心理学报, 2018, 50(8): 840-847 doi: 10.3724/SP.J.1041.2018.00840

“以小拨大:行为决策助推社会发展”专栏

健康目标启动降低高热量食物消费

耿晓伟,, 张峰, 王艳净, 范琳琳, 姚艳

鲁东大学教育科学学院, 烟台 264025

Health goal priming decreases high-calorie food consumption

GENG Xiaowei,, ZHANG Feng, WAGN Yanjing, FAN Linlin, YAO Yan

School of Education Science, Ludong University, Yantai 264011, China

通讯作者: 耿晓伟, E-mail: fengandwei@126.com

收稿日期: 2017-07-13   网络出版日期: 2018-08-07

基金资助: * 国家自然科学基金项目(71401068), 教育部人文社科项目(14YJCZH036), 山东省社科规划项目(18CJYJ13)资助.  

Received: 2017-07-13   Online: 2018-08-07

摘要

高热量食物摄入导致的能量正平衡是导致肥胖的原因之一。本研究通过3个实验考察了健康目标启动能否以及如何降低高热量食物的消费, 提高低热量食物的消费。结果发现:(1)健康目标启动能够显著减少人们对高热量食物的消费, 增加对低热量食物的消费。(2)对食物的情感预测分别在健康目标启动减少高热量食物消费、增加低热量食物消费中起中介作用。因此, 健康目标启动可以通过降低(增加)对高(低)热量食物的情感预测来帮助人们减少(增加)高(低)热量食物的选择和消费。

关键词: 健康目标启动 ; 高热量食物 ; 低热量食物 ; 情感预测

Abstract

Obesity is an important risk factor for many diseases. Consuming too much high-calorie food is one of the important factors that lead to obesity. Thus, it is important to investigate how to reduce high-calorie food consumption. The present study investigated the impact of health goal priming on high/low-calorie food consumption and the mediating role of affective forecast.

To test the hypotheses, three experiments were conducted. In Experiment 1, a total of 40 participants were randomly divided into two conditions. One half looked at pictures of the discobolus to prime their health goal, while the other half looked at geometry pictures as a control group. Then, participants made a choice between a beef sandwich and a vegetable sandwich. The participants in the goal priming condition chose more vegetable sandwiches and fewer beef sandwiches than those of the control condition. A chi-square test showed that the difference was significant, χ 2(1) = 5.01, p = 0.025. Therefore, goal priming helps people to reduce high-calorie food choices and increase low-calorie food choices.

In Experiment 2, with a 2 (goal priming vs. control group) × 2 (high calorie vs. low calorie) between- subject design, we investigated the mediating role of affective forecast in a field experiment. The health goal was primed in the same way as in Experiment 1. In the low-calorie framing condition, the instructions mentioned that this new type of M&M contains low-calorie, highly rated, imported ingredients. In the high-calorie framing condition, participants were told that this new type of M&M contains high-calorie, highly rated, imported ingredients. An analysis of variance revealed a significant interaction between priming condition and calorie framing, F(1,76) = 8.37, p = 0.005. Mediation analysis showed that the affective forecast of chocolate mediated the impact of health goal priming on high/low-calorie chocolate consumption.

In Experiment 3, a total of 88 adults of a travel group were randomly divided into two buses. Participants in one bus were provided a menu with a picture of discobolus to prime their health goal, while those of the other bus were provided a menu with geometry pictures as a control group. Participants were asked to choose between cheese sandwich crackers and sugar-free chive crackers as snacks. Before ordering the snack, they first predicted how happy they would be after eating the two kinds of crackers. The results showed that participants in the goal priming condition chose more chive crackers than those in the control condition. A chi-square test showed that the difference was significant, χ 2(1) = 7.11, p = 0.008. Mediation analysis showed that the affective forecast of crackers mediated the impact of health goal priming on the choice of high/low-calorie crackers.

The present study investigated the impact of goal priming on high/low-calorie food consumption and the mediated role of affective forecast. The findings could help people to reduce high-calorie food consumption and increase low-calorie food consumption.

Keywords: health goal priming ; high-calorie food ; low-calorie food ; affective forecast

PDF (401KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

耿晓伟, 张峰, 王艳净, 范琳琳, 姚艳. 健康目标启动降低高热量食物消费[J]. 心理学报, 2018, 50(8): 840-847 doi:10.3724/SP.J.1041.2018.00840

GENG Xiaowei, ZHANG Feng, WAGN Yanjing, FAN Linlin, YAO Yan. Health goal priming decreases high-calorie food consumption[J]. Acta Psychologica Sinica, 2018, 50(8): 840-847 doi:10.3724/SP.J.1041.2018.00840

1 引言

目前中国男性肥胖人数为4320万人, 女性4640万人, 已经超过美国, 位居全球第一。肥胖是导致心脑血管疾病、肾脏疾病、糖尿病以及肌肉骨骼疾病的重要风险因素, 严重威胁人们的健康(Singh et al., 2013; Zheng et al., 2011)。肥胖的原因之一是高热量食物摄入导致的能量正平衡(positive balance), 即能量摄入大于维持生命和身体活动的能量消耗(Hall et al., 2011)。因此, 本文关注的问题是如何减少高热量食物的摄入, 进而减少肥胖, 促进健康。

1.1 健康目标启动与健康行为

目标启动(goal priming)是指通过外部线索激活目标进而影响追求该目标的行为(Custers & Aarts, 2010)。研究表明, 健康行为受无意识目标启动的影响。Fishbach, Friedman和Kruglanski (2003)研究发现, 给被试呈现节食相关的词语, 激活了被试关于节食和体重的思维, 同时抑制了与诱惑相关的思维, 促进了对健康食物的选择。Papies和Hamstra (2010)在肉店橱窗里张贴低热量配方的海报, 其中包含“苗条身材”等词语, 以启动被试的健康目标。结果发现, 启动目标组比控制组吃的肉丸更少。Papies和Veling (2013)考察了健康目标启动对食物选择的影响, 结果发现, 健康目标启动可以促进被试选择更健康的食物。Papies, Potjes, Keesman, Schwinghammer和van Koningsbruggen (2014)发现, 消费者在看过包含健康词语的宣传单后购买的不健康食物更少。据此, 我们推测, 启动健康目标之后, 当面临高热量和低热量食物的选择时, 人们会增加低热量食物的消费, 减少高热量食物的消费。因此, 我们提出以下假设:

