Please wait a minute...
Acta Psychologica Sinica    2020, Vol. 52 Issue (3) : 317-328     DOI: 10.3724/SP.J.1041.2020.00317
Reports of Empirical Studies |
Differences in brain reactivity in relation to different types of drug-associated cues and disinhibition among heroin addicts: An ERP study
ZHENG Zhiling,WANG Pengfei,SU Dequan,GUO Weijie,SUN Nan(),MA Yankun(),ZENG Hong()
Department of Psychology, Research Center of Psychology & Brain Science, Guangzhou University, Guangzhou 510006, China
Download: PDF(1615 KB)   HTML Review File (1 KB) 
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Persons who are addicted are known to show cue-induced responses (such as psychological craving) to drug-related cues. Previous research showed that both tool-related (e.g., syringe) and action-related (e.g., use of the syringe) drug cues can elicit craving. However, whether the two types of drug related cues can elicit the same brain reactivity and similar degree of disinhibition is still unclear, especially because of the scarcity of ERP studies on this topic. Using a behavioral task and the ERP technique, the present study investigated the behavior reactivity and EEG characteristics shown by men addicted to heroin and healthy controls in response to tool-related and action-related drug cues.
Participants were 36 men, 19 of whom were addicted to heroin and 17 of whom were healthy non-drug users, matched on age and years of education. Participants engaged in the two-choice Oddball task, which included two conditions: A. the tool condition, with a picture of a “cup” serving as the standard stimulus and pictures of drug-use tools serving as deviant stimuli; B. the action condition, with a picture of “drinking water” serving as the standard stimulus and pictures of drug-use actions serving as deviant stimuli. In this experiment, the probabilities of standard stimuli and deviant stimuli were 70% and 30%. Participants were asked to press different keys on the keyboard in response to standard stimuli and deviant stimuli as rapidly and accurately as possible.
Behavioral results indicated that in men who were addicted to heroin, greater disinhibition was seen in a longer reaction time in response to action cues than tool cues. Between-group analyses of the ERP data showed that compared to the healthy controls, men who were addicted to heroin demonstrated a smaller N2 and larger P3 amplitude in response to drug related cues. Moreover, action cues elicited a smaller N2 amplitude in the heroin addicted group than the control group, especially in the frontal, central and central-parietal areas of the brain, and a larger P3 amplitude, especially in the central and parietal areas of the brain. Within-group analyses in just the heroin addicted group showed that the N2 was smaller in response to action cues versus tool cues. Meanwhile, the action cues elicited a larger amplitude of P3 than the tool cues, especially in the central, central-parietal and parietal regions of the brain.
These findings provide behavioral and ERP evidence for the hypothesis that different types of drug-related cues produce different cue-induced reactivity. More specifically, drug use action stimuli, which appear to trigger greater disinhibition and greater ERP reactivity in the brain areas associated with motor resonance, should be considered in the treatment of addiction and in relapse prevention.

Keywords heroin addiction      cue-induced reactivity      impulsivity      two-choice Oddball task      ERP     
ZTFLH:  B845  
Corresponding Authors: Nan SUN,Yankun MA,Hong ZENG     E-mail: nansun2019@gzhu.edu.cn;ykma@gzhu.edu.cn;soezenghyj@gzhu.edu.cn
Issue Date: 18 January 2020
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Zhiling ZHENG
Pengfei WANG
Dequan SU
Weijie GUO
Nan SUN
Yankun MA
Hong ZENG
Cite this article:   
Zhiling ZHENG,Pengfei WANG,Dequan SU, et al. Differences in brain reactivity in relation to different types of drug-associated cues and disinhibition among heroin addicts: An ERP study[J]. Acta Psychologica Sinica, 2020, 52(3): 317-328.
