Please wait a minute...
Acta Psychologica Sinica    2020, Vol. 52 Issue (2) : 173-183     DOI: 10.3724/SP.J.1041.2020.00173
Reports of Empirical Studies |
Altered structural plasticity in early adulthood after badminton training
BAI Xuejun1,2,SHAO Mengling1,2,LIU Ting1,2,YIN Jianzhong3,JIN Hua1,2()
1 Key Research Base of Humanities and Social Sciences of Ministry of Education, Academy of Psychology and Behavior, Tianjin Normal University, Tianjin 300387, China
2 Faculty of Psychology, Tianjin Normal University, Tianjin 300387, China
3 Department of Radiology, Tianjin First Center Hospital, Tianjin 300192, China
Download: PDF(1320 KB)   HTML Review File (1 KB) 
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks     Supporting Info
Guide   
Abstract  

Brain imaging studies have found that the athletes engaged in racquet sports showed different brain structure and function based on expert-novice paradigm. However, the present findings cannot fully interpret the role of sport experience in brain plasticity. For example, it is still not clear whether such differences in brain structure are due to training experience or innate differences. The aim of the present study was to investigate whether young adults' brain structures are influenced by a short period of badminton training experience.

A group of young adults (23 ~ 27 years) without any professional or amateur sports training were recruited to take part in the experiment. They were randomly divided into either the experimental group (21 non-athletes) or the control group (17 non-athletes). Participants in the experimental group were trained for 12 weeks (one hour each time and three times each week), and participants in the control group did not attend any regular sport trainings during this period. Structure imaging and diffusion tensor imaging (DTI) techniques were used to assess the effects of badminton training on the brain structural plasticity in young adults. T1 images and DTI data for all participants were collected before and after the intervention. Voxel-based morphometry (VBM) and Tract-based spatial statistics (TBSS) were used to perform a whole-brain analysis of the T1 and DTI data respectively. A 2 (participant group: experimental group, control group) × 2 (test time: pretest, posttest) repeated measure ANOVA was used to perform statistical analysis.

The results showed that there were significant interactions between participant group and test time for the gray matter volume in the left inferior occipital lobe, middle temporal gyrus and inferior temporal gyrus. Specifically, participants in the experiment group exhibited increased gray matter volume in the above brain regions after the training, whilst participants in the control group showed decreased gray matter volume in the left middle temporal gyrus at posttest as compared to pretest. Furthermore, for the participants in the control group, there were no significant differences between pretest and posttest in the volume of left inferior occipital lobe and inferior temporal gyrus. In relation with the white matter microstructures, the experiment group had increased fractional anisotropy (FA) in the bilateral posterior limb of internal capsule and the superior corona radiate in posttest as compared to pretest. And the increased FA was induced by decreased radial diffusivity (RD). In contrast, the control group had decreased FA and increased RD in the above fibers at posttest relative to pretest.

Taken together, these results suggest that badminton training increased the gray matter volume in the brain regions related to visual motion perception processing and increased the myelin sheath thickness of the fibers associated with motor learning. These results imply that in early adulthood, the gray matter and white matter of the brain might have plasticity to some extent.

Keywords badminton training      early adulthood      brain plasticity     
ZTFLH:  B845  
  G804  
Corresponding Authors: Hua JIN     E-mail: jinhua@mail.tjnu.edu.cn
Issue Date: 24 December 2019
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xuejun BAI
Mengling SHAO
Ting LIU
Jianzhong YIN
Hua JIN
Cite this article:   
Xuejun BAI,Mengling SHAO,Ting LIU, et al. Altered structural plasticity in early adulthood after badminton training[J]. Acta Psychologica Sinica, 2020, 52(2): 173-183.
