Please wait a minute...
Acta Psychologica Sinica    2020, Vol. 52 Issue (6) : 742-757     DOI: 10.3724/SP.J.1041.2020.00742
Reports of Empirical Studies |
Altered reward processing in women with premenstrual syndrome: Evidence from ERPs and time-frequency analysis
HOU Lulu, CHEN Lirong, ZHOU Renlai()
Department of Psychology, Nanjing University, Nanjing 210023, China
Download: PDF(3419 KB)   HTML Review File (1 KB) 
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks     Supporting Info
Guide   
Abstract  

Premenstrual syndrome (PMS) refers to a series of physical, emotional, and behavioral symptoms that occur periodically in women during the late luteal phase of the menstrual cycle. It peaks within a week before menses and improves or disappears after the onset of menses. PMS occurs in 30%~40% of females at reproductive-age and can have deleterious effects on the social functioning and interpersonal relationships for those with PMS during the late luteal phase. Therefore, the potential causes and mechanisms of PMS have attracted researchers' attention. Affect balance is an important basis for maintaining mental health and the imbalance of positive and negative affect might be one of the causes of PMS. However, previous studies on the mechanism of PMS mostly focused on the increase of negative affect. Only limited studies explored the decrease of positive affect. Built upon the strong link between positive affect and reward processing, the present study aims to explore the causes of positive affect deficiencies tied to the dysfunctional reward processing during PMS.

Despite the lack of consensus on the diagnostic criteria of PMS, one of the most widely used diagnostic criteria for PMS are from John Bancroft's recommendations, which have been translated into the PMS Scale in Chinese. Of the 259 women who were asked to self-assess using this scale, 45 right-handed females (23 with PMS and 22 without PMS) with regular menstrual cycle voluntarily participated in this study. After completing a series of questionnaires, a simple gambling task was used to elicit reward positivity (RewP, 250~350 ms), an event-related potential (ERP) component elicited by feedback indicating gain versus loss. All participants completed this task twice, once in the late luteal and the other in the early follicular phase, respectively. In addition to ERP analysis, we also conducted time-frequency analysis to examine the neural oscillations underlying the reward processing.

Questionnaire results showed that women with PMS reported lower levels of happiness and calmness than healthy women, and their affect balance was also lower than that of healthy women, independent of menstrual cycle. Electrophysiological results suggested that in the late luteal phase, compared with healthy women, women with PMS were characterized by reduced RewP responses towards monetary gains, but not towards monetary losses. Further correlational analysis showed that the amplitude of RewP to gain feedback and difference wave amplitude in women with PMS was related to the affect balance in the late luteal phase. Time-frequency analysis showed that the theta-band (4~7 Hz, 250~4000 ms) power to gain feedback in PMS group was lower than that of healthy group in the late luteal phase.

Taken together, the amplitude of RewP and the theta-band power are related to reward processing. Results showed that in the late luteal phase, the amplitude of RewP and the theta-band power in women with PMS were lower than that in healthy women, and the amplitude of RewP was related to affect balance for women with PMS. These results suggest that the altered neurophysiological response in reward processing of women with PMS may be one of the causes of their low positive affect and affect imbalance in the late luteal phase. Our findings provide a basis for PMS intervention from the perspective of increasing positive affect, which supplements and enriches previous interventions mostly based on reducing negative affect.

Keywords premenstrual syndrome      menstrual cycle      late luteal phase      positive affect      reward processing      reward positivity      theta-band      time-frequency analysis     
PACS:  B845  
Corresponding Authors: Renlai ZHOU     E-mail: rlzhou@nju.edu.cn
Issue Date: 22 April 2020
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Lulu HOU
Lirong CHEN
Renlai ZHOU
Cite this article:   
Lulu HOU,Lirong CHEN,Renlai ZHOU. Altered reward processing in women with premenstrual syndrome: Evidence from ERPs and time-frequency analysis[J]. Acta Psychologica Sinica, 2020, 52(6): 742-757.