URL:  
http://journal.psych.ac.cn/xlxb/EN/10.3724/SP.J.1041.2020.00317     OR     http://journal.psych.ac.cn/xlxb/EN/Y2020/V52/I3/317
  
项目 海洛因成瘾组
(n = 19)
M (SD)
健康对照组
(n = 17)
M (SD)
p
年龄 (岁) 39.84 (3.25) 42.46 (12.73) 0.391
受教育年限 (年) 9.65 (1.41) 11.25 (4.22) 0.127
吸烟情况 (包/周) 5.85 (2.08) 2.34 (2.19) 0.000
饮酒情况 (ml/周) 833.82 (855.94) 168.75 (135.53) 0.003
焦虑水平 30.29 (6.35) 26.67 (4.98) 0.067
首次吸毒年龄 (岁) 19.76 (3.82)
吸毒持续时间 (月) 205 (42.93)
戒断时间 (月) 37.18 (20.01)
以前海洛因使用量 (克/天) 0.56 (0.25)
  
变量 ERP前
M (SD)
ERP后
M (SD)
t p
平均体温 36.87 (0.34) 36.93 (0.24) -0.72 0.48
皮电 (30 s) 5.88 (9.37) -1.06 (20.81) 1.584 0.13
皮电 (60 s) 2.29 (11.15) -2.35 (12.63) 1.06 0.31
收缩压 (mm/Hg) 128.12 (14.62) 127.65 (10.40) 0.20 0.85
舒张压 (mm/Hg) 81.53 (11.73) 82.94 (9.47) -0.80 0.44
心率 (次/分) 75.94 (9.01) 75.65 (12.22) 0.15 0.88
渴求感 0.94 (1.18) 1.06 (1.27) -1.12 0.28
  
  
  
[1] Bickel W. K., Jarmolowicz D. P., Mueller E. T., Gatchalian K. M., & McClure S. M . (2012). Are executive function and impulsivity antipodes? A conceptual reconstruction with special reference to addiction. Psychopharmacology, 221(3), 361-387.
[2] Boy F., Husain M., Singh K. D., & Sumner P . (2010). Supplementary motor area activations in unconscious inhibition of voluntary action. Experimental Brain Research, 206(4), 441-448.
[3] Carretié L., Hinojosa J. A., Martín-Loeches M., Mercado F., & Tapia M . (2004). Automatic attention to emotional stimuli: Neural correlates. Human Brain Mapping, 22(4), 290-299.
[4] Daffner K. R., Mesulam M. M., Scinto L. F. M., Calvo V., Faust R., & Holcomb P. J . (2000). An electrophysiological index of stimulus unfamiliarity. Psychophysiology, 37(6), 737-747.
[5] Dalley J. W., Fryer T. D., Brichard L., Robinson E. S. J., Theobald D. E. H., Lääne K., .. Robbins T. W . (2007). Nucleus accumbens D2/3 receptors predict trait impulsivity and cocaine reinforcement. Science, 315(5816), 1267-1270.
[6] de Wit S., Watson P., Harsay H. A., Cohen M. X., van de Vijver I., & Ridderinkhof K. R . (2012). Corticostriatal connectivity underlies individual differences in the balance between habitual and goal-directed action control. Journal of Neuroscience, 32(35), 12066-12075.
[7] Dong G. H., Lu Q. L., Zhou H., & Zhao X . (2010). Impulse inhibition in people with internet addiction disorder: Electrophysiological evidence from a Go/Nogo study. Neuroscience Letters, 485(2), 138-142.
[8] Dong G. H., Yang L. Z., Hu Y. Z., & Jiang Y . (2009). Is N2 associated with successful suppression of behavior responses in impulse control processes? Neuro Report, 20(6), 537-542.
[9] Donkers F. C. L., & van Boxtel G. J. M . (2004). The N2 in go/no-go tasks reflects conflict monitoring not response inhibition. Brain and Cognition, 56(2), 165-176.
[10] Ersche K. D., Jones P. S., Williams G. B., Smith D. G., Bullmore E. T., & Robbins T. W . (2013). Distinctive personality traits and neural correlates associated with stimulant drug use versus familial risk of stimulant dependence. Biological Psychiatry, 74(2), 137-144.
[11] Everitt B. J., & Robbins T. W . (2016). Drug addiction: Updating actions to habits to compulsions ten years on. Annual Review of Psychology, 67(1), 23-50.