假设1:启动健康目标后, 个体会减少对高热量食物的消费, 增加对低热量食物的消费。

1.2 健康目标启动与情感预测

个体对未来事件的情绪反应的预测被称为情感预测(affective forecasting) (Wilson & Gilbert, 2003)。研究表明, 人们对各种生活事件(瘫患、中彩票、失恋、政治选举的成功或失败等)带来的情感进行预测时, 高估了对这些事件的情绪反应(Gilbert, Pinel, Wilson, Blumberg, & Wheatley, 1998; Levine, Lench, Kaplan, & Safer, 2012; Wilson, Wheatley, Meyers, Gilbert, & Axsom, 2000; Wilson & Gilbert, 2013)。Wilson和Gilbert (2003, 2013) 将这种现象称为影响偏差(impact bias), 即人们高估了未来事件对其情绪的影响。

Morewedge和Buechel (2013)认为, 为了把未来事件变成现实,人们在情感预测中高估未来事件对其情绪的影响。Buehler, McFarland, Spyropoulos和Lam (2007)研究发现, 为提升当前情绪人们会高估未来事件带来的积极情感。耿晓伟和姜宏艺(2017)认为人们在情感预测中高估目标实现后的积极情感是个体实现目标的自我调节。实现目标的动机越强, 人们越可能高估目标实现后的积极情感。启动健康目标之后, 人们实现目标的无意识动机增强, 更会高估目标实现带来的积极情感, 以更好地抵制诱惑, 促进目标实现。因此, 我们提出以下假设:

假设2:启动健康目标后, 个体会降低对高热量食物的积极情感的预测, 增加对低热量食物的积极情感的预测。

1.3 情感预测与健康行为

有研究表明, 情感预测会影响人们对各种生活事件的选择。例如, Ruby, Dunn, Perrino, Gillis和Viel (2011)研究发现, 人们预期运动带来的快乐程度越强, 运动的意向就越强。Rhodes和Strain (2008)认为情感预测会影响人们是否寻求医疗诊断的决策。因此, 当个体在面临高、低热量食物的选择时, 如果个体预测低热量食物带来的快乐更多, 就会激发个体增加对低热量食物的选择和消费, 以促进健康目标。因此, 我们提出以下假设:

假设3:个体对食物的积极情感预测会促进对食物的消费。如果个体预测食物带来的积极情感多, 则会增加对该食物的消费; 如果个体预测食物带来的积极情感少, 则会减少对该食物的消费。

综上所述, 启动健康目标之后, 人们追求健康的无意识动机增强(Papies, 2016; Parpies & Aarts, 2016)。当面临高热量和低热量食物的选择时, 人们追求健康的动机越强, 越会高估低热量食物带来的快乐, 以促进健康目标的实现。人们预期低(高)热量食物带来的积极情感越多(少), 越会激发人们(不)去消费低(高)热量食物, 最终促进健康目标实现。据此, 我们提出以下假设:

假设4:个体对食物的情感预测分别在健康目标启动减少高热量食物消费、健康目标启动增加低热量食物消费之间起中介作用。

本研究中健康目标是指身材健美, 减少肥胖。为了对研究假设进行检验, 本研究设计了3个实验。实验1考察了健康目标启动对高热量、低热量食物选择的影响。实验2在现场情景中考察健康目标启动对高热量和低热量食物摄入的影响, 同时考察对食物的情感预测的中介作用。实验3以成年人为被试, 在真实情景中再次考察了健康目标启动对高热量和低热量食物选择的影响, 以及对食物的情感预测的中介作用。

2 实验1:健康目标启动对高、低热量食物选择的影响

2.1 被试

采用方便取样的方法, 从鲁东大学共招募到40名大学生, 其中男生10名, 女生30名。平均年龄19.23岁, 标准差为0.70岁。

2.2 实验设计

采用单因素被试间设计, 自变量为健康目标启动与否。

2.2.1 自变量操纵

Papies (2016)认为有效地启动健康目标的线索需具备两个条件:(1)线索是积极的, (2)直接体现了相应的动机。古希腊雕塑家米隆的作品《掷铁饼者》中掷铁饼者完美地展现了健美的人体, 是积极的形象, 同时直接体现了追求健美身材、减少肥胖的动机, 因此本实验采用《掷铁饼者》作为健康目标启动的材料。实验程序采用E-prime 1.1编制。启动目标组要求被试观看4张掷铁饼者图片, 控制组则观看4张几何图形的图片, 每张图片呈现30 s。

为了检验掷铁饼者图片是否有效启动了被试追求健美身材和减少肥胖的目标, 另外招募了40名被试, 随机分配到两种实验条件, 一半被试观看掷铁饼者图片, 另外一半观看几何图形。要求被试评价对“不想身材肥胖”的同意程度, 1 = 非常不同意, 7 = 非常同意。结果发现:启动组(M启动 = 5.95, SD启动 = 0.83)比控制组(M控制 = 5.20, SD控制 = 1.00)更不想身材肥胖, t(38) = 2.58, p = 0.01, d = 0.82。根据Cohen (1969), d = 0.8对应于大的效应量。被试对两组图片的喜欢程度(M启动 = 4.35, SD启动 = 1.23, M控制 = 4.05, SD控制 = 1.10, t(38) = 0.82, p = 0.42)、开心程度(M启动 = 4.45, SD启动 = 1.15, M控制 = 4.35, SD控制 = 0.75, t(38) = 0.33, p = 0.75)以及饥饿程度(M启动 = 3.00, SD启动 = 1.26, M控制 = 3.15, SD控制 = 1.14, t(38) = 0.40, p = 0.69)都不存在显著差异。因此, 本实验中采用掷铁饼者图片来启动健康目标是有效的。