URL:  
http://journal.psych.ac.cn/xlxb/EN/10.3724/SP.J.1041.2020.00173     OR     http://journal.psych.ac.cn/xlxb/EN/Y2020/V52/I2/173
  
  
脑区 对照组 实验组
前测 后测 前测 后测
左下枕叶 0.243 ± 0.042 0.243 ± 0.043 0.227 ± 0.034 0.252 ± 0.039
左颞下回 0.323 ± 0.073 0.321 ± 0.074 0.286 ± 0.048 0.310 ± 0.045
左颞中回 0.390 ± 0.089 0.379 ± 0.091 0.368 ± 0.067 0.382 ± 0.068
  
  
脑区 对照组 实验组
前测 后测 前测 后测
左内囊后肢 0.664 ± 3.64×10-2 0.645 ± 3.25×10-2 0.638 ± 3.24×10-2 0.656 ± 3.41×10-2
右内囊后肢 0.686 ± 3.16×10-2 0.673 ± 2.85×10-2 0.659 ± 3.20×10-2 0.676 ± 2.48×10-2
左上放射冠 0.642 ± 2.80×10-2 0.627 ± 2.89×10-2 0.617 ± 2.54×10-2 0.629 ± 2.69×10-2
右上放射冠 0.601 ± 3.42×10-2 0.59 ± 3.63×10-2 0.561 ± 2.80×10-2 0.576 ± 2.66×10-2
  
  
脑区 对照组 实验组
前测 后测 η2 前测 后测 η2
左内囊后肢 3.83 × 10-4 ± 8.56 × 10-6 4.10 × 10-4 ± 8.23 × 10-6 0.34 4.17 × 10-4 ± 7.93 × 10-6 3.98 × 10-4 ± 7.62 × 10-6 0.24
右内囊后肢 3.68 × 10-4 ± 7.96 × 10-6 3.84 × 10-4 ± 6.37 × 10-6 0.23 4.04 × 10-4 ± 7.37 × 10-6 3.83 × 10-4 ± 5.89 × 10-6 0.34
左上放射冠 4.28 × 10-4 ± 8.83 × 10-6 4.55 × 10-4 ± 8.94 × 10-6 0.29 4.71 × 10-4 ± 8.18 × 10-6 4.60 × 10-4 ± 8.27 × 10-6 -
右上放射冠 4.36 × 10-4 ± 6.21 × 10-6 4.54 × 10-4 ± 6.79 × 10-6 0.35 4.84 × 10-4 ± 5.75 × 10-6 4.69 × 10-4 ± 6.29 × 10-6 0.30
  
[1] Abernethy B . (1996). Training the visual-perceptual skills of athletes: Insights from the study of motor expertise. The American Journal of Sports Medicine, 24(6), S89-S92.
[2] Abernethy B., & Zawi K . (2007). Pickup of essential kinematics underpins expert perception of movement patterns. Journal of Motor Behavior, 39(5), 353-367.
[3] Abreu A. M., Macaluso E., Azevedo R. T., Cesari P., Urgesi C., & Aglioti S. M . (2012). Action anticipation beyond the action observation network: A functional magnetic resonance imaging study in expert basketball players. European Journal of Neuroscience, 35(10), 1646-1654.
[4] Alder D., Ford P. R., Causer J., & Williams A. M . (2014). The coupling between gaze behavior and opponent kinematics during anticipation of badminton shots. Human Movement Science, 37, 167-179.
[5] Baeck J., Kim Y., Seo J., Ryeom H., Lee J., Choi S., ... Chang Y . (2012). Brain activation patterns of motor imagery reflect plastic changes associated with intensive shooting training. Behavioural Brain Research, 234(1), 26-32.
[6] Beaulieu C . (2002). The basis of anisotropic water diffusion in the nervous system - A technical review. NMR in Biomedicine, 15(7-8), 435-455.
[7] Bezzola L., Merillat S., Gaser C., & Jancke L . (2011). Training-induced neural plasticity in golf novices. The Journal of Neuroscience, 31(35), 12444-12448.
