ISSN 0439-755X
CN 11-1911/B
主办:中国心理学会
   中国科学院心理研究所
出版:科学出版社

心理学报, 2018, 50(9): 975-984 doi: 10.3724/SP.J.1041.2018.00975

研究报告

反应手的不同状态对联合任务中观察学习的影响 *

宋晓蕾,1, 李洋洋2, 杨倩1, 游旭群,1

1 陕西师范大学心理学院; 陕西省行为与认知神经科学重点实验室, 西安 710062

2 河南警察学院; 郑州 450046

The influence of different status of the observer’s responding hands on observational learning in the joint task

SONG Xiaolei,1, LI Yangyang2, YANG Qian1, YOU Xuqun,1

1 School of Psychology, Shaanxi Normal University; Shaanxi Key Laboratory of Behavior and Cognitive Neuroscience, Xi’an 710062, China;

2 Henan Police College, Zhengzhou 450046, China

通讯作者: 游旭群, E-mail:youxuqun@snnu.edu.cn宋晓蕾, E-mail:songxiaolei@snnu.edu.cn

收稿日期: 2017-06-19   网络出版日期: 2018-09-15

基金资助: 国家自然科学基金面上项目.  31671147
陕西师范大学理工科中央高校课题研究项目.  GK201703087

Received: 2017-06-19   Online: 2018-09-15

摘要

采用社会学习迁移范式, 通过三个实验来揭示联合任务中反应手的不同状态对观察学习的影响。实验1首先考察自然状态下联合Simon任务中观察学习的存在; 实验2探讨视野范围之内的反应手状态改变(双手运动能力受限)对观察学习的影响; 实验3则进一步探讨视野范围之外的反应手状态改变对观察学习的影响。结果发现, 在联合任务中, 观察者仅观察行动者的动作及其结果, 即可获得与实际练习相类似的学习效果; 观察者反应手不同状态改变因导致身体的潜在运动能力受限而影响观察学习的产生, 说明个体身体形式的改变会对其认知过程产生影响, 上述结果为具身认知理论在动作模仿领域的研究提供了进一步的实证支持。

关键词: 联合Simon任务 ; 观察学习 ; 社会学习迁移效应 ; 具身认知

Abstract

Observational learning, which refers to improving performance by observation without physical practice, is one of the most important human capacities. Although a large amount of studies have shown that observational and physical practice can both acquire a comparable motor learning in individual context, and the status of the responding hands play a crucial role in this process, few researches focused on observational learning in joint context. Hence we presented three experiments that adopted a joint Simon task to explore the conditions under which observational learning occurred by assessing whether it is affected by the status of the observer’s responding hands.
By adopting a modified version of the social transfer of learning paradigm, three behavioral experiments were conducted to explore the emergence of observational learning under joint task and the influence of status of body-parts (response hands) on observational learning. The aim of experiment 1 was to investigate whether observational learning took place in joint context. In Experiment 2, the status of the observer’s hands were changed in observational learning. It should be noted that during practice phase, observers positioned their hands constrained on the knee in front of them. In Experiment 3, the possible influence of view range furtherly on observational learning was clarified by manipulating the view range and status of the observer’s hands. Specifically, the observer was asked to constrain his hands behind the back in practice phase.
The results above demonstrated that either the observer or the actor in switch condition showed a significant joint Simon effect, while both of them didn’t show this effect in non-switch condition. Contrast to the condition in which the observer’s hands were free, the joint Simon effect increased in constrained condition when the observer’s hands were within his sight. Meanwhile, the same effect was also present when the observer’s hands constrained behind the back as compared to in front of them.
It can be concluded that both observational learning and physical keypress practice in joint context could transfer into comparable motor learning which has an effect on the subsequent joint task. Moreover, the occurrence of observational learning depends on the potential motor abilities of the observer, which suggests that changes in body status affect the observer’s cognitive performance in subsequent joint task whether in or out of his sight. All of above provide empirical research for embodied cognition.

Keywords: joint Simon task ; observational learning ; social transfer of learning effect ; embodied cognition

PDF (761KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

宋晓蕾, 李洋洋, 杨倩, 游旭群. 反应手的不同状态对联合任务中观察学习的影响 *. 心理学报[J], 2018, 50(9): 975-984 doi:10.3724/SP.J.1041.2018.00975

SONG Xiaolei, LI Yangyang, YANG Qian, YOU Xuqun. The influence of different status of the observer’s responding hands on observational learning in the joint task. Acta Psychologica Sinica[J], 2018, 50(9): 975-984 doi:10.3724/SP.J.1041.2018.00975

1 引言

在个体成长的过程中, 不可避免会受到各种社会文化和环境的影响。观察学习(observational learning), 又称替代学习、无尝试学习, 指仅仅通过观察他人(榜样)的行为及其强化性结果, 即可习得某些新的行为或矫正原有的行为反应, 而在这一过程中, 学习者作为观察者, 并没有外显的操作, 只是通过观察他人的言行而获取相关行为的信息, 并模仿他人的动作言行, 接受他人动作对自身的影响, 从而指导自己的社会生活, 个体在此过程中逐渐成熟且自我概念也渐渐完善, 最终完成其社会化的过程(Bandura, 1976), 观察学习的存在反映了社会文化环境对个体社会化过程的影响, 而这种仅通过观察他人行为及其结果即可习得某种复杂行为的能力是人类最基本且最重要的能力之一。

从认知的观点看, 观察学习可以用观念运动理论(ideomotor account)来解释(Prinz, 1997)。根据观念运动理论, 感知和动作有共同的表征基础, 动作通常是根据其反应效应被表征的(Hommel, Müsseler, Aschersleben, & Prinz, 2001)。通过观察或重复练习, 动作和反应效应间形成双向联结(bidirectional action-effect association)。因此, 当个体知觉到其之前经历过的事件时, 这些知觉可以唤起其相应的动作(Paulus, van Dam, Hunnius, Lindemann, & Bekkering, 2011)。Paulus等(2011)考察了对他人动作及动作结果的观察能否习得该动作-效应联结, 并对后继的动作执行产生影响。在动作观察阶段, 他们要求被试(观察者)观看另一名行动者的按键反应, 按键后伴随两种不同的声音效应。在随后测验阶段, 以两种不同音调的声音作为目标刺激, 要求被试根据声音的音调高低快速且准确地做出按键反应。结果发现, 如果在测验阶段的刺激-反应匹配与动作观察阶段习得的动作-效应联结相容, 那么被试的反应时间会大大缩短, 说明仅通过观察他人的动作也可习得双向的动作-效应联结, 并会促发知觉者自身做出相同动作从而完成观察学习。观察学习的研究表明个体不仅通过实际练习可习得特定动作, 观察他人的动作亦可习得该动作(Bandura, 1976; Cross, Kraemer, Hamilton, Kelley, & Grafton, 2009), 而且对他人动作的感知和纯粹观察即可促发观察者自身做出相同的动作(Brass, Bekkering, Wohlschläger, & Prinz, 2000), 但前人对观察学习的研究多采用单人认知任务, 较少关注联合任务中的观察学习现象。然而在日常生活中, 人类并非独立的个体, 常常需要与他人合作, 共同完成联合任务; 而联合任务中观察者观察学习是否发生直接影响其与共同行动者协调完成联合任务的表现。Sebanz, Knoblich和Prinz (2003)在标准Simon任务的基础上设计的联合Simon任务是考察联合任务常用的范式, 该任务是指两个行动者共同完成go/no-go任务, 如一个被试只对蓝色圆按左键反应, 另一个则只对绿色圆按右键反应, 而忽视与任务无关的刺激特征, 当刺激位置与反应位置一致时成绩提高的现象称为联合Simon效应(joint Simon effect, JSE)。许多研究已经表明只要行动者相信他是与他人一起执行任务, 就会出现联合Simon效应(Sellaro, Treccani, Rubichi, & Cubelli, 2013; Dolk et al., 2014; Baess & Prinz, 2015)。社会学习迁移范式(social transfer-of-learning paradigm, SToL paradigm)是前人研究考察联合任务中学习迁移现象常用的任务范式(Ferraro et al., 2012; Lugli, Iani, Milanese, Sebanz & Rubichi, 2015), 该范式要求被试与另一名合作者共同完成空间相容任务中的不相容匹配试次(练习任务阶段), 两人分别根据刺激的空间位置进行按键反应; 之后再共同完成联合Simon任务(迁移任务阶段), 结果在练习不相容试次后联合Simon效应减小、消失甚至发生反转的现象即为社会学习迁移效应。Ferraro等(2012)曾采用该范式考察在联合情境中, 实际练习和观察练习对随后的联合任务产生的学习迁移效果。结果发现, 两种实验条件下均出现了类似的社会学习迁移效应(即联合Simon效应消失, 空间一致与不一致的反应时间没有显著差异), 说明在联合Simon任务中, 观察者仅仅通过观察, 也可获得与实际练习相类似的学习迁移结果。