另外, 由于有吸引力的异性图片也是启动择偶动机的实验材料(Hill & Durante, 2011; Roney, 2003), 为了排除掷铁饼者图片启动女性被试择偶动机的可能, 我们招募了38名女大学生, 随机分配到两种实验条件。一半被试观看掷铁饼者图片, 一半观看几何图形。看完图片之后, 要求被试评价“经常约会”的重要性。如果启动组比控制组的女性被试认为经常约会更重要, 那么说明启动了被试的择偶动机(Roney, 2003)。结果发现, 启动组(M启动 = 3.42, SD启动 = 1.17)与控制组(M控制 = 3.16, SD控制 = 1.57)关于经常约会的重要性不存在显著差异, t(36) = 0.59, p = 0.56。因此, 本研究中掷铁饼者图片没有启动女性被试的择偶动机。

2.2.2 因变量

本实验中因变量为被试对高、低热量食物的选择。要求被试想象进入一家西餐厅, 会选择哪一种三明治?A为牛肉三明治 B为蔬菜三明治, 并要求被试分别判断牛肉三明治和蔬菜三明治的热量, 1 = 热量非常低, 7 = 热量非常高。

2.3 实验程序

实验全部在电脑上完成, 主试和被试一对一的进行实验。为避免被试猜到实验目的, 被试来到实验室之后, 被告知这是一项大学生图形认知的实验。首先观看图片, 然后在牛肉三明治和蔬菜三明治之间做出选择, 再分别判断牛肉三明治和蔬菜三明治的热量。实验结束后询问被试之前看的图片对食物选择是否有影响, 全部都回答没有影响, 说明目标启动的影响是无意识的。

2.4 结果分析

首先比较了被试对牛肉三明治和蔬菜三明治的热量判断, 配对样本t检验结果发现, 被试认为牛肉三明治的热量(M = 5.25, SD = 0.74)显著高于蔬菜三明治的热量(M = 3.28, SD = 0.90), t (39) = 10.52, p = 0.001, d = 2.39。启动组中有8人选择牛肉三明治, 12人选择蔬菜三明治; 控制组中有15人选择牛肉三明治, 5人选择蔬菜三明治。卡方检验发现, χ2(1) = 5.01, p = 0.025, Ø = 0.35。这说明, 启动目标组与控制组对高热量和低热量食物的选择是不同的, 与控制组相比, 启动健康目标后个体更偏好低热量的蔬菜三明治。

2.5 讨论

实验1结果发现, 启动目标组比控制组的被试更偏好低热量的蔬菜三明治, 支持假设1。这跟已有研究一致, 已有研究发现呈现健康相关的线索, 会促进被试对健康食物的选择(Fishbach et al., 2003; van der Laan, Papies, Hooge, & Smeets, 2017)。由于选择偏好不同于真正的饮食行为, 实验2将在现场情景中进一步考察健康目标启动对高、低热量食物摄入的影响以及情感预测的中介作用。

3 实验2:健康目标启动对高、低热量巧克力摄入的影响

3.1 被试

在鲁东大学校园内支起M&M的品尝点, 询问路过的学生是否愿意品尝巧克力豆。共招募到80名被试, 其中男生34名, 女生46名。平均年龄20.59岁, 标准差为1.88岁。

3.2 实验设计

本实验采用2(健康目标启动:启动目标/控制组)×2(巧克力热量:高热量/低热量)的被试间设计。

3.2.1 自变量的操纵

(1)健康目标启动的方法同实验1。

(2)巧克力高/低热量的操纵。高热量条件下, 告诉被试“新产品使用了全部进口的、品质一流的、高热量的巧克力”。低热量条件下, 则告诉被试“新产品使用了全部进口的、品质一流的、低热量的巧克力”。

3.2.2 因变量的测量

(1)被试吃掉的巧克力豆重量(以克为单位)。首先将巧克力豆分装在一次性纸盘里, 每份15 g。等被试离开之后, 测量剩余的巧克力豆重量。15 g减去剩余的重量即被试吃掉的重量。

(2)情感预测。在品尝之前, 要求被试预测吃巧克力豆带来的快乐程度, 1 = 非常不快乐, 7 = 非常快乐。

3.3 现场实验流程

在鲁东大学校园里布置好桌子、椅子、M&M’s广告牌以及提前分装好的巧克力豆。实验采用双盲设计, 实验者并不了解实验目的及实验假设。首先要求被试在平板电脑上随机观看掷铁饼者或者几何图形的图片, 然后向被试介绍M&M’s的巧克力豆以及这款新产品的特色。在被试开始品尝之前, 要求被试对吃巧克力豆带来的快乐程度进行预测。实验者强调品尝巧克力豆不限时间, 直到被试觉得不想再吃了为止。全部被试都认为观看图片对吃巧克力的数量没有影响, 也没有猜到实验目的。

3.4 结果分析

3.4.1 启动目标对高、低热量巧克力摄入的影响

以摄入的巧克力重量为因变量, 进行2(启动目标、控制组)×2(高热量、低热量)的被试间方差分析, 结果发现, 启动目标与巧克力高/低热量之间存在显著交互作用, F(1,76) = 8.37, p = 0.005, 偏η2 = 0.10, 如图1所示。简单效应分析表明, 启动目标时, 高热量(M = 1.53, SD = 0.61)比低热量(M = 3.29, SD = 3.00)条件下摄入更少的巧克力豆, t(38) = -2.51, p = 0.017, d = 0.81。而控制组在高热量(M = 2.37, SD = 1.74)和低热量(M = 1.71, SD = 1.06)两种条件下摄入的巧克力豆没有显著差异, t(38) = 1.45, p = 0.15。

