Please wait a minute...
Acta Psychologica Sinica    2020, Vol. 52 Issue (2) : 113-127     DOI: 10.3724/SP.J.1041.2020.00113
Reports of Empirical Studies |
The temporal process of visual word recognition of Chinese compound: Behavioral and ERP evidences based on homographic morphemes
WU Jianshe1(),CHANG Jiabao1,2(),QIU Yinchen3,Joseph DIEN4
1 English Dept., Beijing International Studies University, Beijing 100024, China
2 Tangshan Kailuan No. 2 High School, Tangshan 063100
3 French Dept., Beijing International Studies University, Beijing 100024, China
4 Human Development and Quantitative Methodology Dept., University of Maryland, College Park, MD, U.S.A. 20742
Download: PDF(1973 KB)   HTML Review File (1 KB) 
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks     Supporting Info
Guide   
Abstract  

It is notoriously difficult to dissociate the processes of orthography, phonology, and semantics in visual word recognition. Using homographic morphemes in Chinese homographs, the present study attempts to further examine the time course of orthographic, phonological and semantic activation in a masked priming paradigm.

Two-character compounds of Chinese were divided into such four conditions: Heterophonic-homography (“+O-P-S”, e.g., “作坊” / zuo1 fang / workshop), Homophonic-homography (“+O+P-S”, e.g., “作息” / zuo4 xi1 / work-and-rest), Identity (“+O+P+S”, e.g., “作诗” zuo4 shi1 / poetry-composing) and the control (“-O-P-S”, e.g., “账本” / zhang4 ben3 / account-book). Each of them served as a prime with both forward and backward masks and an SOA of 47ms, and was followed by the same target compound (e.g., “作画 / zuo4 hua4 / painting”) with its initial character being the same as those of the first three conditions. Two experiments were conducted, adopting a lexical decision task for Experiment 1 (behavioral) and a semantic categorization task for Experiment 2 (ERP) respectively.

It was found that (1) the Heterophonic-homography, Homophonic-homography, and Identity conditions all induced morphological priming effects relative to the control condition; (2) in P200 (120~220 ms) and Late N400 (430~540 ms), the amplitude and waveform of Homophonic-homography was much more similar to that of the control condition, but was significantly different from those of the Heterophonic-homography and Identity conditions; (3) in Early-N400 (280~400 ms), the amplitude and waveform of Homophonic-homography was closer to that of the Identity condition, but was significantly different from that of Heterophonic-homography.

The result indicates that the early stage of visual word recognition might be related to morpho-orthographic processing based on lexeme, in which orthographic similarity and phonological information may play an important role; however, the late stage of visual word recognition might be concerned with morpho-semantic processing based on lemma, which may involve meaning selection and lemma competition. The above findings tend to support Parallel Distributed Processing Model as advocated by McClelland and his associates.

Keywords Chinese compound      homographic morpheme      Early-N400      Late-N400     
ZTFLH:  B842  
Corresponding Authors: Jianshe WU,Jiabao CHANG     E-mail: wujianshe@bisu.edu.cn;changjiabao2016@163.com
Issue Date: 24 December 2019
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jianshe WU
Jiabao CHANG
Yinchen QIU
DIEN Joseph
Cite this article:   
Jianshe WU,Jiabao CHANG,Yinchen QIU, et al. The temporal process of visual word recognition of Chinese compound: Behavioral and ERP evidences based on homographic morphemes[J]. Acta Psychologica Sinica, 2020, 52(2): 113-127.
URL:  
http://journal.psych.ac.cn/xlxb/EN/10.3724/SP.J.1041.2020.00113     OR     http://journal.psych.ac.cn/xlxb/EN/Y2020/V52/I2/113
特征 +O-P-S +O+P-S +O+P+S -O-P-S 目标词
作坊 作息 作诗 账本 作画
整词词频 2.85 (0.41) 2.84 (0.48) 2.88 (0.44) 2.93 (0.38) 2.87 (0.47)
首字字频 5.31 (0.59) 5.31 (0.59) 5.31 (0.59) 4.50 (0.73) 5.31 (0.59)
尾字字频 4.98 (0.84) 4.90 (0.69) 4.97 (0.67) 4.55 (0.88) 4.81 (0.88)
整词笔画 16 (4.7) 16 (4.6) 17 (4.1) 17 (4.3) 16 (4.1)
首字笔画 8.15 (3.33) 8.15 (3.33) 8.15 (3.33) 8.26 (3.1) 8.15 (3.33)
尾字笔画 7.78 (3.24) 8.33 (3.02) 8.61 (2.6) 9.07 (3.1) 8.30 (2.5)
语义相似度 1.87 (1.05) 1.99 (1.11) 4.58 (0.71) 1.19 (0.53) /
音位相同度 0.07 (0.25) 0.95 (0.22) 0.96 (0.18) 0.00 (0.00) /
  
  
启动条件 Acc RT 95% CI 启动量
+O-P-S 0.96 605 (11) 583, 628 36
+O+P-S 0.96 613 (10) 593, 634 28
+O+P+S 0.97 601 (9) 583, 619 40
-O-P-S 0.95 641 (9) 623, 660 --
  
  
  
  
  