[8] Bilalic M., Langner R., Erb M., & Grodd W . (2010). Mechanisms and neural basis of object and pattern recognition: A study with chess experts. Journal of Experimental Psychology: General, 139(4), 728-742.
[9] Bishop D. T., Wright M. J., Jackson R. C., & Abernethy B . (2013). Neural bases for anticipation skill in soccer: An fMRI Study. Journal of Sport & Exercise Psychology, 35, 98-109.
[10] Blumenfeld-Katzir T., Pasternak O., Dagan M., & Assaf Y . (2011). Diffusion MRI of structural brain plasticity induced by a learning and memory task. PLoS One, 6(6), e20678.
[11] Chekroud S. R., Gueorguieva R., Zheutlin A. B., Paulus M., Krumholz H. M., Krystal J. H., & Chekroud A. M . (2018). Association between physical exercise and mental health in 1·2 million individuals in the USA between 2011 and 2015: A cross-sectional study. The Lancet Psychiatry, 5(9), 739-746.
[12] Di X., Zhu S., Jin H., Wang P., Ye Z., Zhou K., ... Rao H . (2012). Altered resting brain function and structure in professional badminton players. Brain Connectivity, 2(4), 225-233.
[13] Draganski B., Gaser C., Busch V., Schuierer G., Bogdahn U., & May A . (2004). Neuroplasticity: Changes in grey matter induced by training. Nature, 427, 311-312.
[14] Everts R., Lidzba K., Wilke M., Kiefer C., Mordasini M., Schroth G., ... Steinlin M . (2009). Strengthening of laterality of verbal and visuospatial functions during childhood and adolescence. Human Brain Mapping, 30(2), 473-483.
[15] Gaser C., & Schlaug G . (2003). Brain structures differ between musicians and non-musicians. The Journal of Neuroscience, 23(27), 9240-9245.
[16] Ge Y., Grossman R. I., Babb J. S., Rabin M. L., Mannon L. J., & Kolson D. L . (2002). Age-related total gray matter and white matter changes in normal adult brain. Part I: Volumetric MR imaging analysis. American Journal of Neuroradiology, 23, 1327-1333.
[17] Gong D., He H., Ma W., Liu D., Huang M., Dong L., ... Yao D . (2016). Functional integration between salience and central executive networks: A role for action video game experience. Neural Plasticity, 2016, 1-9.
[18] Gong D., Ma W., Gong J., He H., Dong L., Zhang D., ... Yao D . (2017). Action video game experience related to altered large-scale white matter networks. Neural Plasticity, 2017, 1-7.
[19] Grezes J., Fonlupt P., Bertenthal B., Delon-Martin C., Segebarth C., & Decety J . (2001). Does perception of biological motion rely on specific brain regions? Neuroimage, 13(5), 775-785.
[20] Hamzei F., Glauche V., Schwarzwald R., & May A . (2012). Dynamic gray matter changes within cortex and striatum after short motor skill training are associated with their increased functional interaction. Neuroimage, 59(4), 3364-3372.
[21] Hohmann T., Troje N. F., Olmos A., & Munzert J . (2011). The influence of motor expertise and motor experience on action and actor recognition. Journal of Cognitive Psychology, 23, 403-415.
[22] Hu J., Ma H., Zhu S., Li P., Xu H., Fang Y., ... Lu H. D . (2018). Visual motion processing in macaque V2. Cell Report, 25(1), 157-167.
[23] Hulsdunker T., Struder H. K., & Mierau A . (2017). Visual motion processing subserves faster visuomotor reaction in badminton players. Medicine and Science in Sports and Exercise, 49(6), 1097-1110.