URL:  
http://journal.psych.ac.cn/xlxb/EN/10.3724/SP.J.1041.2020.00742     OR     http://journal.psych.ac.cn/xlxb/EN/Y2020/V52/I6/742
  
条件 PMS (n = 23) 健康组(n = 22)
经前期 经后期 经前期 经后期
奖赏条件(次) 19.00 ± 1.34 19.30 ± 1.01 19.50 ± 0.74 19.41 ± 0.80
惩罚条件(次) 19.08 ± 1.50 19.08 ± 1.12 18.73 ± 1.42 19.32 ± 1.21
  
变量 PMS组(n = 23) 健康组(n = 22) t
年龄(岁) 21.35 ± 2.35 21.45± 1.87 -0.17
BMI (kg/m2) 19.97 ± 1.44 19.88 ±1.76 0.20
月经持续时间(天) 5.48 ± 0.99 5.50 ± 1.14 -0.07
月经周期长度(天) 30.35 ± 2.77 29.50 ± 3.22 0.95
  
量表/激素 PMS (n = 23) 健康组(n = 22) F
经前期 经后期 经前期 经后期 组别 阶段 组别×阶段
PANAS-NA 25.30 ± 5.70 25.35 ± 4.18 21.14 ± 4.02 21.32 ± 4.18 14.46*** 0.02 0.01
PANAS-PA 23.39 ± 5.91 23.78 ± 4.95 21.45 ± 4.53 21.73 ± 5.35 2.33 0.16 0.01
PANAS-AB -1.91 ± 3.26 -1.57 ± 4.04 0.32 ± 4.44 0.41 ± 4.44 4.18* 0.11 0.04
BES-愉悦度 4.65 ± 1.70 4.65 ± 1.97 5.77 ± 1.41 5.68 ± 1.09 10.06** 0.02 0.02
BES-唤醒度 4.74 ± 1.60 4.65 ± 1.47 4.91 ± 1.11 5.05 ± 1.33 0.81 0.01 0.17
BES-愉快 5.17 ± 1.85 4.78 ± 1.86 5.86 ± 1.39 5.68 ± 1.73 4.15* 0.74 0.10
BES-愤怒 4.52 ± 1.62 4.65 ± 1.92 3.22 ± 1.41 3.50 ± 1.37 10.35** 0.49 0.06
BES-恐惧 4.34 ± 1.72 4.09 ± 2.09 3.36 ± 1.68 2.82 ± 1.40 7.42** 1.64 0.20
BES-悲伤 5.04 ± 1.80 4.87 ± 1.91 4.00 ± 1.77 3.45 ± 1.82 8.42** 1.10 0.29
BES-平静 4.96 ± 1.80 4.35 ± 1.87 5.55 ± 1.44 5.36 ± 1.94 3.17+ 2.03 0.59
BES-厌恶 4.87 ± 1.63 4.39 ± 2.15 3.45 ± 1.68 3.59 ± 1.99 6.64* 0.23 0.74
BES-惊奇 4.61 ± 1.67 4.04 ± 1.94 4.05 ± 1.91 4.36 ± 1.76 0.08 0.13 1.68
SHAPS 25.65 ± 4.76 25.70 ± 5.20 22.86 ± 4.38 23.55 ± 5.84 3.52+ 0.24 0.18
雌二醇 135.45 ± 110.80 110.58 ± 77.44 141.64 ± 85.92 111.51 ± 78.06 0.51 1.97 0.07
孕酮 821.27 ± 631.21 434.16 ± 260.53 778.60 ± 420.90 435.79 ± 299.38 0.08 20.16*** 0.20
  
指标 PMS (n = 23) 健康组(n = 22)
经前期 经后期 经前期 经后期
选择“f” (次) 21.65 ± 5.48 20.57 ± 5.74 21.82 ± 5.12 19.86 ± 3.91
选择“j” (次) 18.34 ± 5.48 19.43 ± 5.74 18.18 ± 5.12 20.14 ± 3.91
反应时(ms) 729.31 ± 407.18 628.71 ± 177.38 894.38 ± 567.78 751.59 ± 302.32
  
  
条件 PMS (n = 23) 健康组(n = 22)
经前期 经后期 经前期 经后期
奖赏条件 18.36 ± 9.34 22.65 ± 8.13 24.25 ± 11.17 25.81 ± 11.36
惩罚条件 14.04 ± 8.30 15.85 ± 8.64 15.03 ± 9.93 17.74 ± 9.41
差异波 4.32 ± 3.84 6.81 ± 6.01 9.22 ± 7.16 8.07 ± 7.73
  
  
  
条件 PMS (n = 23) 健康组(n = 22)
经前期 经后期 经前期 经后期
奖赏条件 0.98 ± 1.07 1.34 ± 1.26 1.85 ± 1.07 1.72 ± 1.21
惩罚条件 2.53 ± 2.59 2.46 ± 2.69 2.55 ± 2.08 2.96 ± 2.41
差值 -1.54 ± 1.74 -1.12 ± 1.61 -0.70 ± 1.69 -1.24 ± 1.68
  
[1] Alheid, G. F . (2003). Extended amygdala and basal forebrain. Annals of the New York Academy of Sciences, 985(1), 185-205.
[2] Altemus, M . (2006). Sex differences in depression and anxiety disorders: Potential biological determinants. Hormones and Behavior, 50(4), 534-538.
doi: 10.1016/j.yhbeh.2006.06.031 url: https://linkinghub.elsevier.com/retrieve/pii/S0018506X06001838
[3] Altemus, M., Sarvaiya, N., & Epperson, C. N . (2014). Sex differences in anxiety and depression clinical perspectives. Frontiers in Neuroendocrinology, 35(3), 320-330.
doi: 10.1016/j.yfrne.2014.05.004 url: http://dx.doi.org/10.1016/j.yfrne.2014.05.004
[4] Amaral, D. G., & Price, J. L . (1984). Amygdalo-cortical projections in the monkey (Macaca fascicularis). Journal of Comparative Neurology, 230(4), 465-496.
[5] Andreou, C., Kleinert, J., Steinmann, S., Fuger, U., Leicht, G., & Mulert, C . (2015). Oscillatory responses to reward processing in borderline personality disorder. The World Journal of Biological Psychiatry, 16(8), 575-586.
[6] Anisman, H., & Matheson, K . (2005). Stress, depression, and anhedonia: Caveats concerning animal models. Neuroscience and Biobehavioral Reviews, 29(4-5), 525-546.
doi: 10.1016/j.neubiorev.2005.03.007 url: https://linkinghub.elsevier.com/retrieve/pii/S0149763405000369
[7] Anjum, F., Zehra, N., Haider, G., Rani, S., Siddique, A. A., & Munir, A. A . (2010). Attitudes towards menstruation among young women. Pakistan Journal of Medical Sciences, 26(3), 619-622.
[8] APA. (2000). Diagnostic and Statistical Manual of Mental Disorders, 4th edition-text revision.
[9] Aron, A., Fisher, H., Mashek, D. J., Strong, G., Li, H., & Brown, L. L . (2005). Reward, motivation, and emotion systems associated with early-stage intense romantic love. Journal of Neurophysiology, 94(1), 327-337.