图1

图1   启动目标和高/低热量对巧克力摄入的交互影响


3.4.2 启动目标对高、低热量巧克力情感预测的影响

以被试对巧克力豆的情感预测为因变量, 进行2(启动目标、控制组) × 2(高热量、低热量)的被试间方差分析, 结果发现, 启动目标与巧克力高/低热量之间存在显著交互作用, F(1,76) = 27.12, p = 0.001, 偏η2 = 0.26, 如图2所示。简单效应分析表明, 启动目标时, 低热量(M = 5.48, SD = 0.98)比高热量(M = 4.68, SD = 0.67)条件下被试预测吃巧克力豆带来的快乐程度更高, t(38) = 2.95, p = 0.005, d = 0.95; 控制组预测高热量(M = 5.63, SD = 0.96)比低热量(M = 4.48, SD = 0.68)巧克力豆带来的快乐程度更高, t(38) = 4.44, p = 0.001, d = 0.71。

图2

图2   启动目标和高/低热量巧克力对情感预测的交互影响


3.4.3 情感预测对高、低热量巧克力摄入的影响

为了考察情感预测对巧克力摄入的影响, 回归分析结果表明, 对巧克力所带来的积极情感的预测可以显著预测巧克力摄入, β = 0.42, t = 4.13, p = 0.001。具体来看, 对高热量巧克力的情感预测可以显著预测高热量巧克力消费, β = 0.45, t = 3.02, p = 0.005; 对低热量巧克力的情感预测可以显著预测低热量巧克力消费, β = 0.46, t = 3.29, p = 0.002。

3.4.4 情感预测的中介作用

为了检验情感预测在启动目标对低热量巧克力摄入影响中的中介作用, 根据Hayes (2013), 选择模型4, 设定Bootstrap样本量为5000, 结果显示, 间接效应大小为0.9482, 95%置信区间[LLCI = 0.0356, ULCI = 2.7518]不包含0, 而自变量对因变量影响的直接效应大小为0.6233, 95%置信区间[LLCI = -0.9324, ULCI = 2.1789]包含0, 说明情感预测中介了启动目标对低热量巧克力摄入的影响, 中介效应占总效应的比率为60.34%。

采用同样的方法检验了情感预测在健康目标启动对高热量巧克力摄入影响中的中介作用, 结果显示, 间接效应大小为-0.5306, 95%置信区间[LLCI = -1.6094, ULCI = -0.0584]不包含0, 而自变量对因变量影响的直接效应大小为-0.3115, 95%置信区间[LLCI = -1.2565, ULCI = 0.6335]包含0, 说明情感预测中介了启动目标对高热量巧克力摄入的影响, 中介效应占总效应的比率为63.01%。

3.5 实验2结果讨论

实验2发现, 与控制组相比, 启动目标可以降低被试对高热量巧克力豆的摄入, 增加对低热量巧克力豆的摄入, 支持假设1, 与实验1的结果发现相一致, 也跟已有研究结果一致。另外, 与控制组相比, 启动目标之后被试预测高热量巧克力豆带来的快乐程度降低, 低热量巧克力豆带来的快乐程度增加, 支持假设2。实验2还发现, 人们预期巧克力豆所带来的快乐可以促进对巧克力豆的消费, 支持假设3。中介作用分析发现, 对巧克力豆的情感预测分别在启动目标增加低热量巧克力摄入、减少高热量巧克力摄入的影响中起中介作用, 支持假设4。启动目标之后, 人们实现目标的无意识动机增强(Papies, 2016)。为了实现目标, 人们会降低对高热量巧克力的情感预测, 同时会提高对低热量巧克力的情感预测, 进而会增加对低热量巧克力的摄入, 减少对高热量巧克力的摄入。

为了提高研究的外部效度, 同时进一步检验前两个实验的研究结果, 实验3以成年人为被试, 在真实的情景中进一步考察了健康目标启动对高、低热量食物选择的影响。

4 实验3:健康目标启动影响高、低热量食物选择的现场实验

4.1 被试

被试为88名来烟台旅游的团客, 有6名被试的问卷回答不完整, 将其剔除。有效被试82人, 其中男性37人, 女性45人, 平均年龄39.55岁, 标准差5.43岁。

4.2 实验设计

本实验为单变量被试间设计, 自变量为健康目标启动。所有游客被随机分配到两辆大巴车上, 一车的游客为健康目标启动组, 另一车的游客作为控制组。因变量为被试对鲜葱无糖饼干和奶油夹心饼干的选择。之所以选择这两种饼干是考虑到:(1)人们通常认为奶油夹心饼干热量高, 鲜葱无糖饼干热量低; (2)两种饼干的价格相似, 可以避免价格对选择的影响。为避免品牌信息的干扰, 在菜单中省略了品牌信息。

4.3 实验流程

游客乘大巴前往烟台昆嵛山观光, 中途会给所有游客提供一次食物。健康目标启动条件下, 在菜单的左半部分呈现高清彩色打印的掷铁饼者图片, 右半部分为供选择的食物信息。控制组的菜单与启动组的唯一不同是将掷铁饼者图片换成了几何图形。被试进行食物选择之前, 首先要分别对鲜葱无糖饼干、奶油夹心饼干带来的快乐程度进行预测, 1 = 非常不快乐, 7 = 非常快乐。然后, 进行食物选择, 1 = 鲜葱无糖饼干, 0 = 奶油夹心饼干。做出选择后再分别评价两种饼干的热量, 1 = 非常低, 7 = 非常高。工作人员根据游客在菜单上的选择发放相应的食物。

