Please wait a minute...
Acta Psychologica Sinica    2020, Vol. 52 Issue (5) : 597-608     DOI: 10.3724/SP.J.1041.2020.00597
Reports of Empirical Studies |
Functional role of the left dorsolateral prefrontal cortex in procedural motor learning
CAO Na1,MENG Haijiang1,WANG Yanqiu1,QIU Fanghui1,TAN Xiaoying2,WU Yin3,ZHANG Jian1()
1 School of Psychology, Shanghai University of Sport, Shanghai 200438, China
2 School of Physical Education and Coaching, Shanghai University of Sport, Shanghai 200438, China
3 School of Economics and Management, Shanghai University of Sport, Shanghai 200438, China
Download: PDF(1585 KB)   HTML Review File (1 KB) 
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks     Supporting Info

Procedural motor learning includes sequence learning and random learning. Neuroimaging studies have shown that the dorsolateral prefrontal cortex (DLPFC) and primary motor cortex (M1) play significant roles in procedural motor learning; however, the connectivity between the DLPFC and M1 and its relationship with different procedural motor learning are still unclear.
In this study, the serial response time task (SRTT) and transcranial magnetic stimulation (TMS) were used to explore the differences in left DLPFC-M1 connectivity between the different types of procedural motor learning. In experiment 1, dual-site paired-pulse TMS was used to detect the optimal interval from the DLPFC to the M1. In experiment 2, the participants were divided into two groups that underwent sequence learning or random learning. Behavioral data, motor evoked potentials from the M1 and electrophysiological data of DLPFC-M1 connectivity were assessed before and after learning.
The behavioral results showed that the learning effect of the sequence learning group was better. The electrophysiological results showed that motor evoked potentials from the M1 were the same before and after learning in both groups. At the optimal interval and appropriate stimulation intensity, the DLPFC-M1 connectivity in the sequence learning group was changed, and it was related to learning performance; however that in the random learning group was not significantly changed.
The results suggest that enhanced connectivity between the DLPFC and M1 may be an important explanation for the better performance in sequence learning. The results provide robust electrophysiological evidence for the role of DLPFC in motor learning.

Keywords dorsolateral prefrontal cortex      primary motor cortex      transcranial magnetic stimulation      procedural motor learning      sequence learning     
PACS:  B845  
Corresponding Authors: Jian ZHANG     E-mail:
Issue Date: 26 March 2020
E-mail this article
E-mail Alert
Articles by authors
Cite this article:   
CAO Na,MENG Haijiang,WANG Yanqiu,QIU Fanghui,TAN Xiaoying,WU Yin,ZHANG Jian. Functional role of the left dorsolateral prefrontal cortex in procedural motor learning[J]. Acta Psychologica Sinica,2020, 52(5): 597-608.
URL:     OR
[1] Cao N., Pi Y. L., Liu K., Meng H., Wang J., Zhang J., … Tan X . (2018). Inhibitory and facilitatory connections from dorsolateral prefrontal to primary motor cortex in healthy humans at rest-an rTMS study. Neuroscience Letters, 687, 82-87.
[2] Civardi C., Cantello R., Asselman P., & Rothwell J. C . (2001). Transcranial magnetic stimulation can be used to test connections to primary motor areas from frontal and medial cortex in humans. Neuroimage, 14(6), 1444-1453.
[3] Clegg B. A., Digirolamo G. J., & Keele S. W . (1998). Sequence learning. Trends in Cognitive Sciences, 2(8), 275-281.
[4] Fatma I., Thorsten K., Christof K., & John-Dylan H . (2012). Changes in functional connectivity support conscious object recognition. Neuroimage, 63(4), 1909-1917.
[5] Friston K. J . (2011). Functional and effective connectivity: A review. Brain Connectivity, 1(1), 13-36.
[6] Fuster J. M., & Alexander G. E . (1971). Neuron activity related to short-term memory. Science, 173(3997), 652-654.
[7] Gordon B . (1988). Preserved learning of novel information in amnesia: Evidence for multiple memory systems. Brain & Cognition, 7(3), 257-282.
[8] Grafman J., Weingartner H., Newhouse P. A., Thompson K., Lalonde F., Litvan I., .. Sunderland T . (1990). Implicit learning in patients with Alzheimer's disease. Pharmacopsychiatry, 23(2), 94-101.
[9] Grafton S. T., Hazeltine E., & Ivry R . (1995). Functional mapping of sequence learning in normal humans. MIT Press.
[10] Grafton S. T., Woods R. P., & Tyszka M . (1994). Functional imaging of procedural motor learning: Relating cerebral blood flow with individual subject performance. Human Brain Mapping, 1(3), 221-234.