[10] Bancroft, J . (1993). The premenstrual syndrome-A reappraisal of the concept and the evidence. Psychological Medicine, 24, 1-47.
[11] Beck, A. T . (1967). Depression: Causes and treatment. Clinics in Geriatric Medicine, 14(4), 765-786.
[12] Beck, A. T., Epstein, N., Brown, G., & Steer, R. A . (1988). An inventory for measuring clinical anxiety: Psychometric properties. Journal of Consulting and Clinical Psychology, 56(6), 893-897.
[13] Belujon, P., & Grace, A. A . (2015). Regulation of dopamine system responsivity and its adaptive and pathological response to stress. Proceedings Biological Sciences, 282(1805), 20142516.
[14] Berridge, K. C., & Robinson, T. E . (2003). Parsing reward. Trends in Neurosciences, 26(9), 507-513.
[15] Blood, A. J., & Zatorre, R. J . (2001). Intensely pleasurable responses to music correlate with activity in brain regions implicated in reward and emotion. Proceedings of the National Academy of Sciences of the United States of America, 98(20), 11818-11823.
[16] Bogdan, R., & Pizzagalli, D. A . (2006). Acute stress reduces reward responsiveness: Implications for depression. Biological Psychiatry, 60(10), 1147-1154.
[17] Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D . (2001). Conflict monitoring and cognitive control. Psychological Review, 108(3), 624-652.
[18] Breslau, N . (2009). The epidemiology of trauma, PTSD, and other posttrauma disorders. Trauma, Violence, and Abuse, 10(3), 198-210.
[19] Bress, J. N., Foti, D., Kotov, R., Klein, D. N., & Hajcak, G . (2013). Blunted neural response to rewards prospectively predicts depression in adolescent girls. Psychophysiology, 50(1), 74-81.
doi: 10.1111/psyp.2013.50.issue-1 url: http://doi.wiley.com/10.1111/psyp.2013.50.issue-1
[20] Bress, J. N., Smith, E., Foti, D., Klein, D. N., & Hajcak, G . (2012). Neural response to reward and depressive symptoms in late childhood to early adolescence. Biological Psychology, 89(1), 156-162.
doi: 10.1016/j.biopsycho.2011.10.004 url: http://dx.doi.org/10.1016/j.biopsycho.2011.10.004
[21] Brunia, C. H. M., & Damen, E. J. P . (1988). Distribution of slow brain potentials related to motor preparation and stimulus anticipation in a time estimation task. Electroencephalography and Clinical Neurophysiology, 69(3), 234-243.
[22] Butler, P. D., Weiss, J. M., Stout, J. C., & Nemeroff, C. B . (1990). Corticotropin-releasing factor produces fear- enhancing and behavioral activating effects following infusion into the locus coeruleus. Journal of Neuroscience, 10(1), 176-183.
[23] Carey, R. J . (1986). An examination of parkinsonian versus anhedonia contributions to self-stimulation impairments induced by dopamine dysfunction. Behavioural Brain Research, 22(2), 117-125.
[24] Chang, C. H., & Grace, A. A . (2013). Amygdala β- noradrenergic receptors modulate delayed downregulation of dopamine activity following restraint. Journal of Neuroscience, 33(4), 1441-1450.
[25] Chang, C. H., & Grace, A. A . (2014). Amygdala-Ventral pallidum pathway decreases dopamine activity after chronic mild stress in rats. Biological Psychiatry, 76(3), 223-230.
[26] Chen, L., & Zhou, R . (2016, June). The deficiency of positive emotion for Females with premenstrual syndrome: Evidence from the late positive potential. Poster session presented at the annual meeting of the Organization for Human Brain Mapping, Geneva, Switzerland.
[27] Cohen, M. X . (2014). Analyzing neural time series data: Theory and practice. MIT press.
[28] Cohen, M. X., Elger, C. E., & Ranganath, C . (2007). Reward expectation modulates feedback-related negativity and EEG spectra. NeuroImage, 35(2), 968-978.
[29] Cona, G., Chiossi, F., di Tomasso, S., Pellegrino, G., Piccione, F., Bisiacchi, P., & Arcara, G . (2020). Theta and alpha oscillations as signatures of internal and external attention to delayed intentions: A magnetoencephalography (MEG) study. NeuroImage, 205, 116295.
[30] Craner, J. R., Sigmon, S. T., & Martinson, A. A . (2015). Self-focused attention in response to laboratory stressors among women with premenstrual disorders. Archives of Womens Mental Health, 18(4), 595-606.
[31] Davis, M . (1980). Neurochemical modulation of sensory- motor reactivity: Acoustic and tactile startle reflexes. Neuroscience and Biobehavioral Reviews, 4(2), 241-263.
[32] Delorme, A., & Makeig, S . (2004). EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134(1), 9-21.
[33] Direkvand-Moghadam, A., Sayehmiri, K., Delpisheh, A., & Sattar, K . (2014). Epidemiology of premenstrual syndrome (PMS)-A systematic review and meta-analysis study. Journal of Clinical and Diagnostic Research, 8(2), 106-109.
[34] Dreher, J.-C., Schmidt, P. J., Kohn, P., Furman, D., Rubinow, D., & Berman, K. F . (2007). Menstrual cycle phase modulates reward-related neural function in women. Proceedings of the National Academy of Sciences, 104(7), 2465-2470.
[35] Ducasse, D., Jaussent, I., Olié, E., Guillaume, S., Lopezcastroman, J., & Courtet, P . (2016). Personality traits of suicidality are associated with premenstrual syndrome and premenstrual dysphoric disorder in a suicidal women sample. Plos One, 11(2), e0148653.