而就联合认知任务中观察学习的影响因素而言, Milanese, Iani, Sebanz和Rubichi (2011)采用社会学习迁移范式考察了联合Simon任务中的学习迁移效应, 发现如果被试在练习阶段和迁移阶段更换座位, 则联合Simon效应依然存在, 不会出现社会学习迁移效应。这表明在迁移阶段, 被试通过自身与共同行动者之间的空间关系来表征联合Simon任务, 如果习得的这一空间联结在后继联合Simon任务中发生改变, 就不会产生此效应。Ambrosini, Sinigaglia和Costantini (2012)采用眼动技术考察观察者反应可能性(行动能力是否受限)对其注视行为的影响, 结果发现动作观察的有效性依赖于观察者的潜在运动能力, 也即与其双手所处状态有关, 观察者的潜在运动能力对加工他人的动作及其结果至关重要。Thura, Hadj-Bouziane, Meunier和Boussaoud (2008)最早也从视野范围的角度设置了手可见与手不可见两种情况以考察猕猴额眼区的眼跳活动, 结果发现, 空间中手部位置的改变可对注视行为产生影响。Iani, Rubichi, Ferraro, Nicoletti和Gallese (2013)考察了单人认知任务中观察学习是否受观察者反应可能性的影响。他们发现, 在观察练习阶段, 当观察者的双手被缚于身前时, 其在后继的标准Simon任务中则出现显著的Simon效应, 即没有观察学习的发生。Liepelt (2014)也曾考察过反应手的不同位置对观察学习的影响, 在其实验中, 两名被试共同完成联合Simon任务, 其反应手均放置在靠近或远离显示器的位置。结果发现, 两种条件下都出现联合Simon效应, 但与远离显示器相比, 当反应手靠近显示器时, 联合Simon效应显著增大。甚至单独改变其中一名被试反应手的位置, 也出现了类似的反应手位置效应。上述研究表明, 观察者的身体空间位置及反应可能性均对认知加工产生了影响, 但以往关于此问题的研究大多采用单人认知任务, 得出身体在个体认知加工中的作用, 那么在联合任务中, 身体在联合任务表征中是否仍起一定作用, 观察者身体的状态以及身体或双手所在位置的改变是否也会对观察学习产生影响还仍不清楚。而探究身体对联合任务表征中观察学习的影响不仅可以加深对观察学习的发生条件和潜在机制的理解, 还可以为具身认知理论提供动作观察领域内的实证研究支持; 同时, 在实践应用中也可以更好地改进动作观察疗法, 以发展出更为有效的医疗康复措施。

具身认知(embodied cognition)理论认为, 认知过程和加工方式依赖于身体的物理属性, 身体也提供了认知加工的内容, 更重要的是, 认知、身体和环境三者密切关联, 构成了一个动态变化的统一性整体(叶浩生, 2010)。如Neumann和Strack (2000)发现胳膊收缩时对积极词比消极词反应更快, 胳膊伸展时, 对消极词比积极词反应更快。Glenberg和Kaschak (2002)发现, 当句子意义与被要求的手运动一致时, 被试判断句子意义会更快。因基于此, 本研究拟以具身认知理论为基础, 采用社会学习迁移任务的变式通过三个实验以考察在联合任务情境下, 观察学习的存在以及身体对联合任务表征中观察学习的影响。实验1通过设置转换与非转换两种条件以考察自然状态下联合Simon任务中观察学习的存在; 实验2进一步通过设置观察者双手缚于身前以改变观察者反应手的状态, 来探讨观察者反应手状态改变而导致潜在运动能力受限是否会影响其观察学习效果; 实验3则从视野范围的角度继续考察如果双手缚于背后(即在视野之外), 是否也会对观察学习产生影响, 以最终澄清具身认知视角下联合任务中反应手不同状态的改变对观察学习的影响。

2 实验1:联合任务中观察学习的存在

实验1采用社会学习迁移范式(Ferraro et al., 2012), 通过设置转换与非转换条件旨在考察自然状态下联合Simon任务中观察学习的存在及身体位置对观察学习的影响。

2.1 研究方法

2.1.1 被试

48名大学生(其中女生28人, 男生20人)参与实验。所有被试均不知晓实验目的, 且视力(矫正)正常, 无色盲或色弱。将被试进行两两随机配对, 然后随机分配至两种实验条件(转换组和非转换组)。

2.1.2 实验材料和设计

实验刺激为实心正方形(空间相容任务中为白色, 联合Simon任务中为红、绿色), 随机呈现在黑色屏幕的左侧或右侧, 距中央注视点(1 cm × 1 cm) 9.5 cm。在两任务中, 两名被试分别用左手食指(坐在左侧的被试)和右手食指(坐在右侧的被试)按“Z”和“/”键进行反应(Ferraro et al., 2012)。

本实验采用2(一致性:一致, 不一致) × 2(实验条件:转换, 非转换) × 2(被试角色:观察者, 行动者)的混合设计, 其中一致性为被试内因素, 实验条件和被试角色为被试间因素。

2.1.3 实验程序

实验设置如图1所示。包括两个阶段:练习阶段和迁移阶段, 两阶段间隔5分钟。在练习阶段, 被试仅完成空间相容任务中的不相容S-R匹配, 而在迁移阶段, 两名被试共同完成联合Simon任务。

图1

图1   实验1中社会学习迁移范式的实验设置

注:彩图见电子版


在空间相容任务中, 黑色屏幕中央首先呈现白色注视点1000 ms, 之后白色实心正方形随机出现在注视点左侧或右侧, 刺激持续时间为600 ms, 按键反应1200 ms内有效。联合Simon任务中, 刺激为红、绿色实心正方形, 持续时间为800 ms, 按键反应1000 ms内有效。刺激间隔为1000 ms。在空间相容任务中, 只需一名被试做出按键反应(行动者), 另一名被试认真观察行动者的按键反应(观察者), 自己无需做出任何反应, 实验指导语为:如果你坐在左(右)边, 请用左(右)手食指按“Z(/)”键对屏幕右(左)侧的方块做出反应。如果你坐在右(左)边, 请认真观察左(右)侧同学的按键反应, 计算其错误次数。观察者与行动者的位置在被试间平衡。而在联合Simon任务中, 两名被试一起完成联合Simon任务, 即分别对一种刺激颜色做出按键反应, 指导语为:如果你坐在左边, 请用左手食指按“Z”键对红色(绿色)方块做出反应; 如果你坐在右边, 请用右手食指按“/”键对绿色(红色)方块做出反应。联合Simon任务的刺激颜色匹配在被试间平衡。