[11] Hallett M . (2000). Transcranial magnetic stimulation and the human brain. Nature, 406(6792), 147-150.
[12] Hanajima R., Ugawa Y., Machii K., Mochizuki H., Terao Y., Enomoto H., .. Kanazawa I . (2001). Interhemispheric facilitation of the hand motor area in humans. Journal of Physiology, 531(3), 849-859.
[13] Hasan A., Galea J. M., Casula E. P., Falkai P., Bestmann S., & Rothwell J. C . (2013). Muscle and timing-specific functional connectivity between the dorsolateral prefrontal cortex and the primary motor cortex. Journal of Cognitive Neuroscience, 25(4), 558-570.
[14] Hikosaka O., Nakamura K., Sakai K., & Nakahara H . (2002). Central mechanisms of motor skill learning. Current Opinion in Neurobiology, 12(2), 217-222.
[15] Jacinta O. S., Catherine S., Boorman E. D., Heidi J. B., & Rushworth M. F. S . (2010). Functional specificity of human premotor-motor cortical interactions during action selection. European Journal of Neuroscience, 26(7), 2085-2095.
[16] Jenkins I. H., Brooks D. J., Nixon P. D., Frackowiak R. S., & Passingham R. E . (1994). Motor sequence learning: A study with positron emission tomography. Journal of Neuroscience, 14(6), 3775-3790.
[17] Jueptner M., Stephan K. M., Frith C. D., Brooks D. J., Frackowiak R. S. J., & Passingham R. E . (1997). Anatomy of motor learning. I. Frontal cortex and attention to action. Journal of Neurophysiology, 77(3), 1313-1324.
[18] Kielan Y., Peter B., & Krakauer J. W . (2009). Inside the brain of an elite athlete: the neural processes that support high achievement in sports. Nature Reviews Neuroscience, 10(8), 585-596.
[19] Koch G., Fernandez Del Olmo M., Cheeran B., Ruge D., Schippling S., Caltagirone C., & Rothwell J. C . (2007). Focal stimulation of the posterior parietal cortex increases the excitability of the ipsilateral motor cortex. Journal of Neuroscience, 27(25), 6815-6822.
[20] Koch G., & Rothwell J. C . (2009). TMS investigations into the task-dependent functional interplay between human posterior parietal and motor cortex. Behavioural Brain Research, 202(2), 147-152.
[21] Krebs H., Hogan N., Hening W., Adamovich S., & Poizner H . (2001). Procedural motor learning in Parkinson’s disease. Experimental Brain Research, 141(4), 425-437.
[22] Lafleur L.-P., Tremblay S., Whittingstall K., & Lepage J.-F . (2016). Assessment of effective connectivity and plasticity with dual-coil transcranial magnetic stimulation. Brain Stimulation, 9(3), 347-355.
[23] Lam S., Gunraj C., Vesia M., Jegatheeswaran G., Hui J., & Chen R . (2015). Effects of age on motor learning and prefrontal-motorcortical excitability. Brain Stimulation, 8(2), 313.
[24] Lazzaro V. D., Oliviero A., Profice P., Insola A., Mazzone P., Tonali P., & Rothwell J. C . (1999). Direct demonstration of interhemispheric inhibition of the human motor cortex produced by transcranial magnetic stimulation. Experimental Brain Research, 124(4), 520-524.
[25] Leonora W., Teo J. T., Ignacio O., Rothwell J. C., & Marjan J . (2010). The contribution of primary motor cortex is essential for probabilistic implicit sequence learning: Evidence from theta burst magnetic stimulation. Journal of Cognitive Neuroscience, 22(3), 427-436.
[26] Marco S., Carlo U., & Elena R . (2011). The use of transcranial magnetic stimulation in cognitive neuroscience: A new synthesis of methodological issues. Neuroscience & Biobehavioral Reviews, 35(3), 516-536.
[27] Mayor-Dubois C., Zesiger P., van der Linden M., & Roulet- Perez E . (2016). Procedural learning: a developmental study of motor sequence learning and probabilistic classification learning in school-aged children. Child Neuropsychology, 22(6), 718-734.
[28] Miller E. K . (2000). The prefrontal cortex and cognitive control. Nature Reviews Neuroscience, 1(1), 59-65.
[29] Ni Z., & Chen R . (2012). Intracortical circuits and their interactions in human primary motor cortex. Cortical Connectivity. Springer Berlin Heidelberg.
[30] Ni Z., Florian M. D., Chen R., & Ziemann U . (2011). Triple-pulse TMS to study interactions between neural circuits in human cortex. Brain Stimulation, 4(4), 281-293.