4.4 结果分析

4.4.1 健康目标启动对高、低热量食物选择的影响

首先比较了被试对奶油夹心饼干和鲜葱无糖饼干的热量评价, 结果发现, 被试认为奶油夹心饼干的热量(M = 5.96, SD = 0.99)显著高于鲜葱无糖饼干的热量(M = 3.44, SD = 1.12), t(79) = 15.31, p = 0.001, d = 2.38。启动目标组中有9人选择奶油夹心饼干, 28人选择鲜葱无糖饼干; 控制组中有24人选择奶油夹心饼干, 21人选择鲜葱无糖饼干。卡方检验发现, χ2(1) = 7.11, p = 0.008, Ø = 0.29。这说明, 与控制组相比, 启动目标后个体更偏好选择低热量的鲜葱无糖饼干。

4.4.2 健康目标启动对情感预测的影响

我们分别比较了启动与控制条件下被试对鲜葱无糖饼干、奶油夹心饼干的快乐程度的预测, 结果发现, 启动条件下被试对鲜葱无糖饼干的快乐预测(M = 5.22, SD = 1.18)显著高于控制条件(M = 4.40, SD = 1.56), t (80) = 2.63, p = 0.01, d = 0.74。启动条件下被试对奶油夹心饼干的快乐预测(M = 4.86, SD = 1.31)与控制条件(M = 4.76, SD = 1.28)不存在显著差异, t (80) = -0.35, p = 0.72。

4.4.3 情感预测的中介作用

为了考察情感预测在健康目标启动对高、低热量食物选择的影响中的中介作用, 我们首先将自变量(0 = 控制组, 1 = 启动目标)和因变量(0 = 选择奶油夹心饼干, 1 = 选择鲜葱无糖饼干)转化为虚拟变量, 然后根据Hayes (2013), 选择模型4, 设定Bootstrap样本量为5000, 结果显示, 间接效应大小为0.6990, 95%置信区间[LLCI = 0.1860, ULCI = 1.5313]不包含0, 而自变量对因变量影响的直接效应大小为0.8427, 95%置信区间[LLCI = -0.2230, ULCI = 1.9084]包含0, 说明情感预测中介了启动目标对鲜葱无糖饼干的选择的影响。

4.5 实验3讨论

实验3在真实的情景中考察了健康目标启动对高、低热量食物选择的影响, 结果发现, 启动条件下被试显著降低了对高热量食物(奶油夹心饼干)的选择, 提高了对低热量食物(鲜葱无糖饼干)的选择, 与实验1和实验2结果一致, 进一步证明了启动目标对高、低热量食物选择的影响。另外, 实验3发现情感预测中介了健康目标启动对鲜葱无糖饼干选择的影响。启动目标之后, 被试显著提高了对鲜葱无糖饼干带来的快乐程度的预测, 进而增加了对鲜葱无糖饼干的选择, 与实验2的结果一致。

5 总讨论

5.1 健康目标启动对高、低热量食物选择和消费的影响

实验1在实验室中考察了健康目标启动对高、低热量食物选择的影响。结果发现, 健康目标启动以后, 人们对高热量食物的选择减少, 对低热量食物的选择增加。实验2进一步在现场情景中考察了健康目标启动对高、低热量食物摄入的影响, 结果发现, 健康目标启动以后被试摄入的高热量食物减少, 低热量食物增加。实验3在真实情景中再次考察了健康目标启动对高、低热量食物选择的影响, 结果发现, 健康目标启动降低了人们对高热量食物的选择, 而增加了对低热量食物的选择。因此, 综合3个实验, 可以得出, 健康目标启动可以减少对高热量食物的选择及消费, 增加对低热量食物的选择及消费。

5.2 情感预测在健康目标启动对高、低热量食物消费影响中的中介作用

实验2结果发现, 对食物的情感预测中介了健康目标启动对高、低热量食物消费的影响。实验3进一步在真实情景中发现, 对食物的情感预测中介了健康目标启动对高、低热量食物选择的影响。综合实验2和实验3可以得出, 对食物的情感预测中介了健康目标启动对高、低热量食物选择和消费的影响。具体来说, 健康目标启动降低了人们对高热量食物带来的快乐的预测, 从而减少了对高热量食物的选择和消费; 健康目标启动增加了人们对低热量食物带来的快乐的预测, 从而增加了对低热量食物的选择和消费。健康目标启动以后, 目标内容具有更高的可获得性, 激活了人们实现目标的无意识动机(Papies, 2016)。为了实现目标, 人们会进行动机性推理, 即高估低热量食物带来的快乐程度, 而低估高热量食物带来的快乐程度。人们对低(高)热量食物的积极(消极)情感预测又会促使人们采取相应的行为, 以促进目标实现, 从而增加对低热量食物的摄入, 减少对高热量食物的摄入。

5.3 理论贡献

5.4 实践启示

生活中有不少人有意识地通过控制饮食去减肥, 但是往往收效甚微。当前人们的物质生活极大丰富, 随处可见各种充满诱惑的美食。在这些无处不在的诱惑面前, 人们追求健康行为的意向很难转换为有效行动。因此, 对健康行为的有意识干预效果是很有限的。本研究探索了无意识健康目标启动对健康行为的干预及其干预机制, 结果表明, 健康目标启动可以有效地激活人们追求健美身材减少肥胖的目标, 进而降低对高热量食物的积极情感预测, 最终减少对高热量食物的选择和消费, 而增加对低热量食物的选择和消费。据此, 本研究对于如何降低高热量食物的消费可以提供以下启示:

第一, 创设启动健康目标的环境。在人们经常活动的场所中, 张贴掷铁饼者的图片, 可以无意识地启动人们追求健康的目标。例如, 在超市入口张贴掷铁饼者的图片, 可以在人们进入超市之前激活其健康目标, 以减少对高热量食物的购买和消费。另外, 随着网络购物人群规模的扩大, 网络零售越来越成为主流。在网站上呈现图片更方便, 因此, 可以在购物网站上呈现健美图片以启动人们追求健康的无意识动机, 进而减少人们对高热量食物的消费。人们的日常生活越来越离不开手机, 还可以将手机屏幕设置成掷铁饼者的健美图片, 时刻提醒人们追求健康和健美的目标。