此外, 在非转换组中, 被试在练习阶段和迁移阶段保持位置不变; 而转换组中, 被试在两阶段中位置发生改变, 即练习阶段坐在左侧(或右侧)的被试, 在迁移阶段将坐在右侧(或左侧)。

空间相容任务包括12个练习试次和300个正式试次, 分为3个组块; 联合Simon任务包括12个练习试次和160个正式试次, 分为2个组块。

2.2 结果与分析

计算每一被试在联合Simon任务中正确反应的平均反应时(RT)和正确率(PC), 被试正确率低于90%以及试次中RT < 200 ms或RT > 1000 ms的试次在随后分析中被剔除(Yamaguchi, Wall, & Hommel, 2016) (剔除率3.26%)。分别对反应时和正确率进行重复测量方差分析(ANOVAs), 所有条件下的反应时和正确率详见表1

表1   三个实验的反应时(ms)和正确率(%)的描述性统计[M (SD)]

实验实验条件观察者行动者
一致不一致JSE一致不一致JSE
1非转换组反应时388.68 (52.11)399.44 (52.74)10.77383.48 (54.93)387.10 (54.57)3.62
正确率98.50 (2.71)98.67 (2.18)-0.1799.50 (1.20)98.17 (2.00)1.33*
转换组反应时388.39 (21.55)416.63 (25.87)28.24 ***393.87 (39.70)438.30 (47.98)44.44***
正确率99.50 (1.27)96.75 (3.04)2.75*98.58 (1.82)98.58 (1.80)0.09
2双手缚于身前反应时366.51 (29.25)395.04 (31.28)28.53 ***387.02 (40.41)398.58 (39.75)11.56
正确率99.08 (1.66)98.83 (1.72)0.2599.42 (1.66)98.67 (1.60)0.75
3双手缚于身后反应时374.30 (48.80)400.89 (54.56)26.60***395.35 (48.04)396.18 (55.37)0.83
正确率98.67 (1.97)96.75 (2.35)1.92*99.25 (1.30)98.00 (2.12)1.25

注:JSE (Joint Simon Effect), 联合Simon效应, *p < 0.05, **p < 0.01, ***p < 0.001。

新窗口打开| 下载CSV


反应时结果表明, 一致性主效应显著, F(1, 44) = 56.85, p < 0.001, η2p = 0.56, 一致试次的反应时(388.60 ms)显著快于不一致试次(410.37 ms)。一致性与实验条件交互作用显著, F(1, 44) = 25.48, p < 0.001, η2p = 0.37, 进一步简单效应分析发现, 只有在转换条件下, 一致试次(391.13 ms)与不一致试次(427.47 ms)的反应时差异显著, F(1, 44) = 79.24, p < 0.001, η2p = 0.64; 非转换条件下, 一致试次(386.08 ms)与不一致试次(393.27 ms)的反应时差异不显著, F(1, 44) = 3.11, p = 0.85, η2p = 0.07。一致性、实验条件与被试角色三者交互作用显著, F(1, 44) = 4.09, p < 0.05, η2p = 0.09, 进一步简单效应分析发现, 非转换条件下, 观察者和行动者均未出现显著的联合Simon效应, Fs (1, 44) = 3.48和0.39, ps > 0.05, 而且观察者与行动者之间无显著差异, F(1, 22) = 1.36, p > 0.1, η2p = 0.06; 转换条件下, 观察者出现了显著的联合Simon效应, F(1, 44) = 23.93, p < 0.001, η2p = 0.35, 行动者亦出现了显著的联合Simon效应, F(1, 44) = 59.25, p < 0.001, η2p = 0.57, 而且观察者与行动者之间无显著差异, F(1, 22) = 2.74, p > 0.05, η2p = 0.11。其他主效应及交互作用均不显著, Fs < 1。

正确率结果表明, 一致性主效应显著, F(1, 44) = 5.24, p < 0.05, η2p = 0.11, 一致试次的正确率(99.02%)显著高于不一致试次(98.04%)。一致性与实验条件、被试角色三者的交互作用显著, F(1, 44) = 6.17, p < 0.05, η2p = 0.12, 进一步简单效应分析发现, 非转换条件下, 行动者出现了显著的联合

Simon效应, F(1, 44) = 6.77, p < 0.05, η2p = 0.38; 观察者未出现显著的联合Simon效应, Fs < 1, 然而, 观察者的联合Simon效应(-0.17%)与行动者的联合Simon效应(1.33%)无显著差异, F(1, 22) = 1.88, p > 0.1, η2p = 0.08。转换条件下, 观察者出现了显著的联合Simon效应, F(1, 44) = 8.03, p < 0.05, η2p = 0.42; 行动者未出现显著的联合Simon效应, Fs < 1, 而且观察者与行动者之间差异显著, F(1, 22) = 4.37, p < 0.05, η2p = 0.17。一致性与实验条件的交互作用和一致性与被试角色的交互作用均不显著, Fs < 1。

2.3 讨论

实验1旨在考察联合任务中自然状态下观察学习的存在及身体位置对观察学习的影响。结果发现在非转换组中, 观察者和行动者均未出现显著的联合Simon效应, 表明观察者仅仅通过观察行动者的动作及其结果, 即产生了和行动者类似的社会学习迁移效应(观察学习得以发生), 说明观察者在观察了行动者的动作及其动作结果后, 获得了与行动者相似的练习效果, 证明了联合任务情境中确实存在观察学习。而在转换组条件下, 观察者和行动者因空间位置变化均未出现社会学习迁移效应, 但非转换组因在练习任务和迁移任务中空间关系是不变的而产生了社会学习迁移效应, 说明在练习阶段, 观察者和行动者在空间相容任务阶段习得的并非是抽象的反应选择策略, 而是刺激-反应的空间特征联结。

3 实验2:视野范围内反应手的状态对观察学习的影响

实验1证实了联合Simon任务中非转换自然条件下观察学习的存在, 实验2继续采用社会学习迁移范式, 对观察者反应手的状态进行操控, 旨在探讨联合任务中反应手不同状态对观察学习的影响。

3.1 研究方法

3.1.1 被试

24名大学生(其中女生18人, 男生6人)参与实验。所有被试均不知晓实验目的, 且视力(矫正)正常, 无色盲或色弱。将被试进行两两随机配对, 然后共同完成实验任务。

3.1.2 实验材料和设计

实验材料同实验1。

采用2(一致性:一致, 不一致) × 2(被试角色:观察者, 行动者)的混合设计, 其中一致性为被试内因素, 被试角色为被试间因素。

3.1.3 实验程序

除在空间相容任务阶段将观察者双手缚于身前以及在联合Simon任务中两名被试无需互换位置以外, 实验程序同实验1。

3.2 结果与分析

计算每一被试在联合Simon任务中正确反应的平均反应时(RT)和正确率(PC), 被试正确率低于90%以及试次中RT < 200 ms或 RT > 1000 ms的试次在随后分析中被剔除(Yamaguchi et al., 2016) (剔除率4.31%)。分别对反应时和正确率进行重复测量方差分析(ANOVAs), 所有条件下的反应时和正确率详见表1

反应时的结果表明, 一致性主效应显著, F(1, 22) = 20.78, p < 0.001, η2p = 0.49, 一致试次的反应时(376.76 ms)显著快于不一致试次(396.81 ms)。一致性与被试角色交互作用边缘显著, F(1, 22) = 3.72, p = 0.067, η2p = 0.15, 进一步简单效应分析发现, 观察者对一致试次的反应显著快于不一致试次, F(1, 22) = 21.05, p < 0.001, η2p = 0.49; 行动者一致试次与不一致试次的反应时差异不显著, F(1, 22) = 3.46, p > 0.05, η2p = 0.14。被试角色主效应不显著, Fs < 1。正确率的方差分析结果均未达到显著水平, Fs < 1。