[31] Ni Z., Gunraj C., Kailey P., Cash R. F. H., & Chen R . (2014). Heterosynaptic modulation of motor cortical plasticity in human. Journal of Neuroscience, 34(21), 7314-7321.
[32] Ni Z., Gunraj C., Nelson A. J., Yeh I. J., Castillo G., Hoque T., & Chen R . (2009). Two phases of interhemispheric inhibition between motor related cortical areas and the primary motor cortex in human. Cerebral Cortex, 19(7), 1654-1665.
[33] Noguchi T., Demura S., Nagasawa Y., & Uchiyama M . (2009). Influence of measurement order by dominant and nondominant hands on performance of a pursuit-rotor task. Perceptual & Motor Skills, 108(3), 905-914.
[34] Oh S. W., Harris J. A., Ng L., Winslow B., Cain N., Mihalas S., .. Zeng H . (2014). A mesoscale connectome of the mouse brain. Nature, 508(7495), 207-214.
[35] Oldfield R. C . (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9(1), 97-113.
[36] Pascual-Leone A., Wassermann E. M., Grafman J., & Hallett M . (1996). The role of the dorsolateral prefrontal cortex in implicit procedural learning. Experimental Brain Research, 107(3), 479-485.
[37] Poldrack R. A., Sabb F. W., Karin F., Tom S. M., Asarnow R. F., Bookheimer S. Y., & Knowlton B. J . (2005). The neural correlates of motor skill automaticity. Journal of Neuroscience, 25(22), 5356-5364.
[38] Ridding M. C., & Rothwell J. C . (2007). Is there a future for therapeutic use of transcranial magnetic stimulation? Nature Reviews Neuroscience, 8(7), 559-567.
[39] Robertson E. M., Tormos J. M., Maeda F., & Pascual-Leone A . (2001). The role of the dorsolateral prefrontal cortex during sequence learning is specific for spatial information. Cerebral Cortex, 11(7), 628-635.
[40] Rothwell J. C . (2011). Using transcranial magnetic stimulation methods to probe connectivity between motor areas of the brain. Human Movement Science, 30(5), 906-915.
[41] Rowe J. B., Stephan K. E., Friston K., Frackowiak R. S., & Passingham R. E . (2005). The prefrontal cortex shows context-specific changes in effective connectivity to motor or visual cortex during the selection of action or colour. Cerebral Cortex, 15(1), 85-95.
[42] Sakai K., Hikosaka O., Miyauchi S., Takino R., Sasaki Y., & Pütz B . (1998). Transition of brain activation from frontal to parietal areas in visuomotor sequence learning. Modern Law Review, 18(5), 1827-1840.
[43] Schendan H. E., Searl M. M., Melrose R. J., & Stern C. E . (2003). An FMRI study of the role of the medial temporal lobe in implicit and explicit sequence learning. Neuron, 37(6), 1013-1025.
[44] Seidler R. D., Purushotham A., Kim S.-G., Ugurbil K., Willingham D., & Ashe J . (2005). Neural correlates of encoding and expression in implicit sequence learning. Experimental Brain Research, 165(1), 114-124.
[45] Shadmehr R., & Holcomb H. H . (1997). Neural correlates of motor memory consolidation. Science, 277(5327), 821-825.
[46] Squire L. R . (1992). Declarative and nondeclarative memory: multiple brain systems supporting learning and memory. Journal of Cognitive Neuroscience, 4(3), 232-243.
[47] Steel A., Song S. B., Bageac D., Knutson K. M., Keisler A., Saad Z. S., .. Wilkinson L . (2016). Shifts in connectivity during procedural learning after motor cortex stimulation: A combined transcranial magnetic stimulation/functional magnetic resonance imaging study. Cortex, 74, 134-148.
[48] Stefan K., Wycislo M., Gentner R., Schramm A., Naumann M., Reiners K., & Classen J . (2006). Temporary occlusion of associative motor cortical plasticity by prior dynamic motor training. Cerebral Cortex, 16(3), 376-385.
[49] Toni I., Krams M., Turner R., & Passingham R. E . (1998). The time course of changes during motor sequence learning: A whole-brain fMRI study. Neuroimage, 8(1), 50-61.
[50] Uehara K., Morishita T., Kubota S., & Funase K . (2013). Neural mechanisms underlying the changes in ipsilateral primary motor cortex excitability during unilateral rhythmic muscle contraction. Behavioural Brain Research, 240(2), 33-45.
[51] Ugawa Y., Day B. L., Rothwell J. C., Thompson P. D., Merton P. A., & Marsden C. D . (1991). Modulation of motor cortical excitability by electrical stimulation over the cerebellum in man. Journal of Physiology, 441(1), 57-72.