第二, 降低人们对高热量食物的积极情感预测, 提高对低热量食物的积极情感预测。启动健康目标可以有效地降低人们对高热量食物的情感预测, 并提高对低热量食物的情感预测。另外, 通过宣传让人们认识到高热量食物不利健康, 低热量食物有利健康, 以改变人们的信念, 进而改变对高、低热量食物的情感预测。

5.5 不足与展望

第一, 高吸引力的异性图片是启动择偶动机的常见材料(Hill & Durante, 2011; Roney, 2003)。以往研究表明, 女性被试在启动了择偶动机后, 有可能出于增加外形吸引力的目的而发生行为的改变(Hill & Durate, 2011)。尽管本研究对启动材料的操纵检验表明, 掷铁饼者图片没有启动女大学生的择偶动机, 然而, 为更好地排除掷铁饼者图片启动女性被试择偶动机的可能, 今后需要采用其他启动材料进一步检验假设。第二, Zeelenberg和Pieters (2006)强调了具体情绪对决策的影响。本研究中考察了预期的积极情感和消极情感对健康行为的影响, 今后还需要进一步考察具体情绪(例如内疚、自豪)的预期对健康行为的影响。第三, 实验1和实验2中被试人数偏少, 未来研究中需要进一步扩大样本量进行研究。

6 结论

本研究通过3个实验得到以下结论:(1)启动健康目标后, 个体会减少对高热量食物的选择和消费, 增加对低热量食物的选择和消费。(2)个体对食物的情感预测中介了健康目标启动对高热量和低热量食物选择及消费的影响。

本研究对如何降低对高热量食物的消费可以提供以下启示:第一, 创设启动健康目标的环境; 第二, 降低人们对高热量食物的积极情感预测, 提高对低热量食物的积极情感预测。

参考文献

Buehler R., McFarland C., Spyropoulos V., & Lam K. C. H. .,2007).

Motivated prediction of future feelings: Effects of negative mood and mood orientation on affective forecasts

Personality and Social Psychology Bulletin,33, 1265-1278.

[本文引用: 1]

Cohen J.. . (1969). Statistical power analysis for the behavioral sciences. New York: Academic Press.

Custer s R. , &Aarts H. , ( 2010).

The unconscious will: How the pursuit of goals operates outside of conscious awareness

Science, 329( 5987), 47-50.

URL     [本文引用: 1]

Fishbach A., Friedman R. S., & Kruglanski A. W . ( 2003).

Leading us not into temptation: Momentary allurements elicit overriding goal activation

Journal of Personality and Social Psychology,84( 2), 296-309.

URL     PMID:12585805      [本文引用: 1]

The present research explored the nature of automatic associations formed between short-term motives (temptations) and the overriding goals with which they interfere. Five experimental studies, encompassing several self-regulatory domains, found that temptations tend to activate such higher priority goals, whereas the latter tend to inhibit the temptations. These activation patterns occurred outside of participants' conscious awareness and did not appear to tax their mental resources. Moreover, they varied as a function of subjective goal importance and were more pronounced for successful versus unsuccessful self-regulators in a given domain. Finally, priming by temptation stimuli was found not only to influence the activation of overriding goals but also to affect goal-congruent behavioral choices.

Geng X.W., & Jiang, H. Y . ( 2017).

Influence of regulatory focus and regulatory fit on impact biases in affective forecast

Acta Psychologica Sinica,49( 12), 1537-1547.

URL     [本文引用: 1]

Our minor and major decision are often dependent on our predictions of how pleasant or unpleasant these events would make us feel, that is, our affective forecasts(Wilson Gilbert, 2003). People overestimate the intensity and duration of their affective reactions to the event in focus, which is called the impact bias(Wilson Gilbert, 2003). Most previous studies have focused on the cognitive sources of impact bias and the individual differences in impact bias. However, few studies have shed light on the motivated underpinnings of impact bias. The present research examined people's overestimation of the hedonic impact of future events as a form of self-regulation. That is, sometimes people use impact bias to motivate themselves to actualize their goals. Thus, based on the self-regulatory theory, this study aimed to explore the effects of regulatory focus and regulatory fit on the impact biases. The hypotheses were:(i) in forecasting positive affect, individuals with promotive focus would show greater impact bias than those with preventive focus(H1 a);(ii) in forecasting negative affect, individuals with preventive focus would show greater impact bias than those with promotive focus(H1 b);(iii) regulatory fit would induce impact bias(H2). In Experiment 1, we examined the influences of regulatory focus on impact biases in forecasting positive affect. A total of 61 undergraduates were randomly divided into 2 conditions, specifically, promotive focus priming and preventive focus priming. They were then asked to finish a discriminability test. Before the test, they predicted the happiness of success in the test. After the test, they were told that they had succeeded in the test, and were asked to report their actual happiness of success in the test. Independent-sample t-test showed that participants with promotive focus overestimated the pleasant of success in discriminability test more than those with preventive focus. In Experiment 2, we tested the influences of regulatory focus on impact biases in forecasting negative affect. Participants' predominant predisposition for a promotion or prevention state was measured first before they performed a memory task. Before the task, they predicted how happy they would be after a failure in the test. Then, they were told that they failed in the memory test and were asked to evaluate how happy they were. Independent-sample t-test showed that participants with preventive focus overestimated the unhappiness of failure in memory test more than those with promotive focus. In Experiment 3, we tested the influence of regulatory fit on impact biases in forecasting negative affect by 2(Regulatory focus: promotion vs prevention) 2(Strategy: eagerness vs vigilance) between-subject design. A total of 120 undergraduates were randomly divided into 4 groups and were asked to finish a memory test. Before the test, they predicted the unhappiness of failure in the test. After the test, they were told that they had failed in the test, and were asked to report their actual unhappiness of the failure in the test. The results showed that participants overestimate the unhappiness of failure in memory test in the condition of regulatory fit more than in the regulatory non-fit condition. In Experiment 4, we tested the effect of regulatory fit on impact bias in forecasting positive affect. A total of 128 undergraduates were randomly divided into 4 groups and were asked to finish a finding differences test. Before the test, they predicted how happy they would be after the success in the test. After the test, they were told that they had succeeded in the test, and were asked to report their actual happiness of the success. The results showed that participants overestimate the happiness in the condition of regulatory fit more than regulatory non-fit condition. The present research investigated the motivated underpinning of impact bias based under the theory of self-regulatory, which helps our further understanding of the mechanism of impact bias. In addition, it can also help us to manage the improvement of the work engagement of employees. Limitations and further research have been discussed as well.

