space. NeuroImage, 34(4), 1506-1518.
pmid: 17207638 |
[53] | Van Duijvenvoorde, A. C., Peters, S., Braams, B. R., & Crone, E. A. (2016). What motivates adolescents? Neural responses to rewards and their influence on adolescents’ risk taking, learning, and cognitive control. Neuroscience & Biobehavioral Reviews, 70, 135-147. |
[54] | Vinokur, A., & Burnstein, E. (1978). Depolarization of attitudes in groups. Journal of Personality and Social Psychology, 36(8), 872-885. |
[55] |
Wallace, L. E., Wegener, D. T., & Petty, R. E. (2020). When Sources honestly provide their biased opinion: Bias as a distinct source perception with independent effects on credibility and persuasion. Personality and Social Psychology Bulletin, 46(3), 439-453.
doi: 10.1177/0146167219858654 pmid: 31282841 |
[56] | Xie, H., Karipidis, I. I., Howell, A., Schreier, M., Sheau, K. E., Manchanda, M. K.,... Saggar, M. (2020). Finding the neural correlates of collaboration using a three-person fMRI hyperscanning paradigm. Proceedings of the National Academy of Sciences, 117(37), 23066-23072. |
[57] | Xu, M., & Petty, R. E. (2022). Two-sided messages promote openness for morally based attitudes. Personality and Social Psychology Bulletin, 48(8), 1151-1166. |
[58] | Zhao, H., Cheng, T., Zhai, Y., Long, Y., Wang, Z., & Lu, C. (2021). How mother-child interactions are associated with a child’s compliance. Cerebral Cortex, 31(9), 4398-4410. |
[59] |
Zhu, Y., & Hu, Y. (2024). Chunking feedback in instructor-learner interaction facilities long-term learning transfer: Behavioral and fNIRS hyperscanning studies. Acta Psychologica Sinica, 56(5), 555-576.
doi: 10.3724/SP.J.1041.2024.00555 |
[1] | ZHU Yi, HU Yi. Chunking feedback in instructor-learner interaction facilities long-term learning transfer: Behavioral and fNIRS hyperscanning studies [J]. Acta Psychologica Sinica, 2024, 56(5): 555-576. |
[2] | LIU Nan, AN Xinru, LI Aimei, LIU Pei, SUN Hailong. How goal framing and temporal distance influence the effectiveness of COVID-19 vaccine persuasion [J]. Acta Psychologica Sinica, 2022, 54(12): 1532-1547. |
[3] | HUANG Jing,TONG Ze-Lin,ZHANG You-Heng,ZHANG Xiao-Juan. Effect of Negative Emotions and Persuasion Strategies on Brand Relationship Restoration [J]. Acta Psychologica Sinica, 2012, 44(8): 1114-1123. |
[4] | DU Wei-Qiang,YU Chun-Ling,ZHAO Ping. Forum Objectivity and Online WOM Recipients’ Attitudes [J]. , 2011, 43(08): 953-963. |
[5] |
Zhang Hongxia,Li Jiajia,Guo Xianda . Examining the Antecedents and Consequences of Advertising Value from the Perspective of Chinese Adolescents [J]. , 2008, 40(02): 193-200. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||