[52] Wedeen V. J., Rosene D. L., Wang R. P., Dai G. P., Mortazavi F., Hagmann P., .. Tseng W. Y . (2012). The geometric structure of the brain fiber pathways. Science, 335(6076), 1628-1634.
[53] Willingham D. B . (1998). A neuropsychological theory of motor skill learning. Psychological Review, 105(3), 558-584.
[54] Willingham D. B., Joanna S., & Gabrieli J. D. E . (2002). Direct comparison of neural systems mediating conscious and unconscious skill learning. Journal of Neurophysiology, 88(3), 1451-1460.
[55] Yang G . (2014). Implicit sequence learning of emotional stimulation and semantic stimulation (Unpublished master dissertation). Shenyang Normal University.
[55] [ 杨光 . (2014). 情绪刺激和语义刺激的内隐序列学习研究(硕士学位论文). 沈阳师范大学.]
[56] Yang Y. H., & Wang S. M . (2018). Neurophysiological mechanisms of motor learning. Journal of Wuhan Institute of Physical Education, 52(8), 86-90.
[56] [ 杨叶红, 王树明 . (2018). 动作技能学习神经生理机制研究. 武汉体育学院学报, 52(8), 86-90.]
[57] Zhang J. X., Tang D., Cha D. H., Huang J. P., & Liu D. Z . (2016). Embodied mechanisms of implicit sequence learning consciousness. Advances in Psychological Science, 24(2), 203-216.
[57] [ 张剑心, 汤旦, 查德华, 黄建平, 刘电芝 . (2016). 内隐序列学习意识的具身机制. 心理科学进展, 24(2), 203-216.]
[58] Zhang L. L., Shen C., Zhu H., Li X. P., Dai W., Wu Y., & Zhang J . (2017). The effects of motor skill level and somatosensory input on motor imagery: An fMRI study on basketball free shot. Acta Psychologica Sinica, 49(3), 307-316.
[58] [ 张兰兰, 沈诚, 朱桦, 李雪佩, 戴雯, 吴殷, 张剑 . (2017). 运动技能水平与躯体感觉输入对运动表象的影响. 心理学报, 49(3), 307-316.]
[59] Ziemann U . (2004). TMS and drugs. Clinical Neurophysiology, 115(8), 1717-1729.
[60] Ziemann U., Reis J., Schwenkreis P., Rosanova M., Strafella A., Badawy R., & Müller-Dahlhaus F . (2015). TMS and drugs revisited 2014. Clinical Neurophysiology, 126(10), 1847-1868.
[1] ZHANG Dandan,WANG Ju,ZHAO Jun,CHEN Shumei,Huang Yanlin,GAO Qiufeng. Impact of depression on cooperation: An fNIRS hyperscanning study[J]. Acta Psychologica Sinica, 2020, 52(5): 609-622.
[2] YIN Xile,LI Jianbiao,CHEN Siyu,LIU Xiaoli,HAO Jie. Neural mechanisms of third-party punishment: Evidence from transcranial direct current stimulation[J]. Acta Psychologica Sinica, 2019, 51(5): 571-583.
[3] Hui DAI, Chuanlin ZHU, Dianzhi LIU. Is implicit knowledge abstract? Evidence from implicit sequence learning transfer[J]. Acta Psychologica Sinica, 2018, 50(9): 965-974.
[4] Hui Hui WANG, Yu Dan LUO, Bing SHI, Feng Qiong YU, Kai WANG. Excitation of the right dorsolateral prefrontal cortex with transcranial direct current stimulation influences response inhibition[J]. Acta Psychologica Sinica, 2018, 50(6): 647-654.
[5] YANG Haibo; LIU Dianzhi. Validity and sensitivity analysis of segment recognition task on implicit sequence learning[J]. Acta Psychologica Sinica, 2016, 48(3): 230-237.
[6] ZHANG Jianxin; WU Yan; CHEN Xinyun; LIU Dianzhi. Probabilistic Implict Sequence Learning Differences between Individuals with High vs. Low Openness /Feeling[J]. Acta Psychologica Sinica, 2014, 46(12): 1793-1804 .
[7] Fu Qiufang, Liu Yongfang, Fu Xiaolan. THE EFFECTS OF TYPE AND FEATURE OF KNOWLEDGE ON IMPLICIT SEQUENCE LEARNING[J]. , 2004, 36(05): 525-533.
[8] Ding Jinhong, Yuan Rubing, Guo Chunyan, Tian Xuehong. Mechanisms of Implicit Sequence Learning of School Students[J]. , 2004, 36(04): 476-481.
Full text



Copyright © Acta Psychologica Sinica
Support by Beijing Magtech