[24] iReaerch. (2015. China internet + sports report. Retrieved February 11, 2019, from http://report.iresearch.cn/report_pdf.aspx?id=2423
url: http://report.iresearch.cn/report_pdf.aspx?id=2423
[24] [ 艾瑞咨询. (2015. 中国互联网+体育报告. 2019-02-11取自 http://report.iresearch.cn/report_pdf.aspx?id=2423]
url: http://report.iresearch.cn/report_pdf.aspx?id=2423
[25] Jancke L., Koeneke S., Hoppe A., Rominger C., & Hanggi J . (2009). The architecture of the golfer's brain. PLoS One, 4(3), e4785.
[26] Jin H., Xu G., Zhang J. X., Gao H., Ye Z., Wang P., ... Lin C . (2011). Event-related potential effects of superior action anticipation in professional badminton players. Neuroscience Letters, 492(3), 139-144.
[27] Jin H., Xu G., Zhang J. X., Ye Z., Wang S., Zhao L., ... Mo L . (2010). Athletic training in badminton players modulates the early C1 component of visual evoked potentials: A preliminary investigation. International Journal of Psychophysiology, 78(3), 308-314.
[28] Jonasson L. S., Nyberg L., Kramer A. F., Lundquist A., Riklund K., & Boraxbekk C . (2017). Aerobic exercise intervention, cognitive performance, and brain structure: Results from the physical influences on brain in aging (PHIBRA) study. Frontiers in Aging Neuroscience, 8, 1-15.
[29] Kalpouzos G., Chetelat G., Baron J. C., Landeau B., Mevel K., Godeau C., ... Desgranges B . (2009). Voxel-based mapping of brain gray matter volume and glucose metabolism profiles in normal aging. Neurobiology of Aging, 30(1), 112-124.
[30] Kim J., Loy D. N., Liang H., Trinkaus K., Schmidt R. E., & Song S . (2007). Noninvasive diffusion tensor imaging of evolving white matter pathology in a mouse model of acute spinal cord injury. Magnetic Resonance in Medicine, 58(2), 253-260.
[31] Kong L., Wang S., Gao H., Wang P., Lin H., Bai L., ... Jin H . (2012). Better processing of dynamic information in badminton player with higher action anticipatory skill. Journal of Nanjing Institute of Physical Education (Social Science), 26(2), 105-109.
[31] [ 孔丽娜, 王树芳, 高宏巍, 王品, 林慧妍, 白利华 , .. 金花. (2012). 高球路预期能力的羽毛球运动员能更好地加工动态信息. 南京体育学院学报(社会科学版), 26(2), 105-109.]
[32] Lakhani B., Borich M. R., Jackson J. N., Wadden K. P., Peters S., Villamayor A., ... Boyd L. A . (2016). Motor skill acquisition promotes human brain myelin plasticity. Neural Plasticity, 2016, 1-7.
[33] Lestou V., Pollick F. E., & Kourtzi Z . (2008). Neural substrates for action understanding at different description levels in the human brain. Journal of Cognitive Neuroscience, 20(2), 324-341.
[34] Liang Z., Yin D., Liu T., Zhu Z., Lin H., & Jin H . (2019). High perceptual sensitivity to global motion in badminton players. International Journal of Sport Psychology, under review.
[35] Liu L . (2018). Analysis on the development status of badminton and table tennis industries in 2018 Domestic competition strength is strong. Retrieved February 11, 2019, from https://www.sohu.com/a/221173517_99900941.
url: https://www.sohu.com/a/221173517_99900941
[35] [ 刘凌云 . (2018). 2018年羽毛球、乒乓球行业发展现状分析国内竞争实力强. 2019-02-11取自https://www.sohu.com/a/221173517_99900941.]
url: https://www.sohu.com/a/221173517_99900941
[36] Liu T., Shao M., Yin D., Li Y., Yang N., Yin R., ... Hong H . (2017). The effect of badminton training on the ability of same-domain action anticipation for adult novices: Evidence from behavior and ERPs. Neuroscience Letters, 660, 6-11.