为进一步考察观察者潜在运动能力受限对观察学习的影响, 将实验条件(实验1中非转换组, 观察者的反应手自由地放置于身前; 实验2中观察者的双手缚于身前)作为被试间变量, 以一致性(一致试次和不一致试次)作为被试内变量, 对反应时和正确率进行方差分析。

反应时的结果如图2所示。一致性主效应显著, F(1, 22) = 47.62, p < 0.001, η2p = 0.68, 一致试次的反应时显著快于不一致试次。一致性与实验条件交互作用显著, F(1, 22) = 9.73, p < 0.01, η2p = 0.31。简单效应分析表明, 实验1非转换组中观察者未出现显著的联合Simon效应, F(1, 22) = 3.40, p > 0.05, η2p = 0.24; 实验2中双手被缚身前时出现显著的联合Simon效应, F(1, 22) = 50.18, p < 0.001, η2p = 0.69。实验条件主效应不显著, Fs < 1。正确率方面, 一致性与实验条件的主效应及二者交互作用均不显著, Fs < 1。说明当观察者的双手均处于视野范围内时, 自由状态下(实验1)和潜在运动能力受限(实验2)时的联合Simon效应有显著差异, 该结果进一步佐证了实验2的结果, 即潜在运动能力受限会影响观察者的观察学习。

图2

图2   三个实验的联合分析平均反应时结果, 误差棒代表了平均数上下一个标准误(Cousineau, 2005)


3.3 讨论

实验2旨在考察联合任务中观察者潜在运动能力受限时, 是否会对观察学习产生影响。结果发现当观察者双手缚于身前时出现了显著的联合Simon效应, 这意味着在联合任务中, 当观察者双手的潜在运动能力受限时, 观察者动作观察的能力就会受到限制, 对行动者动作的模拟不会发生, 观察学习就不会发生。

4 实验3:视野范围外反应手的状态对观察学习的影响

实验2的结果表明联合Simon任务中观察者反应手潜在运动能力受限时会对观察学习产生影响, 但在上述实验中, 观察者的双手均处于身前(视野范围内), 为了与实验2形成对比且进一步说明视野范围在其中的作用, 在实验3中, 我们将观察者双手缚于背后(视野之外), 以从视野范围的角度进一步探讨在联合Simon任务中, 观察者反应手状态的改变对观察学习的影响。

4.1 研究方法

4.1.1 被试

24名大学生(其中女生20人, 男生4人)参与实验。所有被试均不知晓实验目的, 且视力(矫正)正常, 无色盲或色弱。将被试进行两两随机配对, 然后共同完成实验任务。

4.1.2 实验材料和设计

实验设计和材料同实验2。

4.1.3 实验程序

除在空间相容任务阶段, 将观察者双手缚于背后外, 实验程序同实验2。

4.2 结果与分析

计算每一被试在联合Simon任务中正确反应的平均反应时(RT)和正确率(PC), 被试正确率低于90%以及试次中RT < 200 ms或 RT > 1000 ms的试次在随后分析中均被剔除(Yamaguchi et al., 2016) (剔除率3.97%)。分别对反应时和正确率进行重复测量方差分析(ANOVAs), 所有条件下的反应时和正确率详见表1

反应时结果表明, 一致性主效应显著, F(1, 22) = 8.36, p < 0.01, η2p = 0.28, 一致试次的反应时(384.82 ms)显著快于不一致试次(398.54 ms)。一致性与被试角色交互作用显著, F(1, 22) = 7.39, p < 0.05, η2p = 0.25, 进一步简单效应分析发现, 观察者对一致试次的反应显著快于不一致试次, F(1, 22) = 15.73, p = 0.001, η2p = 0.41; 行动者一致试次与不一致试次的反应时差异不显著, Fs < 1。被试角色主效应不显著, Fs < 1。

正确率结果表明, 一致性主效应显著, F(1, 22) = 8.53, p < 0.01, η2p = 0.28, 一致试次的正确率(98.96%)显著高于不一致试次(97.38%)。被试角色主效应及其与一致性的交互作用均不显著, Fs < 1, 说明观察者和行动者均未出现显著的联合Simon效应。。

为进一步考察视野范围对观察学习的影响, 将实验条件(实验2中观察者双手缚于身前; 实验3中观察者双手缚于身后)作为被试间变量, 以一致性(一致试次和不一致试次)作为被试内变量, 对反应时和正确率进行方差分析。

反应时结果如图2所示。一致性主效应显著, F(1, 22) = 48.12, p < 0.001, η2p = 0.69, 一致试次的反应时(370.40 ms)显著快于不一致试次(397.97 ms)。一致性与实验条件交互作用不显著, Fs < 1, 即实验2中观察者出现的联合Simon效应(28.53 ms)与实验3中观察者亦出现的联合Simon效应(26.60 ms)并无显著差异。实验条件主效应不显著, Fs < 1。正确率方面均未达到显著水平, Fs < 1。说明反应手处于视野范围内(实验2)和视野范围外(实验3)的联合Simon效应没有显著差异。

4.3 讨论

实验3旨在考察观察者视野范围可能对观察学习效果的影响。结果发现, 当双手被缚于身后时, 观察者出现了显著的联合Simon效应, 且与双手被缚于身前的结果并无显著差异, 说明联合任务中观察者的任务表现在双手被缚的情况下不受其反应手是否在视野范围的影响, 当反应手被缚于身后时, 观察者的动作模拟也受到了限制, 从而影响了观察学习的产生。

5 总讨论

人类的行为习得不仅可通过直接的练习来完成, 也可不经实际练习, 仅仅通过观察他人行为及其结果即可习得某种复杂行为以应对外界复杂环境。具身认知理论认为, 认知和心智(mind)同身体的物理结构和属性在很大程度上息息相关, 身体的物理结构、身体部位的位置与状态及其所处环境会对人类的高级认知过程有至关重要的影响(陈玉明, 郭田友, 何立国, 燕良轼, 2014; 叶浩生, 2010)。基于此, 本研究通过设置三个层层递进的实验, 旨在考察联合任务中观察学习的存在以及身体的状态与位置对观察学习产生的影响, 以加深对观察学习的发生条件、影响因素及人类具身模拟的理解。

5.1 联合Simon任务中的观察学习

实验1通过设置转换与非转换条件考察了在联合任务中是否存在观察学习(社会学习迁移效应)以及身体位置对观察学习的影响, 实验结果表明, 在联合Simon任务中, 观察者通过观察行动者的按键动作, 即可习得相应的空间联结, 而且这种社会学习迁移效应仅仅在非转换(身体位置没有改变)条件下才会出现, 说明联合任务中同样存在观察学习, 此结果与以往研究结果一致(Milanese et al., 2011)。在练习任务中, 观察者通过观看行动者的按键动作, 与行动者都习得了不相容的刺激-反应空间联结。然而, 这一联结仅仅是针对单反应手存在的。当两人所坐位置对调之后, 在迁移任务中这一联结将不复存在。因此转换组中观察者出现了显著的联合Simon效应, 表明被试对练习任务和迁移任务的表征未足够重叠以诱发社会学习迁移效应。

实验1的结果还发现, 在转换和非转换两种条件下, 观察者与行动者联合Simon效应的大小均无显著差异。这也与以往的研究结果一致(Ferraro et al., 2012)。Ferraro等(2012)采用社会学习迁移范式, 也得到了观察学习可取得与实际按键练习相类似的学习效果。值得注意的是, 本研究证实在观察练习任务中可产生社会学习迁移效应, 而以往研究发现, 在单人go/no-go任务中并无迁移效应发生(Milanese, Iani, & Rubichi, 2010), 说明在个体对任务的表征中, 观察者也被当成一个潜在的合作伙伴(Stenzel, et al., 2014; Wen & Hsieh, 2015)。因此, 结合本研究, 在联合任务情境中, 对他人任务的表征, 可整合自身与他人的动作, 并不需要两名被试实际完成任务。