[12] Field M., & Cox W. M . (2008). Attentional bias in addictive behaviors: A review of its development, causes, and consequences. Drug and Alcohol Dependence, 97(1-2), 1-20.
[13] Field M., Marhe R., & Franken I. H . (2014). The clinical relevance of attentional bias in substance use disorders. CNS Spectrums, 19(3), 225-230.
[14] Franken I. H. A . (2003). Drug craving and addiction: Integrating psychological and neuropsychopharmacological approaches. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 27(4), 563-579.
[15] Franken I. H. A., Stam C. J., Hendriks V. M., & van den Brink W . (2003). Neurophysiological evidence for abnormal cognitive processing of drug cues in heroin dependence. Psychopharmacology, 170(2), 205-212.
[16] Hogarth L., Chase H. W., & Baess K . (2012). Impaired goal-directed behavioural control in human impulsivity. Quarterly Journal of Experimental Psychology, 65(2), 305-316.
[17] Houben K., & Wiers R. W . (2009). Response inhibition moderates the relationship between implicit associations and drinking behavior. Alcoholism: Clinical and Experimental Research, 33(4), 626-633.
[18] Jasinska A. J., Stein E. A., Kaiser J., Naumer M. J., & Yalachkov Y . (2014). Factors modulating neural reactivity to drug cues in addiction: A survey of human neuroimaging studies. Neuroscience & Biobehavioral Reviews, 38(1), 1-16.
[19] Jentsch J. D., Ashenhurst J. R., Cervantes M. C., Groman S. M., James A. S., & Pennington Z. T . (2014). Dissecting impulsivity and its relationships to drug addictions. Annals of the New York Academy of Sciences, 1327(1), 1-26.
[20] MacKillop J., Weafer J., Gray J. C., Oshri A., Palmer A., & de Wit H . (2016). The latent structure of impulsivity: Impulsive choice, impulsive action, and impulsive personality traits. Psychopharmacology, 233(18), 3361-3370.
[21] Morein-Zamir S., & Robbins T. W . (2015). Fronto-striatal circuits in response-inhibition: Relevance to addiction. Brain Research, 1628, 117-129.
[22] Nieuwenhuis S., Aston-Jones G., & Cohen J. D . (2005). Decision making, the P3, and the locus coeruleus- norepinephrine system. Psychological Bulletin, 131(4), 510-532.
[23] Pattij T., & de Vries, T. J . (2013). The role of impulsivity in relapse vulnerability. Current Opinion in Neurobiology, 23(4), 700-705.
[24] Pelloux Y., Everitt B. J., & Dickinson A . (2007). Compulsive drug seeking by rats under punishment: Effects of drug taking history. Psychopharmacology, 194(1), 127-137.
[25] Perry J. L., & Carroll M. E . (2008). The role of impulsive behavior in drug abuse. Psychopharmacology, 200(1), 1-26.
[26] Robbins T. W., Gillan C. M., Smith D. G., de Wit S., & Ersche K. D . (2012). Neurocognitive endophenotypes of impulsivity and compulsivity: Towards dimensional psychiatry. Trends in Cognitive Sciences, 16(1), 81-91.
[27] Robinson T. E., & Berridge K. C . (1993). The neural basis of drug craving: An incentive-sensitization theory of addiction. Brain Research Reviews, 18(3), 247-291.
[28] Robinson T. E., & Kolb B . (2004). Structural plasticity associated with exposure to drugs of abuse. Neuropharmacology, 47(1), 33-46.
[29] Smittenaar P., FitzGerald T. H. B., Romei V., Wright N. D., & Dolan R. J . (2013). Disruption of dorsolateral prefrontal cortex decreases model-based in favor of model-free control in humans. Neuron, 80(4), 914-919.
[30] Su B. B., Wang S., Sumich A., Li S. M., Yang L., Cai Y. Y., & Wang G. Y . (2017). Reduction in N2 amplitude in response to deviant drug-related stimuli during a two-choice Oddball task in long-term heroin abstainers. Psychopharmacology, 234(21), 3195-3205.
[31] Tiffany S. T . (1990). A cognitive model of drug urges and drug-use behavior: Role of automatic and nonautomatic processes. Psychological Review, 97(2), 147-168.