[37] Lovden M., Schaefer S., Noack H., Bodammer N. C., Kuhn S., Heinze H. J., ... Lindenberger U . (2012). Spatial navigation training protects the hippocampus against age-related changes during early and late adulthood. Neurobiology of Aging, 33(3), 620.e9-620.e22.
[38] Luo C., Guo Z. W., Lai Y. X., Liao W., Liu Q., Kendrick K. M., ... Li H . (2012). Musical training induces functional plasticity in perceptual and motor networks: Insights from resting-state fMRI. PLoS One, 7(5), e36568.
[39] Oldfield R. C . (1971). The assessment and analysis of handedness: The edinburgh inventory. Neuropsychologia, 9(1), 97-113.
[40] Park I. S., Lee Y. N., Kwon S., Lee N. J., & Rhyu I. J . (2015). White matter plasticity in the cerebellum of elite basketball athletes. Anatomy & Cell Biology, 48(4), 262-267.
[41] Pelphrey K. A., Morris J. P., & McCarthy G . (2004). Grasping the intentions of others: The perceived intentionality of an action influences activity in the superior temporal sulcus during social perception. Journal of Cognitive Neuroscience, 16(10), 1706-1716.
[42] Peuskens H., Vanrie J., Verfaillie K., & Orban G. A . (2005). Specificity of regions processing biological motion. European Journal of Neuroscience, 21(10), 2864-2875.
[43] Pfefferbaum A., Mathalon D. H., Sullivan E. V., Rawles J. M., Zipursky R. B., & Lim K. O . (1994). A quantitative magnetic resonance imaging study of changes in brain morphology from infancy to late adulthood. Archives of Neurology, 51(9), 874-887.
[44] Reid L. B., Sale M. V., Cunnington R., Mattingley J. B., & Rose S. E . (2017). Brain changes following four weeks of unimanual motor training: Evidence from fMRI-guided diffusion MRI tractography. Human Brain Mapping, 38(9), 4302-4312.
[45] Rogge A. K., Roder B., Zech A., & Hotting K . (2018). Exercise-induced neuroplasticity: Balance training increases cortical thickness in visual and vestibular cortical regions. Neuroimage, 179, 471-479.
[46] Schmithorst V. J., & Wilke M . (2002). Differences in white matter architecture between musicians and non-musicians: A diffusion tensor imaging study. Neuroscience Letters, 321(1-2), 57-60.
[47] Scholz J., Klein M. C., Behrens T. E., & Johansen-Berg H . (2009). Training induces changes in white-matter architecture. Nature Neuroscience, 12, 1370-1371.
[48] Shen G., Zhang J., Wang H., Wu Y., Zeng Y., & Du X . (2014). Altered white matter architecture among college athletes: A diffusion tensor imaging study. Journal of East China Normal University (Natural Science), 2014(#4), 94-101.
[48] [ 沈国华, 张剑, 王慧, 吴殷, 曾雨雯, 杜小霞 . (2014). 大学生运动员脑白质的变化: 基于磁共振扩散张量成像研究. 华东师范大学学报(自然科学版), (#4), 94-101.]
[49] Smeeton N. J., Ward P., & Williams A. M . (2004). Do pattern recognition skills transfer across sports? A preliminary analysis. Journal of Sports Sciences, 22(2), 205-213.
[50] Song S. K., Sun S. W., Ramsbottom M. J., Chang C., Russell J., & Cross A. H . (2002). Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water. Neuroimage, 17(3), 1429-1436.
[51] Sowell E. R., Peterson B. S., Thompson P. M., Welcome S. E., Henkenius A. L., & Toga A. W . (2003). Mapping cortical change across the human life span. Nature Neuroscience, 6, 309-315.
[52] Sumiyoshi A., Taki Y., Nonaka H., Takeuchi H., & Kawashima R . (2014). Regional gray matter volume increases following 7 days of voluntary wheel running exercise: A longitudinal VBM study in rats. Neuroimage, 98, 82-90.