[36] Dueñas, J. L., Lete, I., Bermejo, R., Arbat, A., Pérezcampos, E., Martínezsalmeán, J., ... Coll, C . (2011). Prevalence of premenstrual syndrome and premenstrual dysphoric disorder in a representative cohort of Spanish women of fertile age. European Journal of Obstetrics and Gynecology and Reproductive Biology, 156(1), 72-77.
doi: 10.1016/j.ejogrb.2010.12.013 url: https://linkinghub.elsevier.com/retrieve/pii/S0301211510006032
[37] Eggert, L., Kleinstäuber, M., Hiller, W., & Witthöft, M . (2017). Emotional interference and attentional processing in premenstrual syndrome. Journal of Behavior Therapy and Experimental Psychiatry, 54, 77-87.
[38] Eggert, L., Witthöft, M., Hiller, W., & Kleinstäuber, M . (2016). Emotion regulation in women with premenstrual syndrome (PMS): Explicit and implicit assessments. Cognitive Therapy and Research, 40(6), 747-763.
[39] Farage, M. A., Neill, S., & MacLean, A. B . (2009). Physiological changes associated with the menstrual cycle: A review. Obstetrical and Gynecological Survey, 64(1), 58-72.
doi: 10.1097/OGX.0b013e3181932a37 url: http://journals.lww.com/00006254-200901000-00023
[40] Foti, D., & Hajcak, G . (2009). Depression and reduced sensitivity to non-rewards versus rewards: Evidence from event-related potentials. Biological Psychology, 81(1), 1-8.
doi: 10.1016/j.biopsycho.2008.12.004 url: https://linkinghub.elsevier.com/retrieve/pii/S030105110800255X
[41] Fredrickson, B. L . (1998). What good are positive emotions? Review of General Psychology, 2(3), 300-319.
[42] Fredrickson, B. L., & Levenson, R. W . (1998). Positive emotions speed recovery from the cardiovascular sequelae of negative emotions. Cognition and Emotion, 12(2), 191-220.
[43] Fredrickson, B. L., Mancuso, R. A., Branigan, C., & Tugade, M. M . (2000). The undoing effect of positive emotions. Motivation and Emotion, 24(4), 237-258.
[44] Garamoni, G. L., Reynolds, C. F., Thase, M. E., Frank, E., & Fasiczka, A. L . (1992). Shifts in affective balance during cognitive therapy of major depression. Journal of Consulting and Clinical Psychology, 60(2), 260-266.
doi: 10.1037/0022-006X.60.2.260 url: http://doi.apa.org/getdoi.cfm?doi=10.1037/0022-006X.60.2.260
[45] Garamoni, G. L., Reynolds III, C. F., Thase, M. E., Frank, E., Berman, S. R., & Fasiczka, A. L . (1991). The balance of positive and negative affects in major depression: A further test of the states of mind model. Psychiatry Research, 39(2), 99-108.
[46] Garcia-Sanchez, F., Martinez-Gras, I., Rodriguez-Jimenez, R., & Rubio, G . (2011). Prepulse inhibition of the startle response/reflex in neuropsychiatric disorders. Revista de Neurologia, 53(7), 422-432.
[47] Gingnell, M., Morell, A., Bannbers, E., Wikström, J., & Poromaa, I. S . (2012). Menstrual cycle effects on amygdala reactivity to emotional stimulation in premenstrual dysphoric disorder. Hormones and Behavior, 62(4), 400-406.
doi: 10.1016/j.yhbeh.2012.07.005 url: http://dx.doi.org/10.1016/j.yhbeh.2012.07.005
[48] Hajihosseini, A., & Holroyd, C. B . (2013). Frontal midline theta and N 200 amplitude reflect complementary information about expectancy and outcome evaluation. Psychophysiology, 50(6), 550-562.
doi: 10.1111/psyp.12040 url: http://onlinelibrary.wiley.com/doi/10.1111/psyp.12040/abstract
[49] Hoffman, H. S., & Ison, J. R . (1980). Reflex modification in the domain of startle: I. Some empirical findings and their implications for how the nervous system processes sensory input. Psychological Review, 87(2), 175-189.
doi: 10.1037/0033-295X.87.2.175 url: http://doi.apa.org/getdoi.cfm?doi=10.1037/0033-295X.87.2.175
[50] Holroyd, C. B., & Coles, M. G. H . (2002). The neural basis of human error processing: Reinforcement learning, dopamine, and the error-related negativity. Psychological Review, 109(4), 679-709.
doi: 10.1037/0033-295X.109.4.679 url: http://doi.apa.org/getdoi.cfm?doi=10.1037/0033-295X.109.4.679
[51] Holroyd, C. B., & Krigolson, O. E . (2007). Reward prediction error signals associated with a modified time estimation task. Psychophysiology, 44(6), 913-917.
[52] Holroyd, C. B., Pakzadvaezi, K. L., & Krigolson, O. E . (2008). The feedback correct-related positivity: Sensitivity of the event-related brain potential to unexpected positive feedback. Psychophysiology, 45(5), 688-697.
[53] Hu, L., Xiao, P., Zhang, Z. G., Mouraux, A., & Iannetti, G. D . (2014). Single-trial time-frequency analysis of electrocortical signals: Baseline correction and beyond. NeuroImage, 84(1), 876-887.
[54] Huang, A. C. W., & Hsiao, S . (2002). Haloperidol attenuates rewarding and aversively conditioned suppression of saccharin solution intake: Reevaluation of the anhedonia hypothesis of dopamine blocking. Behavioral Neuroscience, 116(116), 646-650.