[32] Wagner D. D., Cin S. D., Sargent J. D., Kelley W. M., & Heatherton T. F . (2011). Spontaneous action representation in smokers when watching movie characters smoke. The Journal of Neuroscience, 31(3), 894-898.
[33] Wang C. G., Yuan M., Li Y. H., & Sui N . (2015). Identifying the features of attention bias in methamphetamine addicts: A study with words emotional Stroop task. Chinese Journal of Drug Dependence, 24(5), 391-395.
[33] [ 王春光, 袁明, 李勇辉, 隋南 . (2015). 甲基苯丙胺成瘾者对成瘾相关线索的注意偏向特征: 字词情绪Stroop任务的研究. 中国药物依赖性杂志, 24(5), 391-395.]
[34] Wang G. Y., Kydd R., & Russell B. R . (2015). Auditory event-related potentials in methadone substituted opiate users. Journal of Psychopharmacology, 29(9), 983-995.
[35] Wang P. F., Yan R. T., Miao X., & Zeng H . (2019). Impulsivity or habitual behavior? The function and mechanism of impulsivity in different phases of drug addiction. Advances in Psychological Science, 27(5), 834-842.
[35] [ 王鹏飞, 严瑞婷, 苗心, 曾红 . (2019). 冲动还是习惯? 成瘾不同阶段中冲动的性质与机制. 心理科学进展, 27(5), 834-842.]
[36] Xin Y., Li H., & Yuan J. J . (2010). Negative emotion interferes with behavioral inhibitory control: An ERP study. Acta Psychologica Sinica, 42(3), 334-341.
[36] [ 辛勇, 李红, 袁加锦 . (2010). 负性情绪干扰行为抑制控制: 一项事件相关电位研究. 心理学报, 42(3), 334-341.]
[37] Yalachkov Y., Kaiser J., & Naumer M. J . (2010). Sensory and motor aspects of addiction. Behavioural Brain Research, 207(2), 215-222.
[38] Yalachkov Y., & Naumer M. J . (2011). Involvement of action-related brain regions in nicotine addiction. Journal of Neurophysiology, 106(1), 1-3.
[39] Yang L., Xu Q. Y., Li S. F., Zhao X., Ma L., Zheng Y. F., .. Li Y . (2015). The effects of methadone maintenance treatment on heroin addicts with response inhibition function impairments: Evidence from event-related potentials. Journal of Food & Drug Analysis, 23(2), 260-266.
[40] Yuan J. J., He Y. Y., Zhang Q. L., Chen A. T., & Li H . (2008). Gender differences in behavioral inhibitory control: ERP evidence from a two‐choice Oddball task. Psychophysiology, 45(6), 986-993.
[41] Yuan J. J., Xu M. M., Yang J. M., & Li H . (2017). The application of the two-choice Oddball paradigm to the research of behavioral inhibitory control. Science in China: Life Sciences, 47(10), 53-61.
[41] [ 袁加锦, 徐萌萌, 杨洁敏, 李红 . (2017). 双选择Oddball范式在行为抑制控制研究中的应用. 中国科学: 生命科学, 47(10), 53-61.]
[42] Zeng H., Su D. Q., Jiang X., Chen Q., & Ye H. S . (2015). Activations of sensory-motor brain regions in response to different types of drug-associated cues. Acta Psychologica Sinica, 47(7), 890-902.
[42] [ 曾红, 苏得权, 姜醒, 陈骐, 叶浩生 . (2015). 不同药物相关线索反应下感觉-运动脑区的激活及作用. 心理学报, 47(7), 890-902.]
[43] Zeng H., Su D. Q., Wang P. F., Wang M. C., Vollstädt-Klein S., Chen Q., & Ye H. S . (2018). The action representation elicited by different types of drug-related cues in heroin- abstinent individuals. Frontiers in Behavioral Neuroscience, 12, 1-11.
[44] Zhao L . (2010). ERPs experimental tutorial. Revised edition. Nanjing: Southeast University Press.