Gilbert D. T., Pinel E. C., Wilson T. D., Blumberg S. J., & Wheatley T. P . ( 1998).

Immune neglect: A source of durability bias in affective forecasting

Journal of Personality and Social Psychology,75, 617-638.

URL     PMID:9781405      [本文引用: 1]

People are generally unaware of the operation of the system of cognitive mechanisms that ameliorate their experience of negative affect (the psychological immune system), and thus they tend to overestimate the duration of their affective reactions to negative events. This tendency was demonstrated in 6 studies in which participants overestimated the duration of their affective reactions to the dissolution of a romantic relationship, the failure to achieve tenure, an electoral defeat, negative personality feedback, an account of a child's death, and rejection by a prospective employer. Participants failed to distinguish between situations in which their psychological immune systems would and would not be likely to operate and mistakenly predicted overly and equally enduring affective reactions in both instances. The present experiments suggest that people neglect the psychological immune system when making affective forecasts.

Hall K. D., Sacks G., Chandramohan D., Chow C. C., Wang Y. C., Gortmaker S. L., & Swinburn B. A . ( 2011).

Quantification of the effect of energy imbalance on bodyweight

Lancet,378( 9793), 826-837.

URL     PMID:21872751      [本文引用: 1]

Obesity interventions can result in weight loss, but accurate prediction of the bodyweight time course requires properly accounting for dynamic energy imbalances. In this report, we describe a mathematical modelling approach to adult human metabolism that simulates energy expenditure adaptations during weight loss. We also present a web-based simulator for prediction of weight change dynamics. We show that the bodyweight response to a change of energy intake is slow, with half times of about 1 year. Furthermore, adults with greater adiposity have a larger expected weight loss for the same change of energy intake, and to reach their steady-state weight will take longer than it would for those with less initial body fat. Using a population-averaged model, we calculated the energy-balance dynamics corresponding to the development of the US adult obesity epidemic. A small persistent average daily energy imbalance gap between intake and expenditure of about 30 kJ per day underlies the observed average weight gain. However, energy intake must have risen to keep pace with increased expenditure associated with increased weight. The average increase of energy intake needed to sustain the increased weight (the maintenance energy gap) has amounted to about 0路9 MJ per day and quantifies the public health challenge to reverse the obesity epidemic.

Hayes A.F . ( 2013).

Introduction to mediation, moderation, and conditional process analysis: A regression-based approach.

New York,NY: Guilford.

[本文引用: 2]

Hill S.E., & Durante, K. M . ( 2011).

Courtship, competition, and the pursuit of attractiveness: Mating goals facilitate health-related risk taking and strategic risk suppression in women

Personality and Social Psychology Bulletin,37( 3), 383-394.

URL     [本文引用: 3]

Levine L. J., Lench H. C., Kaplan R. L., & Safer M. A . ( 2012).

Accuracy and artifact: Reexamining the intensity bias in affective forecasting

Journal of Personality and Social Psychology,103, 584-605.

URL     [本文引用: 1]

Morewedge, C. K., & Buechel, E. C . ( 2013).

Motivated underpinnings of the impact bias in affective forecasts

Emotion,13( 6), 1023-1029.

URL     PMID:23914762      [本文引用: 1]

Affective forecasters often exhibit an impact bias, overestimating the intensity and duration of their emotional reaction to future events. Researchers have long wondered whether the impact bias might confer some benefit. We suggest that affective forecasters may strategically overestimate the hedonic impact of events to motivate their production. We report the results of four experiments providing the first support for this hypothesis. The impact bias was greater for forecasters who had chosen which of two events to attempt to produce than for forecasters who had yet to choose (Experiment 1). The impact bias was greater when forecasts were made while forecasters could (or perceived they could) influence whether an event was produced than when its production had been determined but was unknown (Experiments 2A and 2B). Finally, experimentally manipulating the extremity of affective forecasts for an event influenced the amount of effort that forecasters expended to produce it (Experiment 3). The results suggest that the impact bias may not be solely cognitive in origin, but may also have motivated underpinnings. (PsycINFO Database Record (c) 2013 APA, all rights reserved).

Papies E.K . ( 2016).

Health goal priming as a situated intervention tool: How to benefit from nonconscious motivational routes to health behaviour

Health Psychology Review,10( 4), 408-424.

URL     [本文引用: 1]

Papies E. K., & Aarts H.. , ,( 2016) . Automatic self-regulation:From habit to goal pursuit. In K. D. Vohs & R. F. Baumeister (Eds.),Handbook of self-regulation: Research, theory, and applications (3rd ed.). New York, NY: Guilford Press.

[本文引用: 3]

Papies E.K., &Hamstra P. , ( 2010).

Goal priming and eating behavior: Enhancing self-regulation by environmental cues

Health Psychology,29( 4), 384-388.