此外, 实验1的研究结果进一步表明, 由被观察动作所激活的动作模拟因具备一定的情境依赖性而表现出灵活性特点。Sartori, Cavallo, Bucchioni和Castiello (2012)认为, 如果被观察的动作需要内隐的互补性动作反应, 那么对该动作的观察可能会启动相应的互补性行为和动作。本研究将此观点推广至联合任务情境中, 得出同实际操作的类似, 对动作的观察同样可以转化为对该动作的模拟。根据Sartori等(2012)的观点, 为了更好地体验和理解这些需要互补反应的被观察的动作, 观察者的大脑就会自动对该动作进行模拟, 从而激活相应的互补性反应。实验1的结果支持了这一观点, 即动作学习也可源自对互补性动作的模拟。

5.2 反应手的状态对观察学习的影响

以往研究结果显示, 观察者的运动能力、特别是双手运动能力受限会影响观察者在单人认知任务中的操作表现(Ambrosini et al., 2012; Iani et al., 2013)。那么, 在联合认知任务中, 是否存在类似现象?如果联合任务情境下的观察者双手运动能力受限, 能否产生观察学习, 从而影响其在后继认知任务的操作成绩?实验2即针对上述问题展开了探究。结果表明, 观察者双手缚于身前时出现了显著的联合Simon效应, 说明当观察者双手的运动能力受限时, 观察学习不会发生, 这与以往在单人认知任务中得出的研究结论基本一致(Iani et al., 2013)。Iani等(2013)发现在标准Simon任务中, 观察学习的发生依赖于观察者的潜在运动能力。当观察者具备做出反应的可能性时, 会出现观察学习; 当潜在运动能力受限时, 观察者动作观察的能力也会受到限制, 观察学习不会发生。实验2也得出类似结论, 说明无论是单人或联合认知任务, 当观察者的双手运动能力受限, 即没有可能对刺激做出任何反应时, 观察者不会习得相应的空间联结, 也不会出现观察学习。

进一步的联合分析表明, 在练习阶段, 当观察者的双手均处于视野范围之内时, 与自由状态(实验1)相比, 双手运动能力受限(实验2)时观察学习不会发生。根据具身认知的观点, 在实时 (real time) 环境中, 具体的个体通过身体运动(或感知运动)才产生了认知加工(叶浩生, 2010), 如点头的身体动作可以强化被试的积极态度, 而摇头的身体动作则使得被试的消极态度增强(Wells & Petty, 1980)。以往关于具身模拟产生条件的研究发现, 具身模拟是否产生在很大程度上依赖于个体自身的行动能力, 当身体资源被占用或是潜在运动能力受到限制时, 个体的具身模拟将不会发生(Witt, Kemmerer, Linkenauger, & Culham, 2010)。因此本研究认为, 在实验2中, 由于观察者双手被缚, 与双手处于自由状态相比, 其身体形式发生了变化, 这一变化可能对认知过程产生了重要影响, 故而阻碍了观察学习的发生。

5.3 视野范围外的反应手状态对观察学习的影响

根据具身认知理论, 身体的位置与状态及其所处环境均可直接影响人类认知过程的产生和发展。实验3在实验1和实验2的基础上, 进一步探究在联合任务情境下, 处于视野范围之外的反应手状态对观察学习产生的影响。实验3结果表明, 观察者对一致试次的反应时显著快于不一致试次, 出现了联合Simon效应, 这意味着在观察者身上, 并未出现社会学习迁移效应, 亦即未出现观察学习; 行动者对一致与不一致试次的反应时无显著差异, 说明行动者在练习空间不相容刺激-反应匹配之后, 发生了社会学习迁移效应。说明当观察者的双手被缚于背后而处于自身视野范围之外时, 潜在运动能力也受到了限制。同时我们在实验3的基础上做了观察者双手正常放置于身后的实验条件, 得出与实验3差异并不显著的结果, 这表明当观察者的双手均处于身后时, 无论双手状态相对自由还是被缚, 均因双手运动能力完全受限从而导致观察学习不会出现。此外, 实验2与实验3的联合分析结果显示, “双手缚于身前”和“双手缚于背后”两个条件下, 观察者出现的联合Simon效应均达到显著水平, 且两者之间的差异不显著。说明当观察者双手的运动能力受到限制时, 无论双手所处位置在视野范围之内或者之外, 观察学习均不会发生, 也即以往研究中反应手位置的影响也是在潜在运动能力没有受限的条件下, 如果反应手的潜在运动能力受限, 无论其放在何处位置均会导致观察学习不会发生。这与以往在单人认知任务中得出的研究结论是基本一致的 (Ambrosini et al., 2012; Iani et al., 2013)。

综上, 本研究认为观察者身体形式的改变直接影响了其认知过程, 在联合任务中, 如果观察者在观察的过程中反应手的状态发生改变(双手运动能力受限), 会影响其观察学习的效果, 这为联合任务表征中认知加工的具身性提供了新的实证研究依据。同时这对于儿童动作的观察与学习具有现实的指导意义, 观察他人的动作并对其进行模拟对于动作的学习和理解来说都至关重要。

5.4 局限与展望

本研究虽然得出了联合任务中观察学习的存在以及身体在观察学习中的作用, 然而在整个研究过程中, 仍有一些方面不够完善。首先, 本研究与前人研究一样在实验中两名行动者均使用了同一键盘进行反应, 这就使得两名被试之间的距离小于正常的心理距离, 可能会在一定程度上对结果产生影响, 未来的研究可以换用分离的反应盒或手柄来进行反应, 以排除心理距离可能产生的影响。其次, 双手被缚这一实验设置可能会在一定程度上影响被试的情绪状态, 从而干扰实验结果。然而在实验后并未进行情绪控制或评估测验, 是为不足之一, 未来研究应加以控制。再次, 本研究仅以在校大学生为样本, 在一定程度上影响了结论的生态效度, 而就观察学习和联合任务来看, 儿童的观察学习和模仿学习更加普遍且有效, 本研究中得出的双手潜在运动能力受限对观察学习的影响若以儿童为被试, 得出的结果可能对于儿童学习效果更具备实践指导意义。最后, 在研究方法方面, 本研究采用传统的认知行为实验, 仅从行为层面展开研究。未来的研究应充分利用各类现代化技术, 如fMRI、TMS、tDCS以及眼动技术等, 从神经生理层面更深入地揭示人类观察学习的认知神经机制。

6 结论

(1)在联合任务中, 当观察者身体位置没有发生改变时, 仅观察行动者的动作及其结果, 即可获得与实际练习相类似的学习效果;

(2)观察学习的发生不仅依赖于观察者身体位置, 还依赖于其反应手所处的状态, 当观察者反应手状态发生改变而导致其潜在运动能力受限时, 观察学习不会发生; 说明观察者身体形式的变化可影响其在联合任务中的认知表现, 这为具身认知理论在动作模仿领域提供了实证研究支持。

参考文献

Ambrosini E., Sinigaglia C., & Costantini M . ( 2012).

Tie my hands, tie my eyes

Journal of Experimental Psychology: Human Perception and Performance, 38( 2), 263-266.