[44] [ 赵仑 . (2010). ERPs实验教程(修订版). 南京:
[1] LI Xiong,LI Zuoshan,XIANG Binyang,MENG Jing. Empathy for pain in Individuals with autistic traits influenced by attention cues: Evidence from an ERP study[J]. Acta Psychologica Sinica, 2020, 52(3): 294-306.
[2] CHEN Chen,ZHANG Xin,SUN Liping,QIN Xin,DENG Huiru. Trust is valued in proportion to its rarity? Investigating how and when feeling trusted leads to counterproductive work behavior[J]. Acta Psychologica Sinica, 2020, 52(3): 329-344.
[3] NI Cong,ZHU Xu,JIANG Guangrong,LIN Xiubin,YU Lixia,LIANG Huanping. Interpersonal complementarity in counseling and its relationship with working alliance and therapeutic outcomes[J]. Acta Psychologica Sinica, 2020, 52(2): 197-206.
[4] ZHANG Ruqian,LIU Jieqiong,LI Xianchun. Neural mechanisms of fairness formation in the perspective of social interactions[J]. Acta Psychologica Sinica, 2019, 51(9): 1007-1017.
[5] HUANG Liang,YANG Xue,HUANG Zhihua,WANG Yiwen. Brain spatio-temporal dynamics of understanding kind versus hostile intentions based on dyadic body movements[J]. Acta Psychologica Sinica, 2019, 51(5): 557-570.
[6] ZHANG Wenpei, SHEN Qunlun, SONG Jintao, ZHOU Renlai. Classification of test-anxious individuals using Event-Related Potentials (ERPs): The effectiveness of machine learning algorithms[J]. Acta Psychologica Sinica, 2019, 51(10): 1116-1127.
[7] WANG Lili, FENG Wenfeng, JIA Lina, ZHU Xiangru, LUO Wenbo, YANG Suyong, LUO Yue-jia. Emotional processing of winning and losing facial expression and body posture[J]. Acta Psychologica Sinica, 2018, 50(8): 892-906.
[8] YANG Qingqing, HU Na, CHEN Xu, NIU Juan, ZHAI Jing.  Electrophysiological evidences of different emotional regulation strategies between the avoidant and the secure attachment individuals in the context of lovers, intimacy[J]. Acta Psychologica Sinica, 2018, 50(3): 306-316.
[9] TAO Aihua, LIU Yonghe, WANG Pei.  Moderating effects of conflict types on disappointment in interpersonal conflict[J]. Acta Psychologica Sinica, 2018, 50(2): 235-242.
[10] NIE Chunyan, WANG Tao, ZHAO Peng, CUI Nan. The influence of interpretation frame on the evaluation of culturally mixed products: The moderating effect of comparison focus and interpretation strategy[J]. Acta Psychologica Sinica, 2018, 50(12): 1438-1448.
[11] HAN Meng, MAO Xinrui, CAI Mengtong, JIA Xi, GUO Chunyan.  The effect of positive and negative signs on the SNARC effect in the magnitude judgment task[J]. Acta Psychologica Sinica, 2017, 49(8): 995-1008.
[12] FU Yilei, LUO Yuejia, CUI Fang.  Consistency of choice modulates outcome evaluation: Evidence from ERP studies[J]. Acta Psychologica Sinica, 2017, 49(8): 1089-1099.
[13] DUAN Jinyun; SHI Jiayi; LING Bin. The influence of high commitment organization on employee voice behavior: A dual-process model examination[J]. Acta Psychologica Sinica, 2017, 49(4): 539-553.
[14] ZHAO Simin; WU Yan; LI Tianhong; GUO Qingtong. Morpho-semantic processing in Chinese word recognition: An ERP study[J]. Acta Psychologica Sinica, 2017, 49(3): 296-306.
[15] YANG Zhaoning; GU Zibei; WANG Dujuan; TAN Xuyun; WANG Xiaoming. The effect of anger and sadness on prosocial decision making: The role of the interpersonal attribution of responsibility[J]. Acta Psychologica Sinica, 2017, 49(3): 393-403.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Acta Psychologica Sinica
Support by Beijing Magtech