[53] Sun S. W., Liang H. F., Cross A. H., & Song S. K . (2008). Evolving wallerian degeneration after transient retinal ischemia in mice characterized by diffusion tensor imaging. Neuroimage, 40(1), 1-10.
[54] Tamnes C. K., Walhovd K. B., Dale A. M., Ostby Y., Grydeland H., Richardson G., ... Fjell A. M . (2013). Brain development and aging: Overlapping and unique patterns of change. Neuroimage, 68, 63-74.
[55] Taubert M., Draganski B., Anwander A., Muller K., Horstmann A., Villringer A., & Ragert P . (2010). Dynamic properties of human brain structure: Learning- related changes in cortical areas and associated fiber connections. The Journal of Neuroscience, 30(35), 11670-11677.
[56] Tavor I., Botvinik-Nezer R., Bernstein-Eliav M., Tsarfaty G., & Assaf Y . (2019). Short-term plasticity following motor sequence learning revealed by diffusion MRI. bioRxiv, 553628.
[57] Thomas A. G., Marrett S., Saad Z. S., Ruff D. A., Martin A., & Bandettini P. A . (2009). Functional but not structural changes associated with learning: An exploration of longitudinal voxel-based morphometry (VBM). NeuroImage, 48(1), 117-125.
[58] Wang B., Fan Y., Lu M., Li S., Song Z., Peng X., ... Huang R . (2013). Brain anatomical networks in world class gymnasts: A DTI tractography study. Neuroimage, 65, 476-487.
[59] Wang X., Casadio M., Weber K. N., Mussa-Ivaldi F. A., & Parrish T. B . (2014). White matter microstructure changes induced by motor skill learning utilizing a body machine interface. Neuroimage, 88, 32-40.
[60] Wei G., & Luo J . (2010). Sport expert's motor imagery: Functional imaging of professional motor skills and simple motor skills. Brain Research, 1341, 52-62.
[61] Wei G., Luo J., & Li Y . (2009). Brain structure in diving players on MR imaging studied with voxel-based morphometry. Progress in Natural Science, 19(10), 1397-1402.
[62] Wei G., Zhang Y., Jiang T., & Luo J . (2011). Increased cortical thickness in sports experts: A comparison of diving players with the controls. PLoS One, 6(2), e17112.
[63] Westlye L. T., Walhovd K. B., Dale A. M., Bjornerud A., Due-Tonnessen P., Engvig A., ... Fjell A. M . (2010). Life-span changes of the human brain white matter: Diffusion tensor imaging (DTI) and volumetry. Cerebral Cortex, 20(9), 2055-2068.
[64] Wright M. J., Bishop D. T., Jackson R. C., & Abernethy B . (2011). Cortical fMRI activation to opponents' body kinematics in sport-related anticipation: Expert-novice differences with normal and point-light video. Neuroscience Letters, 500(3), 216-221.
[65] Wu Y., Zhang J., Zeng Y., & Shen C . (2015). Structural brain plasticity change in athletes associated with different sports. China Sport Science, 35(4), 52-57.
[65] [ 吴殷, 张剑, 曾雨雯, 沈城 . (2015). 不同类型运动项目对运动员大脑结构可塑性变化研究. 体育科学, 35(4), 52-57.]
[66] Zhang J., Jones M., DeBoy C. A., Reich D. S., Farrell J. A., Hoffman P. N., ... Calabresi P. A . (2009). Diffusion tensor magnetic resonance imaging of wallerian degeneration in rat spinal cord after dorsal root axotomy. The Journal of Neuroscience, 29(10), 3160-3171.
[67] Zhang Y., Wei G., Zhuo J., Li Y., Ye W., & Jiang T . (2013). Regional inflation of the thalamus and globus pallidus in diving players. Medicine and Science in Sports and Exercise, 45(6), 1077-1082.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Acta Psychologica Sinica
Support by Beijing Magtech