DOI:10.1037/a0026570      URL     PMID:22201461      [本文引用: 3]

Previous studies have demonstrated that motor abilities allow us not only to execute our own actions and to predict their consequences, but also to predict others' actions and their consequences. But just how deeply are motor abilities implicated in action observation? If an observer is prevented from acting while witnessing others' actions, will this impact on their making sense of others' behavior? We recorded proactive eye movements while participants observed an actor grasping objects. The participants' hands were either freely resting on the table or tied behind their back. Proactivity of gaze behavior was dramatically impaired when participants observed others' actions with their hands tied. Since we don't literally perceive actions with our hands, the effect may be explained by the hypothesis that effective observation of action depends not only on motor abilities but on being in a position to exercise them. This suggests, for the first time, that actions are observed best when we are actually in the position to perform them. (PsycINFO Database Record (c) 2011 APA, all rights reserved).

Baess, P., &Prinz, W. ( 2015).

My partner is also on my mind: Social context modulates the N1 response

Experimental Brain Research, 233( 1), 105-113.

DOI:10.1007/s00221-014-4092-9      URL     [本文引用: 1]

When individuals share a task with a partner, one’s own actions and one’s partner’s actions have to be precisely tuned to one another. With behavioral means, it has been numerously shown that splitting a simple reaction time task between two participants produces similar interference patterns to those occurring when controlling the whole task on one’s own. Less is known about the neuronal correlates when sharing a task with a partner. The processes of agent identification (“my turn” vs. “my partner’s turn”) were the focus of this study. In an EEG study, pairs of participants responded to different action-associated stimuli in a Go/NoGo paradigm. The same task was performed together with a partner (joint Go/NoGo condition) and when a partner was not present (single Go/NoGo condition). This study showed a top-down influence of social setting on early visual processing as indexed by the Go-N1 and NoGo-N1 response. This effect was only present in the joint Go/NoGo condition. It was particularly present in those trials where the partner did not have to act. Taken together, these results yield evidence for an early top-down influence of social setting on early processes of stimulus identification and differentiation.

Bandura, A. ( 1976).

Social learning theory

Englewood Cliffs, NJ: Prentice Hall.

[本文引用: 2]

Brass M., Bekkering H., Wohlschläger A., & Prinz W . ( 2000).

Compatibility between observed and executed finger movements: Comparing symbolic, spatial, and imitative cues

Brain and Cognition, 44( 2), 124-143.

DOI:10.1006/brcg.2000.1225      URL     [本文引用: 1]

Chen Y. M., Guo T. Y., He L. G., & Yan L. S . ( 2014).

A Review on the Research on Embodied Cognitive

Psychological Exploration, 34 ( 6), 483-487.

URL    

Embodied Cognition is a new perspective from the body to explain cognitive. The evidences from embodied cognition of empirical research suggest that the physiological properties of the body,the sport experience and realistic environment affect cognitive. The present research of embodied cognition mainly adopts the paradigm of traditional cognition,with the focus on the study effects of the structural properties of the body and static action. Future research needs to absorb and integrate embodied cognition and traditional cognition,and needs to pay more attention to the body's functions and dynamic attributes.

[ 陈玉明, 郭田友, 何立国, 燕良轼 . ( 2014).

具身认知研究述评

心理学探新, 34( 6), 483-487.]

[本文引用: 1]

Cousineau, D. ( 2005).

Confidence intervals in within-subject designs: A simpler solution to Loftus and Masson’s method

Tutorials in Quantitative Methods for Psychology, 1( 1), 42-45.

DOI:10.20982/tqmp.08.3.p182      URL     [本文引用: 1]

Within-subject ANOVAs are a powerful tool to analyze data because the variance associated to differences between the participants is removed from the analysis. Hence, small differences, when present for most of the participants, can be significant even when the participants are very different from one another. Yet, graphs showing standard error or confidence interval bars are misleading since these bars include the between-subject variability. Loftus and Masson (1994) noticed this fact and proposed an alternate method to compute the error bars. However, i) their approach requires that the ANOVA be performed first, which is paradoxical since a graph is an aid to decide whether to perform analyses or not; ii) their method provides a single error bar for all the conditions, masking information such as the heterogeneity of variances across conditions; iii) the method proposed is difficult to implement in commonly-used graphing software. Here we propose a simpler alternative and show how it can be implemented in SPSS.

Cross E. S., Kraemer D. J. M., de C Hamilton, A. F., Kelley W. M., & Grafton S. T . ( 2009).

Sensitivity of the action observation network to physical and observational learning

Cerebral Cortex, 19( 2), 315-326.

DOI:10.1093/cercor/bhn083      URL     PMID:2638791      [本文引用: 1]

Human motor skills can be acquired by observation without the benefit of immediate physical practice. The current study tested if physical rehearsal and observational learning share common neural substrates within an action observation network (AON) including premotor and inferior parietal regions, that is, areas activated both for execution and observation of similar actions. Participants trained for 5 days on dance sequences set to music videos. Each day they physically rehearsed one set of dance sequences ("danced"), and passively watched a different set of sequences ("watched"). Functional magnetic resonance imaging was obtained prior to and immediately following the 5 days of training. After training, a subset of the AON showed a degree of common activity for observational and physical learning. Activity in these premotor and parietal regions was sustained during observation of sequences that were danced or watched, but declined for unfamiliar sequences relative to the pretraining scan session. These imaging data demonstrate the emergence of action resonance processes in the human brain based on observational learning without physical practice and identify commonalities in the neural substrates for physical and observational learning.

Dolk T., Hommel B., Colzato L. S., Schütz-bosbach S., Prinz W., & Liepelt R . ( 2014).

The joint simon effect: a review and theoretical integration

Frontiers in Psychology, 5( 974), 1-10.

DOI:10.3389/fpsyg.2014.00974      URL     PMID:4155780      [本文引用: 1]

The social or joint Simon effect has been developed to investigate how and to what extent people mentally represent their own and other persons’ action/task and how these cognitive representations influence an individual’s own behavior when interacting with another person. Here, we provide a review of the available evidence and theoretical frameworks. Based on this review, we suggest a comprehensive theory that integrates aspects of earlier approaches–the Referential Coding Account. This account provides an alternative to the social interpretation of the (joint) go-nogo Simon effect (aka the social Simon effect) and is able to integrate seemingly opposite findings on joint action.

Ferraro L., Iani C., Mariani M., Nicoletti R., Gallese V., & Rubichi S . ( 2012).

Look what I am doing: does observational learning take place in evocative task-sharing situations?

PlosOne, 7( 8), e43311.

[本文引用: 6]

Glenberg, A. M., & Kaschak, M. P . ( 2002).

Grounding language in action

Psychonomic Bulletin & Review, 9( 3), 558-565.

[本文引用: 1]

Hommel B., Müsseler J., Aschersleben G., & Prinz W . ( 2001).

The theory of event coding (TEC): A framework for perception and action planning

Behavioral and Brain Sciences, 24( 5), 849-937.

DOI:10.1017/S0140525X01000103      URL     [本文引用: 1]

Iani C., Rubichi S., Ferraro L., Nicoletti R., & Gallese V . ( 2013).

Observational learning without a model is influenced by the observer’s possibility to act: Evidence from the Simon task

Cognition, 128(1), 26-34.

DOI:10.1016/j.cognition.2013.03.004      URL     [本文引用: 5]

Liepelt, R. ( 2014).

Interacting hands: The role of attention for the joint Simon effect

Frontiers in Psychology, 5, 1462.