[55] Huang, L., Yang, T. Z., & Ji, Z. M . (2003). Applicability of the positive and negative affect scale in Chinese. Chinese Mental Health Journal, 17(1), 54-56.
[55] [ 黄丽, 杨廷忠, 季忠民 . (2003). 正性负性情绪量表的中国人群适用性研究. 中国心理卫生杂志, 17(1), 54-56.]
[56] Huang, Y., Zhou, R., Wu, M., Wang, Q., & Zhao, Y . (2014). Premenstrual syndrome is associated with blunted cortisol reactivity to the TSST. Stress, 18(2), 160-168.
[57] Kask, K., Gulinello, M., Bäckström, T., Geyer, M. A., & Sundström-Poromaa, I . (2008). Patients with premenstrual dysphoric disorder have increased startle response across both cycle phases and lower levels of prepulse inhibition during the late luteal phase of the menstrual cycle. Neuropsychopharmacology, 33(9), 2283-2290.
[58] Kessler, R. C., McGonagle, K. A., Nelson, C. B., Hughes, M., Swartz, M., & Blazer, D. G . (1994). Sex and depression in the national comorbidity survey. II: Cohort effects. Journal of Affective Disorders, 30(1), 15-26.
[59] Kessler, R. C., Sonnega, A., Bromet, E., Hughes, M., & Nelson, C. B . (1995). Posttraumatic stress disorder in the National Comorbidity Survey. Archives of General Psychiatry, 52(12), 1048-1060.
doi: 10.1001/archpsyc.1995.03950240066012 url: http://archpsyc.jamanetwork.com/article.aspx?doi=10.1001/archpsyc.1995.03950240066012
[60] Koydemir, S., Şimşek, Ö. F., Schütz, A., & Tipandjan, A . (2013). Differences in how trait emotional intelligence predicts life satisfaction: The role of affect balance versus social support in India and Germany. Journal of Happiness Studies, 14(1), 51-66.
doi: 10.1007/s10902-011-9315-1 url: http://link.springer.com/article/10.1007/s10902-011-9315-1
[61] Kumar, P., Berghorst, L. H., Nickerson, L. D., Dutra, S. J., Goer, F. K., Greve, D. N., & Pizzagalli, D. A . (2014). Differential effects of acute stress on anticipatory and consummatory phases of reward processing. Neuroscience, 266, 1-12.
doi: 10.1016/j.neuroscience.2014.01.058 url: http://dx.doi.org/10.1016/j.neuroscience.2014.01.058
[62] Kumari, V., Konstantinou, J., Papadopoulos, A., Aasen, I., Poon, L., Halari, R., & Cleare, A. J . (2010). Evidence for a role of progesterone in menstrual cycle-related variability in prepulse inhibition in healthy young women. Neuropsychopharmacology, 3 5(4), 929-937.
[63] Liu, W. H., Wang, L. Z., Shang, H. R., Shen, Y., Li, Z., Cheung, E. F., & Chan, R. C . (2014). The influence of anhedonia on feedback negativity in major depressive disorder. Neuropsychologia, 53(4), 213-220.
doi: 10.1016/j.neuropsychologia.2013.11.023 url: https://linkinghub.elsevier.com/retrieve/pii/S002839321300420X
[64] Liu, W. H., Wang, L. Z., Zhu, Y. H., Li, M. H., & Chan, R. C . (2012). Clinical utility of the Snaith-Hamilton pleasure scale in the Chinese settings. Bmc Psychiatry, 12(1), 184.
doi: 10.1186/1471-244X-12-184 url: http://bmcpsychiatry.biomedcentral.com/articles/10.1186/1471-244X-12-184
[65] Liu, Y., Wang, Z., & Lü, W . (2013). Resilience and affect balance as mediators between trait emotional intelligence and life satisfaction. Personality and Individual Differences, 54(7), 850-855.
doi: 10.1016/j.paid.2012.12.010 url: https://linkinghub.elsevier.com/retrieve/pii/S0191886912006186
[66] Luxton, D. D., Skopp, N. A., & Maguen, S . (2010). Gender differences in depression and PTSD symptoms following combat exposure. Depression and Anxiety, 27(11), 1027-1033.
doi: 10.1002/da.20730 url: http://doi.wiley.com/10.1002/da.20730
[67] Marco-Pallares, J., Cucurell, D., Cunillera, T., García, R., Andrés-Pueyo, A., Münte, T. F., & Rodríguez-Fornells, A . (2008). Human oscillatory activity associated to reward processing in a gambling task. Neuropsychologia, 46(1), 241-248.
doi: 10.1016/j.neuropsychologia.2007.07.016 url: http://www.sciencedirect.com/science/article/pii/S0028393207002667
[68] Matsumoto, M., Matsumoto, K., Abe, H., & Tanaka, K . (2007). Medial prefrontal cell activity signaling prediction errors of action values. Nature Neuroscience, 10(5), 647-656.
doi: 10.1038/nn1890 url: https://doi.org/10.1038/nn1890
[69] Metcalf, M. G., & Livesey, J. H . (1995). Distribution of positive moods in women with the premenstrual syndrome and in normal women. Journal of Psychosomatic Research, 39(5), 609-618.
doi: 10.1016/0022-3999(94)00167-7 url: https://linkinghub.elsevier.com/retrieve/pii/0022399994001677
[70] Moore, H., Rose, H. J., & Grace, A. A . (2001). Chronic cold stress reduces the spontaneous activity of ventral tegmental dopamine neurons. Neuropsychopharmacology, 24(4), 410-419.