URL     PMID:20658825     

Several lines of research have shown that the confrontation with attractive food can trigger overeating, especially in restrained eaters. This effect may be driven by a hedonic orientation toward food which temporarily overrules the goal of dieting in the regulation of behavior. The present study was designed to provide an experimental demonstration of this effect in a naturalistic setting, and to show that reactivating the goal of dieting by a subtle prime in the environment can help restrained eaters to regulate their eating behavior in tempting situations.

Papies E. K., Potjes I., Keesman M., Schwinghammer S., & van Koningsbruggen G. M. .(2014).

Using health primes to reduce unhealthy snack purchases among overweight consumers in a grocery store

International Journal of Obesity,38( 4), 597-602.

URL     [本文引用: 1]

Papies E.K., & Veling. ( 2013).

Healthy dining: Subtle diet reminders at the point of purchase increase low-calorie food choices among both chronic and current dieters

Appetite,61, 1-7.

URL     [本文引用: 1]

Rhodes R., & Strain, J. J . ( 2008).

Affective forecasting and its implications for medical ethics

Cambridge Quarterly of Healthcare Ethics,17( 1), 54-65.

URL     PMID:18462545      [本文引用: 1]

Camb Q Healthc Ethics. 2008 Winter;17(1):54-65. doi: 10.1017/S0963180108080067.

, Roney J.R., . ( 2003).

Effects of visual exposure to the opposite sex: Cognitive aspects of mate attraction in human males

Personality and Social Psychology Bulletin,29( 3), 393-404.

URL     [本文引用: 3]

Ruby M. B., Dunn E. W., Perrino A., Gillis R., & Viel S . ( 2011).

The invisible benefits of exercise

Health Psychology,30( 1), 67-74.

URL     PMID:21299296      [本文引用: 1]

To examine whether--and why--people underestimate how much they enjoy exercise.Across four studies, 279 adults predicted how much they would enjoy exercising, or reported their actual feelings after exercising.Main outcome measures were predicted and actual enjoyment ratings of exercise routines, as well as intention to exercise.Participants significantly underestimated how much they would enjoy exercising; this affective forecasting bias emerged consistently for group and individual exercise, and moderate and challenging workouts spanning a wide range of forms, from yoga and Pilates to aerobic exercise and weight training (Studies 1 and 2). We argue that this bias stems largely from forecasting myopia, whereby people place disproportionate weight on the beginning of a workout, which is typically unpleasant. We demonstrate that forecasting myopia can be harnessed (Study 3) or overcome (Study 4), thereby increasing expected enjoyment of exercise. Finally, Study 4 provides evidence for a mediational model, in which improving people's expected enjoyment of exercise leads to increased intention to exercise.People underestimate how much they enjoy exercise because of a myopic focus on the unpleasant beginning of exercise, but this tendency can be harnessed or overcome, potentially increasing intention to exercise.

Singh G. M., Danaei G., Farzadfar F., Stevens G. A., Woodward M., Wormser D., .Ezzati M . ( 2013).

The age-specific quantitative effects of metabolic risk factors on cardiovascular diseases and diabetes: A pooled analysis

PLoS One,8( 7), e65174.

URL     [本文引用: 1]

van der Laan , L. N. Papies E. K., Hooge I. T. C., & Smeets P. A. M. ., ( 2017).

Goal-directed visual attention drives health goal priming: An eye-tracking experiment

Health Psychology,36( 1), 82-90.

URL     PMID:27631308      [本文引用: 1]

Abstract Several lab and field experiments have shown that goal priming interventions can be highly effective in promoting healthy food choices. Less is known, however, about the mechanisms by which goal priming affects food choice. This experiment tested the hypothesis that goal priming affects food choices through changes in visual attention. Specifically, it was hypothesized that priming with the dieting goal steers attention toward goal-relevant, low energy food products, which, in turn, increases the likelihood of choosing these products. In this eye-tracking experiment, 125 participants chose between high and low energy food products in a realistic online supermarket task while their eye movements were recorded with an eye-tracker. One group was primed with a health and dieting goal, a second group was exposed to a control prime, and a third group was exposed to no prime at all. The health goal prime increased low energy food choices and decreased high energy food choices. Furthermore, the health goal prime resulted in proportionally longer total dwell times on low energy food products, and this effect mediated the goal priming effect on choices. The findings suggest that the effect of priming on consumer choice may originate from an increase in attention for prime-congruent items. This study supports the effectiveness of health goal priming interventions in promoting healthy eating and opens up directions for research on other behavioral interventions that steer attention toward healthy foods. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

Wilson T. D., & Gilbert, D. T.. , ( 2003). Affective forecasting. In M. P. Zanna (Ed. ), Advances in experimental social psychology (Vol. 35, pp. 345-411). San Diego, CA: Academic Press.

[本文引用: 1]

Wilson, T. D., & Gilbert, D. T . ( 2013).

The impact bias is alive and well

Journal of Personality and Social Psychology,105( 5), 740-748.

[本文引用: 1]

Wilson T. D., Wheatley T., Meyers J. M., Gilbert D. T., & Axsom D . ( 2000).

Focalism: A source of durability bias in affective forecasting

Journal of Personality and Social Psychology,78, 821-836.

[本文引用: 1]

Zeelenberg M., &Pieters R. , ( 2006).

Feeling is for doing: A pragmatic approach to the study of emotions in economic behavior. In D. De Cremer, M. Zeelenberg, & J. K. Murnighan (Eds.), Social psychology and economics (pp. 117-137). Mahwah, NJ: Lawrence Erlbaum Associates

[本文引用: 1]

Zheng W., McLerran D. F., Rolland B., Zhang X. L., Inoue M., Matsuo K., .Potter J. D . ( 2011).

Association between body-mass index and risk of death in more than 1 million Asians

New England Journal of Medicine,364( 8), 719-729.

[本文引用: 1]

版权所有 © 《心理学报》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn

/