DOI:10.3389/fpsyg.2014.01462      URL     PMID:4269294      [本文引用: 1]

Recent research in monkeys and humans has shown that the presence of the hands near an object enhances spatial processing for objects presented near the hand. This study aimed to test the effect of hand position on the joint Simon effect. In Experiment 1, two human co-actors shared a Simon task while placing their response hands either near the objects appearing on the monitor or away from the monitor. Experiment 2 varied each co-actor hand position independently. Experiment 3 tested whether enhanced spatial processing for objects presented near the hand is obtained when replacing one of the two co-actors by a non-human event-producing rubber hand. Experiment 1 provided evidence for a Simon effect. Hand position significantly modulated the size of the Simon effect in the joint Simon task showing an increased Simon effect when the hands of both actors were located near the objects on the monitor, than when they were located away from the monitor. Experiment 2 replicated this finding showing an increased Simon effect when the actor hand was located near the objects on the monitor, but only when the co-actor also produced action events in spatial reference. A similar hand position effect was observed in Experiment 3 when a non-human rubber hand replaced the human co-actor. These findings suggest that external action events that are produced in spatial reference bias the distribution of attention to the area near the hand. This strengthens the weight of the spatial response codes (referential coding) and hence increases the joint Simon effect.

Lugli L., Iani C., Milanese N., Sebanz N., & Rubichi S . ( 2015).

Spatial parameters at the basis of social transfer of learning

Journal of Experimental Psychology Human Perception & Performance, 41( 3), 840-849.

DOI:10.1037/xhp0000047      URL     PMID:25867503      [本文引用: 1]

Recent research indicates that practicing on a joint spatial compatibility task with an incompatible stimulus-response mapping affects subsequent joint Simon task performance, eliminating the social Simon effect. It has been well established that in individual contexts, for transfer of to occur, participants need to practice an incompatible association between stimulus and response positions. The mechanisms underlying transfer of in joint task performance are, however, less well understood. The present study was aimed at assessing the relative contribution of 3 different spatial relations characterizing the joint practice context: stimulus-response, stimulus-participant, and participant-response relations. In 3 experiments, the authors manipulated the stimulus-response, stimulus-participant, and response-participant associations. We found that from the practice task did not transfer to the subsequent task when during practice stimulus-response associations were spatially incompatible and stimulus-participant associations were compatible (Experiment 1). However, a transfer of was evident when stimulus-participant associations were spatially incompatible. This occurred both when response-participant associations were incompatible (Experiment 2) and when they were compatible (Experiment 3). These results seem to support an agent corepresentation account of correspondence effects emerging in joint settings since they suggest that, in social contexts, critical to obtain transfer-of-effects is the spatial relation between stimulus and participant positions while the spatial relation between stimulus and response positions is irrelevant. (PsycINFO Database Record.

Milanese N., Iani C., & Rubichi S . ( 2010).

Shared learning shapes human performance: transfer effects in task sharing

Cognition, 116( 1), 15-22.

DOI:10.1016/j.cognition.2010.03.010      URL     PMID:20381024      [本文引用: 1]

We investigated whether performing a task with a co-actor shapes the way a subsequent task is performed. In four experiments participants were administered a Simon task after practicing a spatial compatibility task with an incompatible S-R mapping. In Experiment 1 they performed both tasks alongside another person; in Experiment 2 they performed the spatial compatibility task alone, responding to only one stimulus position, and the Simon task with another person; in Experiment 3, they performed the spatial compatibility task with another person and the Simon task alone; finally, in Experiment 4, they performed the spatial compatibility task alone and the Simon task with another person. The incompatible practice eliminated the Simon effect in Experiments 1 and 4. These results indicate that when a task is distributed between two participants with each one performing a different part of it, they tend to represent the whole task rather than their own part of it. This experience can influence the way a subsequent task is performed, as long as this latter occurs in a social context.

Milanese N., Iani C., Sebanz N., & Rubichi S . ( 2011).

Contextual determinants of the social-transfer- of-learning- effect

Experimental Brain Research, 211( 3-4), 415-422.

DOI:10.1007/s00221-011-2679-y      URL     PMID:21512798      [本文引用: 2]

A recent study (Milanese et al. in Cogn 116(1):1522, 2010 ) showed that performing a spatial compatibility task with incompatible S links (i.e., the practice task) alongside a co-actor eliminates the Simon effect in a subsequent joint Simon task (i.e., the transfer task). In the present study, we conducted three experiments to individuate which elements of the practice task need to remain constant for this social-transfer-of-learning to occur. In Experiment 1, participants performed the practice task alongside a co-actor and the Simon task with a different co-actor; in Experiment 2, they performed the practice task alongside a co-actor and the Simon task with the same co-actor after exchanging their seats. Results showed a modulation of the joint Simon effect in Experiment 1 only. In Experiment 2, we found a regular joint Simon effect. These results indicate that, while co-actor identity is not crucial, other elements of the context, such as keeping the same position across tasks, are necessary for the social-transfer-of-learning to occur. On the whole, our data suggest that the social-transfer-of-learning effect is not tuned to a specific co-actor and depends on spatial parameters of the practice and transfer tasks.

Neumann, R., &Strack, F. ( 2000).

Approach and avoidance: The influence of proprioceptive and exteroceptive cues on encoding of affective information

Journal of Personality and Social Psychology, 79( 1), 39-48.

DOI:10.1037/0022-3514.79.1.39      URL     [本文引用: 1]

Paulus M., van Dam W., Hunnius S., Lindemann O., & Bekkering H . ( 2011).

Action-effect binding by observational learning

Psychonomic Bulletin and Review, 18( 5), 1022-1028.

DOI:10.3758/s13423-011-0136-3      URL     PMID:21779944      [本文引用: 2]

The acquisition of bidirectional action–effect associations plays a central role in the ability to intentionally control actions. Humans learn about actions not only through active experience, but also through observing the actions of others. InExperiment 1, we examined whether action–effect associations can be acquired by observational learning. To this end, participants observed how a model repeatedly pressed two buttons during an observation phase. Each of the buttonpresses led to a specific tone (action effect). In a subsequent test phase, the tones served as target stimuli to which the participants had to respond with buttonpresses. Reaction times were shorter if the stimulus–response mapping in the test phase was compatible with the action–effect association in the observation phase.Experiment 2excluded the possibility that the impact of perceived action effects on own actions was driven merely by an association of spatial features with the particular tones. Furthermore, we demonstrated that the presence of an agent is necessary to acquire novel action–effect associations through observation. Altogether, the study provides evidence for the claim that bidirectional action–effect associations can be acquired by observational learning. Our findings are discussed in the context of the idea that the acquisition of action–effect associations through observation is an important cognitive mechanism subserving the human ability for social learning.

Prinz, W. ( 1997).

Perception and action planning

European Journal of Cognitive Psychology, 9( 2), 129-154.

[本文引用: 1]

Sartori L., Cavallo A., Bucchioni G., & Castiello U . ( 2012).

From simulation to reciprocity: The case of complementary actions

Social Neuroscience, 7( 2), 146-158.

DOI:10.1080/17470919.2011.586579      URL     PMID:21777110      [本文引用: 2]

A large body of research reports that perceiving body movements of other people activates motor representations in the observer's brain. This automatic resonance mechanism appears to be imitative in nature. However, action observation does not inevitably lead to symmetrical motor facilitation: Mirroring the observed movement might be disadvantageous for successfully performing joint actions. What remains unknown is how we are to resolve the possible conflict between the automatic tendency to 渕irror and the need to perform different context-related complementary actions. By using single-pulse transcranial magnetic stimulation, we found that observation of a double-step action characterized by an implicit complementary request engendered a shift from symmetrical simulation to reciprocity in the participants' corticospinal activity. Accordingly, differential motor facilitation was revealed for the snapshots evoking imitative and complementary gestures despite the fact that the observed type of grasp was identical. Control conditions in which participants observed the same action sequence but in a context not implying a complementary request were included as well. The results provide compelling evidence that when an observed action calls for a nonidentical complementary action, an interplay between the automatic tendency to resonate with what is observed and to implicitly prepare for the complementary action does emerge. In other words, implicit complementary requests might have the ability to draw attention to specific features of the context affording nonidentical responses.

Sebanz N., Knoblich G., & Prinz W . ( 2003).