doi: 10.1016/S0893-133X(00)00188-3 url: http://www.nature.com/doifinder/10.1016/S0893-133X(00)00188-3
[71] Morgan, J. K., Olino, T. M., Mcmakin, D. L., Ryan, N. D., & Forbes, E. E . (2013). Neural response to reward as a predictor of increases in depressive symptoms in adolescence. Neurobiology of Disease, 52(4), 66-74.
doi: 10.1016/j.nbd.2012.03.039 url: https://linkinghub.elsevier.com/retrieve/pii/S0969996112001283
[72] Mouraux, A., & Iannetti, G. D . (2008). Across-trial averaging of event-related EEG responses and beyond. Magnetic Resonance Imaging, 26(7), 1041-1054.
doi: 10.1016/j.mri.2008.01.011 url: http://www.sciencedirect.com/science/article/pii/S0730725X08000878
[73] Mulligan, E. M., Nelson, B. D., Infantolino, Z. P., Luking, K. R., Sharma, R., & Hajcak, G . (2018). Effects of menstrual cycle phase on electrocortical response to reward and depressive symptoms in women. Psychophysiology, 55(12), e13268.
doi: 10.1111/psyp.2018.55.issue-12 url: http://doi.wiley.com/10.1111/psyp.2018.55.issue-12
[74] Murray, E. A . (2007). The amygdala, reward and emotion. Trends in Cognitive Sciences, 11(11), 489-497.
doi: 10.1016/j.tics.2007.08.013 url: http://www.sciencedirect.com/science/article/pii/S1364661307002458
[75] Nelson, B. D., Perlman, G., Klein, D. N., Kotov, R., & Hajcak, G . (2016). Blunted neural response to rewards as a prospective predictor of the development of depression in adolescent girls. American Journal of Psychiatry, 173(12), 1223-1230.
doi: 10.1176/appi.ajp.2016.15121524 url: http://ajp.psychiatryonline.org/doi/10.1176/appi.ajp.2016.15121524
[76] Nieuwenhuis, S., Slagter, H. A., von Geusau, N. J. A., Heslenfeld, D. J., & Holroyd, C. B . (2005). Knowing good from bad: Differential activation of human cortical areas by positive and negative outcomes. European Journal of Neuroscience, 21(11), 3161-3168.
doi: 10.1111/ejn.2005.21.issue-11 url: http://blackwell-synergy.com/doi/abs/10.1111/ejn.2005.21.issue-11
[77] Oliveira, F. T. P., McDonald, J. J., & Goodman, D . (2007). Performance monitoring in the anterior cingulate is not all error related: Expectancy deviation and the representation of action-outcome associations. Journal of Cognitive Neuroscience, 19(12), 1994-2004.
doi: 10.1162/jocn.2007.19.12.1994 url: http://www.mitpressjournals.org/doi/10.1162/jocn.2007.19.12.1994
[78] Ossewaarde, L., van Wingen, G. A., Kooijman, S. C., Bäckström, T., Fernández, G., & Hermans, E. J . (2010). Changes in functioning of mesolimbic incentive processing circuits during the premenstrual phase. Social Cognitive and Affective Neuroscience, 6(5), 612-620.
doi: 10.1093/scan/nsq071 url: https://academic.oup.com/scan/article/6/5/612/1654705
[79] Padrão, G., Mallorquí, A., Cucurell, D., Marco-Pallares, J., & Rodriguez-Fornells, A . (2013). Neurophysiological differences in reward processing in anhedonics. Cognitive, Affective, and Behavioral Neuroscience, 13(1), 102-115.
doi: 10.3758/s13415-012-0119-5 url: http://link.springer.com/10.3758/s13415-012-0119-5
[80] Petersen, N., London, E. D., Liang, L., Ghahremani, D. G., Gerards, R., Goldman, L., & Rapkin, A. J . (2016). Emotion regulation in women with premenstrual dysphoric disorder. Archives of Women's Mental Health, 19(5), 891-898.
doi: 10.1007/s00737-016-0634-4 url: http://link.springer.com/10.1007/s00737-016-0634-4
[81] Protopopescu, X., Tuescher, O., Pan, H., Epstein, J., Root, J., Chang, L., ... Sibersweig, D . (2008). Toward a functional neuroanatomy of premenstrual dysphoric disorder. Journal of Affective Disorders, 108(1-2), 87-94.
doi: 10.1016/j.jad.2007.09.015 url: https://linkinghub.elsevier.com/retrieve/pii/S0165032707003394
[82] Proudfit, G. H . (2015). The reward positivity: From basic research on reward to a biomarker for depression. Psychophysiology, 52(4), 449-459.
doi: 10.1111/psyp.12370 url: http://doi.wiley.com/10.1111/psyp.12370
[83] Rapkin, A. J., Berman, S. M., Mandelkern, M. A., Silverman, D. H. S., Morgan, M., & London, E. D . (2011). Neuroimaging evidence of cerebellar involvement in premenstrual dysphoric disorder. Biological Psychiatry, 69(4), 374-380.
doi: 10.1016/j.biopsych.2010.09.029 url: http://dx.doi.org/10.1016/j.biopsych.2010.09.029
[84] Ridderinkhof, K. R., Ullsperger, M., Crone, E. A., & Nieuwenhuis, S . (2004). The role of the medial frontal cortex in cognitive control. Science, 306(5695), 443-447.
doi: 10.1126/science.1100301 url: https://www.sciencemag.org/lookup/doi/10.1126/science.1100301
[85] Rougépont, F., Piazza, P. V., Kharouby, M., Moal, M. L., & Simon, H . (1993). Higher and longer stress-induced increase in dopamine concentrations in the nucleus accumbens of animals predisposed to amphetamine self-administration: A microdialysis study. Brain Research, 602(1), 169-174.
