[1]  Adams, R. J., Wilson, M., & Wang, W. (1997). The multidimensional random coefficients multinomial logit model. Applied Psychological Measurement, 21(1), 123.  [2]  Bolsinova, M., & Tijmstra, J. (2018). Improving precision of ability estimation: Getting more from response times. British Journal of Mathematical and Statistical Psychology, 71(1), 1338.  [3]  Curran, P. J., & Bauer, D J. (2011). The disaggregation of withinperson and betweenperson effects in longitudinal models of change. Annual Review of Psychology, 62, 583619.  [4]  de Boeck, P., & Jeon, M. (2019). An overview of models for response times and processes in cognitive tests. Frontiers in Psychology, 10, 102.  [5]  Ferrando, P. J., & LorenzoSeva, U. (2007). A measurement model for Likert responses that incorporates response time. Multivariate Behavioral Research, 42(4), 675706.  [6]  Fox, J.P. & Marianti, S. (2017). Personfit statistics for joint models for accuracy and speed. Journal of Educational Measurement, 54(2), 243262.  [7]  Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2013). Bayesian data analysis. New York: Chapman & Hall.  [8]  Goudie, R. J., Turner, R. M., de Angelis, D., & Thomas, A. (2017). MultiBUGS: A parallel implementation of the BUGS modelling framework for faster Bayesian inference. arXiv Preprint arXiv:1704.03216.  [9]  Guo, L. Shang, P., & Xia, L. (2017). Advantages and illustrations of application of response time model in psychological and educational testing. Advances in Psychological Science, 25(4), 701712.  [9]  [ 郭磊, 尚鹏丽, 夏凌翔. (2017). 心理与教育测验中反应时模型应用的优势与举例. 心理科学进展, 25(4), 701712.]  [10]  Guo, X., Luo, Z., & Yu, X. (2020). A speedaccuracy tradeoff hierarchical model based on cognitive experiment. Frontiers in Psychology, 10, 2910.  [11]  Horwitz, B., Tagamets, M. A., & McIntosh, A. R. (1999). Neural modeling, functional brain imaging, and cognition. Trends in Cognitive Sciences, 3(3), 9198.  [12]  Hu, L. T., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 155.  [13]  Klein Entink, R. H., van der Linden, W. J., & Fox, J.P. (2009). A BoxCox normal model for response times. British Journal of Mathematical and Statistical Psychology, 62(3), 621640.  [14]  Lu, J., Wang, C., Zhang, J., & Tao, J. (2019). A mixture model for responses and response times with a higherorder ability structure to detect rapid guessing behaviour. British Journal of Mathematical and Statistical Psychology. Online First, https://doi.org/10.1111/bmsp.12175  [15]  Man, K., Harring, J. R., Jiao, H., & Zhan, P. (2019). Joint modeling of compensatory multidimensional item responses and response times. Applied Psychological Measurement, 43(8), 639654.  [16]  Meng, X.B. (2016). A logskewnormal model for item response times. Journal of Psychological Science, 39, 727734.  [16]  [ 孟祥斌. (2016). 项目反应时间的对数偏正态模型. 心理科学, 39(3), 727734.]  [17]  Mesulam, M. M. (1990). Large‐scale neurocognitive networks and distributed processing for attention, language, and memory. Annals of Neurology, 28(5), 597613.  [18]  Muthén, L. K., & Muthén, B. (2019). Mplus: The comprehensive modeling program for applied researchers: User’s guide, 5.  [19]  Ntzoufras, I. (2009). Bayesian modeling using WinBUGS. Manhattan: John Wiley & Sons.  [20]  OECD, (2013). PISA 2012 assessment and analytical framework: Mathematics, reading, science, problem solving and financial literacy, OECD Publishing. http://dx.doi.org/ 10.1787/9789264190511en  [21]  Reckase, M. D. (2009). Multidimensional item response theory. New York: Springer.  [22]  Steiger, J. H. (1990). Structural model evaluation and modification: An interval estimation approach. Multivariate Behavioral Research, 25(2), 173180.  [23]  Tatsuoka, K. K. (1983). Rule Space: An approach for dealing with misconceptions based on item response theory. Journal of Educational Measurement, 20(4), 345354.  [24]  van der Linden, W. J. (2006). A lognormal model for response times on test items. Journal of Educational and Behavioral Statistics, 31(2), 181204. http://dx.doi.org/10.3102/ 10769986031002181  [25]  van der Linden, W. J. (2007). A hierarchical framework for modeling speed and accuracy on test items. Psychometrika, 72, 287308. http://dx.doi.org/10.1007/s113360061478z  [26]  van der Linden, W. J. (2009). Conceptual issues in response time modeling. Journal of Educational Measurement, 46(3), 247272. http://dx.doi.org/10.1111/j.17453984.2009.00080.x  [27]  van der Linden, W. J. (2011). Test design and speededness. Journal of Educational Measurement, 48(1), 4460.  [28]  van der Linden, W. J., Klein Entink, R., & Fox, J.P. (2010). IRT parameter estimation with response times as collateral information. Applied Psychological Measurement, 34(5), 327347.  [29]  Wang, C., Chang, H. H., & Douglas, J. A. (2013). The linear transformation model with frailties for the analysis of item response times. British Journal of Mathematical and Statistical Psychology, 66(1), 144168.  [30]  Wang, C., Weiss, D. J., & Su, S. (2019). Modeling response time and responses in multidimensional health measurement. Frontiers in Psychology, 10, 51.  [31]  Wang, C., & Xu, G. (2015). A mixture hierarchical model for response times and response accuracy. British Journal of Mathematical and Statistical Psychology, 68(3), 456477.  [32]  Wang, S., Zhang, S., Douglas, J., & Culpepper, S. (2018). Using response times to assess learning progress: A joint model for responses and response times. Measurement: Interdisciplinary Research and Perspectives, 16(1), 4558.  [33]  Wang, T., & Hanson, B. A. (2005). Development and calibration of an item response model that incorporates response time. Applied Psychological Measurement, 29(5), 323339.  [34]  Zhan, P. (2019). Joint modeling for response times and response accuracy in computerbased multidimensional assessments. Journal of Psychological Science, 42, 170178.  [34]  [ 詹沛达. (2019). 计算机化多维测验中作答时间和作答精度数据的联合分析. 心理科学, 42, 170178.]  [35]  Zhan, P., Jiao, H., & Liao, D. (2018). Cognitive diagnosis modelling incorporating item response times. British Journal of Mathematical and Statistical Psychology, 71(2), 262286.  [36]  Zhan, P., Jiao, H., Wang, W.C., and Man, K. (2018). A multidimensional hierarchical framework for modeling speed and ability in computerbased multidimensional tests. arXiv:1807.04003. Available online at: https://arxiv.org/abs/ 1807.04003 