Representing others' actions: Just like one's own?

Cognition, 88( 3), B11-B21.

DOI:10.1016/S0010-0277(03)00043-X      URL     PMID:12804818      [本文引用: 1]

Previous research has shown that observing others' actions can affect individual performance of the same actions. In the present study, we developed a new paradigm to investigate whether and how complementary actions at the disposal of another agent are represented and influence one's own actions. A spatial compatibility task was distributed among two people so that each participant took care of one of two responses. The identical task was performed alone and alongside another participant. There was a spatial compatibility effect in the group setting only. It was similar to the effect obtained when one person took care of both responses. This result suggests that one's own actions and others' actions are represented in a functionally equivalent way.

Sellaro R., Treccani B., Rubichi S., & Cubelli R . ( 2013).

When co-action eliminates the Simon effect: Disentangling the impact of co-actor's presence and task sharing on joint-task performance

Frontiers in Psychology, 4, 844.

[本文引用: 1]

Stenzel A., Dolk T., Colzato L. S., Sellaro R., Hommel B., & Liepelt R . ( 2014).

The joint simon effect depends on perceived agency, but not intentionality, of the alternative action

Frontiers in Human Neuroscience, 8, 595.

[本文引用: 1]

Thura D., Hadj-Bouziane F., Meunier M., & Boussaoud D . ( 2008).

Hand position modulates saccadic activity in the frontal-eye field

Behavioural Brain Research, 186( 1), 148-153.

DOI:10.1016/j.bbr.2007.07.035      URL     PMID:17881066      [本文引用: 1]

Recent neurophysiological studies have begun to uncover the neuronal correlates of eye hand coordination. This study was designed to test whether the frontal eye field (FEF) saccadic activity is modulated by hand position. Single neurons were recorded in two macaque monkeys performing visually guided saccades while holding their hand at given locations on a touchscreen. To determine the relative contributions of hand vision and its proprioception, monkeys executed the task with or without vision of the hand. We found that saccadic activity of more than half of the neuronal sample (54%; n=130) was dependent on hand position relative to the saccade end point. Both visual and proprioceptive signals contributed to this modulation. These data demonstrate that the oculomotor function of the FEF takes into account hand position in space.

Wells, G. L., & Petty, R. E . ( 1980).

The effects of overt head movements on persuasion: compatibility and incompatibility of Responses

Basic and Applied Social Psychology, 1( 3), 219-230.

DOI:10.1207/s15324834basp0103_2      URL     [本文引用: 1]

Wen, T., &Hsieh, S. ( 2015).

Neuroimaging of the joint Simon effect with believed biological and non-biological co-actors

Frontiers in Human Neuroscience, 9, 483.

DOI:10.3389/fnhum.2015.00483      URL     PMID:4555067      [本文引用: 1]

Performing a task alone or together with another agent can produce different outcomes. The current study used event-related functional magnetic resonance imaging (fMRI) to investigate the neural underpinnings when participants performed a Go/Nogo task alone or complementarily with another co-actor (unseen), whom was believed to be another human or a computer. During both complementary tasks, reaction time data suggested that participants integrated the potential action of their co-actor in their own action planning. Compared to the single-actor task, increased parietal and precentral activity during complementary tasks as shown in the fMRI data further suggested representation of the co-actor response. The superior frontal gyrus of the medial prefrontal cortex was differentially activated in the human co-actor condition compared to the computer co-actor condition. The medial prefrontal cortex, involved thinking about the beliefs and intentions of other people, possibly reflects a social-cognitive aspect or self-other discrimination during the joint task when believing a biological co-actor is present. Our results suggest that action co-representation can occur even o铿刬ne with any agent type given a priori information that they are co-acting; however, additional regions are recruited when participants believe they are task-sharing with another human.

Witt J. K., Kemmerer D., Linkenauger S. A., & Culham J . ( 2010).

A functional role for motor simulation in identifying tools

Psychological Science, 21( 9), 1215-1219.

DOI:10.1177/0956797610378307      URL     PMID:20639402      [本文引用: 1]

Abstract Embodied cognition promotes the involvement of the motor system in cognitive processing, such as tool identification. Although neuropsychological studies suggest that the motor system is not necessary for identifying tools, it may still have a functional role in tool recognition. To test this possibility, we used a motor interference task: Participants squeezed a rubber ball in one hand while naming pictures of tools and animals. Participants were faster and more accurate in naming the tools that were oriented with the handle facing away from the squeezing hand than in naming the tools that were oriented with the handle facing toward the squeezing hand. There was no effect of orientation for animals. Given that participants simulate grasping a tool with the hand closest to the handle, this result demonstrates that interfering with the ability to simulate grasping impairs tool naming and suggests that motor simulation has a functional role in tool identification.

Yamaguchi M., Wall H. J., & Hommel B . ( 2016).

Sharing tasks or sharing actions? Evidence from the joint Simon task

Psychological Research, 82( 2), 385-3.

DOI:10.1007/s00426-016-0821-y      URL     PMID:27826655      [本文引用: 3]

In a joint Simon task, a pair of co-acting individuals divide labors of performing a choice-reaction task in such a way that each actor responds to one type of stimuli and ignores the other type that is assigned to the co-actor. It has been suggested that the actors share the mental representation of the joint task and perform the co-actor’s trials as if they were their own. However, it remains unclear exactly which aspects of co-actor’s task-set the actors share in the joint Simon task. The present study addressed this issue by manipulating the proportions of compatible and incompatible trials for one actor (inducer actor) and observing its influences on the performance of the other actor (diagnostic actor) for whom there were always an equal proportion of compatible and incompatible trials. The design of the present study disentangled the effect of trial proportion from the confounding effect of compatibility on the preceding trial. The results showed that the trial proportions for the inducer actor had strong influences on the inducer actor’s own performance, but it had little influence on the diagnostic actor’s performance. Thus, the diagnostic actor did not represent aspects of the inducer actor’s task-set beyond stimuli and responses of the inducer actor. We propose a new account of the effect of preceding compatibility on the joint Simon effect.

Ye, H. S . ( 2010).

Embodied cognition: A new approach in cognitive psychology

Advances in Psychological Science, 18( 5), 705-710.

DOI:10.3724/SP.J.1142.2010.40521      URL    

The embodied cognition approach in cognitive psychology is featured as the emphasis it places on the role the body plays in an organism's cognitive processes.Its central meanings include the following claims:(1) steps in a cognitive process might emerge from the physical attributes of the body;(2) it tries to account for the content of cognition by appeal to the nature of the body;(3) cognitive processes or states might be extended into the environment in which the cognition takes place.At first,the study of embodied cognition is only a kinds of philosophical thinking.But now,It has already extended to the experimental study of cognitive psychology.However,there are still some burning problems before it.

[ 叶浩生 . ( 2010).

具身认知:认知心理学的新取向

心理科学进展, 18( 5), 705-710.]

URL     [本文引用: 3]

The embodied cognition approach in cognitive psychology is featured as the emphasis it places on the role the body plays in an organism cognitive processes. Its central meanings include the following claims: (1) steps in a cognitive process might emerge from the physical attributes of the body; (2) it tries to account for the content of cognition by appeal to the nature of the body; (3) cognitive processes or states might be extended into the environment in which the cognition takes place. At first, the study of embodied cognition is only a kinds of philosophical thinking. But now, It has already extended to the experimental study of cognitive psychology. However, there are still some burning problems before it.

/


版权所有 © 《心理学报》编辑部
地址:北京市朝阳区林萃路16号院 
邮编:100101 
电话:010-64850861 
E-mail:xuebao@psych.ac.cn
备案编号:京ICP备10049795号-1 京公网安备110402500018号

本系统由北京玛格泰克科技发展有限公司设计开发