doi: 10.1016/0006-8993(93)90260-T url: https://linkinghub.elsevier.com/retrieve/pii/000689939390260T
[86] Rubinow, D. R., Roybyrne, P., Hoban, M. C., Grover, G. N., Stambler, N., & Post, R. M . (1986). Premenstrual mood changes: Characteristic patterns in women with and without premenstrual syndrome. Journal of Affective Disorders, 10(2), 85-90.
doi: 10.1016/0165-0327(86)90030-3 url: https://linkinghub.elsevier.com/retrieve/pii/0165032786900303
[87] Sakaki, M., & Mather, M . (2012). How reward and emotional stimuli induce different reactions across the menstrual cycle. Social and Personality Psychology Compass, 6(1), 1-17.
doi: 10.1111/spco.2011.6.issue-1 url: http://doi.wiley.com/10.1111/spco.2011.6.issue-1
[88] Salimpoor, V. N., Benovoy, M., Larcher, K., Dagher, A., & Zatorre, R. J . (2011). Anatomically distinct dopamine release during anticipation and experience of peak emotion to music. Nature Neuroscience, 14(2), 257-262.
doi: 10.1038/nn.2726 url: https://doi.org/10.1038/nn.2726
[89] Schimmack, U . (2008). The structure of subjective well-being. In M. Eid & R. J. Larsen (Eds.), The science of subjective well-being (pp. 97-123). Guilford Press.
[90] Schmidt, P. J., & Grover, G. N . (1990). State-dependent alterations in the perception of life events in menstrual- related mood disorders. American Journal of Psychiatry, 147(2), 230-234.
doi: 10.1176/ajp.147.2.230 url: http://psychiatryonline.org/doi/abs/10.1176/ajp.147.2.230
[91] Schmedt, P . (1993). Differential behavioral effects of gonadal steroids in women with and in those without premenstraul syndrome. Obstetrical and Gynecological Survey, 338(4), 209-216.
[92] Schwartz, R. M., Reynolds III, C. F., Thase, M. E., Frank, E., Fasiczka, A. L., & Haaga, D. A . (2002). Optimal and normal affect balance in psychotherapy of major depression: Evaluation of the balanced states of mind model. Behavioural and Cognitive Psychotherapy, 30(4), 439-450.
doi: 10.1017/S1352465802004058 url: https://www.cambridge.org/core/product/identifier/S1352465802004058/type/journal_article
[93] Segebladh, B., Borgström, A., Nyberg, S., Bixo, M., & Sundströmporomaa, I . (2009). Evaluation of different add- back estradiol and progesterone treatments to gonadotropin- releasing hormone agonist treatment in patients with premenstrual dysphoric disorder. American Journal of Obstetrics and Gynecology, 201(issue), 139.e1- 139.e8.
doi: 10.1016/j.ajog.2009.03.016 url: https://linkinghub.elsevier.com/retrieve/pii/S0002937809002713
[94] Snaith, R. P., Hamilton, M., Morley, S., Humayan, A., Hargreaves, D., & Trigwell, P . (1995). A scale for the assessment of hedonic tone the Snaith-Hamilton pleasure scale. The British Journal of Psychiatry, 167(1), 99-103.
doi: 10.1192/bjp.167.1.99 url: https://www.cambridge.org/core/product/identifier/S0007125000063868/type/journal_article
[95] Swerdlow, N. R., Hartman, P. L., & Auerbach, P. P . (1997). Changes in sensorimotor inhibition across the menstrual cycle: Implications for neuropsychiatric disorders. Biological Psychiatry, 41(4), 452-460.
doi: 10.1016/S0006-3223(96)00065-0 url: https://linkinghub.elsevier.com/retrieve/pii/S0006322396000650
[96] Tzur, G., & Berger, A . (2009). Fast and slow brain rhythms in rule/expectation violation tasks: Focusing on evaluation processes by excluding motor action. Behavioural Brain Research, 198(2), 420-428.
doi: 10.1016/j.bbr.2008.11.041 url: https://linkinghub.elsevier.com/retrieve/pii/S0166432808006359
[97] Valenti, O., Lodge, D. J., & Grace, A. A . (2011). Aversive stimuli alter ventral tegmental area dopamine neuron activity via a common action in the ventral hippocampus. Journal of Neuroscience, 31(11), 4280-4289.
doi: 10.1523/JNEUROSCI.5310-10.2011 url: http://dx.doi.org/10.1523/JNEUROSCI.5310-10.2011
[98] Viau, V . (2002). Functional cross-talk between the hypothalamic-pituitary-gonadal and -adrenal axes. Journal of Neuroendocrinology, 14(6), 506-513.
doi: 10.1046/j.1365-2826.2002.00798.x url: http://doi.wiley.com/10.1046/j.1365-2826.2002.00798.x
[99] Watson, D., Clark, L. A., & Tellegen, A . (1988). Development and validation of brief measures of positive and negative affect: The PANAS scales. Journal of Personality and Social Psychology, 54(6), 1063-1070.
doi: 10.1037/0022-3514.54.6.1063 url: http://doi.apa.org/getdoi.cfm?doi=10.1037/0022-3514.54.6.1063
[100] Wu, C., Ding, Y., Chen, B., Gao, Y., Wang, Q., Wu, Z., ... Li, L . (2019). Both Val158Met polymorphism of catechol-o- methyltransferase gene and menstrual cycle affect prepulse inhibition but not attentional modulation of prepulse inhibition in younger-adult females. Neuroscience, 404, 396-406.
doi: 10.1016/j.neuroscience.2019.02.001 url: https://linkinghub.elsevier.com/retrieve/pii/S0306452219300946
[101] Wu, M., Liang, Y., Wang, Q., Zhao, Y., & Zhou, R . (2016). Emotion dysregulation of women with premenstrual syndrome. Scientific Reports, 6, 38501.
doi: 10.1038/srep38501 url: https://doi.org/10.1038/srep38501
[102] Wu, M. Y., Zhou, R. L., Huang, Y. M., Wang, Q. G., Zhao, Y., & Liu, Y. F . (2014). Effects of menstrual cycle and neuroticism on emotional responses of healthy women. Acta Psychologica Sinica, 46(1), 58-68.
doi: 10.3724/SP.J.1041.2014.00058 url: http://118.145.16.229:81/Jweb_xlxb/CN/abstract/abstract14300.shtml
[102] [ 吴梦莹, 周仁来, 黄雅梅, 王庆国, 赵燕, 刘雁峰 . (2014). 神经质程度和月经周期对女性主观情绪和生理反应的影响. 心理学报, 46(1), 58-68.]
[103] Yamada, K., & Kamagata, E . (2017). Reduction of quality- adjusted life years (QALYs) in patients with premenstrual dysphoric disorder (PMDD). Quality of Life Research, 2 6(11), 3069-3073.
[104] Zhang, Y. X., Wang, Y., & Qian, M. Y . (1990). Reliability and validity of Beck depression inventory (BDI) examined in Chinese samples. Chinese Mental Health Journal, 4(4), 164-168.
[104] [ 张雨新, 王燕, 钱铭怡 . (1990). Beck抑郁量表的信度和效度. 中国心理卫生杂志, 4(4), 164-168.]
[105] Zhao, G. L., Wang, L. H., & Qu, C. Y . (1998). Prevalence of premenstrual syndrome in reproductive women and its influential factors. Chinese Journal of Obstetrics and Gynecology, 32(4), 222-224.
[105] [ 赵更力, 王临虹, 渠川琰 . (1998). 育龄妇女经前期综合征的发生情况及影响因素. 中华妇产科杂志, 32(4), 222-224.]
[106] Zheng, J. R., Huang, Z. R., Huang, J. J., Zhuang, X. Q., Wang, D. B., Zheng, S. Y., ... Wu, J. A . (2002). A study of psychometric properties, normative scores and factor structure of Beck anxiety inventory Chinese version. Chinese Journal of Clinical Psychology, 10(1), 4-6.
[106] [ 郑健荣, 黄炽荣, 黄洁晶, 庄香泉, 王得宝, 郑淑仪, ... 吴基安 . (2002). 贝克焦虑量表的心理测量学特性、常模分数及因子结构的研究. 中国临床心理学杂志, 10(1), 4-6.]
[107] Zhou, W., He, G., Gao, J., Yuan, Q., Feng, H., & Zhang, C. K . (2012). The effects of group reminiscence therapy on depression, self-esteem, and affect balance of Chinese community-dwelling elderly. Archives of Gerontology and Geriatrics, 54(3), e440-e447.
doi: 10.1016/j.archger.2011.12.003 url: http://dx.doi.org/10.1016/j.archger.2011.12.003
[1] LIU Jie, LI Jinqi, SHEN Chaoran, HU Xiaohui, ZHAO Tinghao, GUAN Qing, LUO Yuejia. The neural mechanism of approximate number processing for mathematical anxious individuals: An EEG study[J]. Acta Psychologica Sinica, 2020, 52(8): 958-970.
[2] FU Chao, ZHANG Zhen, HE Jinzhou, HUANG Silin, QIU Jianyin, WANG Yiwen.  Brain dynamics of decision-making in the generalized trust game: Evidence from ERPs and EEG time-frequency analysis[J]. Acta Psychologica Sinica, 2018, 50(3): 317-326.
[3] LIU Fang; DING Jinhong; ZHANG Qin. Positive affect and selective attention: Approach-motivation intensity influences the early and late attention processing stages[J]. Acta Psychologica Sinica, 2016, 48(7): 794-803.
[4] WU Mengying;ZHOU Renlai;HUANG Yamei;WANG Qingguo;ZHAO Yan;LIU Yanfeng. Effects of Menstrual Cycle and Neuroticism on Emotional Responses of Healthy Women[J]. Acta Psychologica Sinica, 2014, 46(1): 58-68.
[5] WANG Zhenhong;LIU Ya;JIANG Changhao. The Effect of Low versus High Approach-Motivated Positive Affect on Cognitive Control[J]. Acta Psychologica Sinica, 2013, 45(5): 546-555.
[6] CUI Lixia;ZHANG Yujing;XIAO Jing;ZHANG Qin. The Influence of Positive Affect on Mental Rotation of Compound Stimuli: the Moderating Role of Approch Motivation[J]. Acta Psychologica Sinica, 2013, 45(11): 1228-1241.
[7] Xin Ziqiang Chi Liping (The Institute of Developmental Psychology, Beijing Normal University, Beijing 100875). THE RELATIONSHIP BETWEEN HAPPINESS AND SOCIAL SUPPORT[J]. , 2001, 33(05): 59-64.
[8] Wang Xiaotian,Victor S. Johnston,Juan C. Oliver Departmett of Psychology New Mexico State University Las Cruces, NM 88003 U. S. A.. EVOKED BRAIN POTENTIAL STUDIES OF EMOTIONAL AND COGNITIVE PROCESSES: EMOTIONAL ADAPTATION HYPOTHESIS[J]. , 1992, 24(04): 72-80.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Acta Psychologica Sinica
Support by Beijing Magtech