  
成分 位置 (I)基线 (J)启动类型 差值(I-J) p 95% CI
下限 上限
P200 中线:额中央区 +O+P-S +O-P-S -0.686 0.065 -1.4 0.029
+O+P+S -0.685* 0.014 -1.264 -0.107
-O-P-S +O-P-S -0.704* 0.038 -1.381 -0.028
+O+P+S -0.704* 0.049 -1.406 -0.002
中线:中央区 +O+P-S +O-P-S -1.041* 0.000 -1.619 -0.462
+O+P+S -0.589* 0.022 -1.116 -0.063
-O-P-S +O-P-S -1.078* 0.002 -1.831 -0.325
早期
N400
中线:前额区 -O-P-S +O-P-S -0.923* 0.027 -1.772 -0.075
+O+P-S -0.973* 0.049 -1.943 -0.003
+O+P+S -1.156* 0.002 -1.959 -0.353
中线:额中央区 -O-P-S +O-P-S -1.066* 0.025 -2.035 -0.098
+O+P-S -0.952 0.05 -1.905 0.001
+O+P+S -1.338* 0.003 -2.292 -0.383
中线:中央区 +O+P-S +O-P-S -0.581* 0.027 -1.113 -0.048
-O-P-S +O-P-S -1.474* 0.002 -2.483 -0.464
+O+P-S -0.893* 0.039 -1.753 -0.033
+O+P+S -1.129* 0.013 -2.075 -0.183
右侧:额中央区 +O+P-S +O-P-S -0.588* 0.049 -1.174 -0.001
右侧:中央区 +O+P-S +O-P-S -0.617* 0.02 -1.162 -0.072
晚期
N400
中线:额中央区 +O+P-S +O+P+S -1.073* 0.003 -1.832 -0.314
中线:中央区 +O+P-S +O-P-S -0.948* 0.002 -1.609 -0.287
+O+P+S -1.125* 0.000 -1.774 -0.476
中线:中顶区 +O+P-S +O-P-S -0.712* 0.047 -1.418 -0.006
+O+P+S -1.010* 0.001 -1.645 -0.375
-O-P-S +O-P-S -1.015* 0.049 -2.028 -0.003
+O+P+S -1.313* 0.014 -2.421 -0.205
中线:顶区 +O+P-S +O-P-S -1.067* 0.02 -2.007 -0.127
+O+P+S -1.178* 0.000 -1.888 -0.468
右侧:中央区 +O+P-S +O-P-S -0.692* 0.048 -1.381 -0.003
  
[1] Allen M., & Badecker W . (1999). Stem homograph Inhibition and stem allomorphy: Representing and processing inflected forms in a multilevel lexical system. Journal of Memory & Language, 41(1), 105-123.
[2] Amenta S., & Crepaldi D . (2012). Morphological processing as we know it: An analytical review of morphological effects in visual word identification. Frontiers in Psychology, 3, 232-241.
[3] Baayen R. H., Milin P., Durdevic D. F., Hendrix P., & Marelli M . (2011). An amorphous model for morphological processing in visual comprehension based on naive discriminative learning. Psychological Review, 118(3), 438-481.
[4] Badecker W., & Allen M . (2002). Morphological parsing and the perception of lexical identity: A masked priming study of stem homographs. Journal of Memory & Language, 47(1), 125-144.
[5] Barber H., Dominguez A., & de Vega M . (2002). Human brain potentials indicate morphological decomposition in visual word recognition. Neuroscience Letters, 318(3), 149-152.
[6] Bentin S., Mouchetant-Rostaing Y., Giard M. H., Echallier J. F., & Pernier J . (1999). ERP manifestations of processing printed words at different psycholinguistic levels: Time course and scalp distribution. Journal of Cognitive Neuroscience, 11(3), 235-260.
[7] Beyersmann E., Coltheart M., & Castles A . (2012). Parallel processing of whole words and morphemes in visual word recognition. The Quarterly Journal of Experimental Psychology, 65(9), 1798-1819.
[8] Beyersmann E., Iakimova G., Ziegler J.C., & Colé P . (2014). Semantic processing during morphological priming: An ERP study. Brain Research, 1579, 45-55.
[9] Binder J. R., Medler D. A., Westbury C. F., Liebenthal E., & Buchanan L . (2006). Tuning of the human left fusiform gyrus to sublexical orthographic structure. Neuroimage, 33(2), 739-748.
[10] Burani C., & Caramazza A . (1987). Representation and processing of derived words. Language & Cognitive Processes, 2(3-4), 217-227.
[11] Carreiras M., Perdomo A., & Meseguer E . (2005). Are stem homographs and orthographic neighbours processed differently during silent reading? Language and Cognitive Processes, 20(1-2), 317-339.
[12] Chen B., Liu L., Wang L., Peng D., & Perfetti C. A . (2007). The timing of graphic, phonological and semantic activation of high and low frequency Chinese characters: An ERP study. Progress in Natural Science, 17(B07), 62-70.
[13] Chen B. G., & Peng D. L . (2001). The time course of graphic, phonological and semantic information processing in Chinese character recognition (I). Acta Psychologica Sinica, 33(1), 1-6.
[13] [ 陈宝国, 彭聃龄 . (2001). 汉字识别中形音义激活时间进程的研究(I). 心理学报, 33(1), 1-6.]
[14] Chen B. G., Wang L. X., & Peng D. L . (2003). The time course of graphic, phonological and semantic information processing in Chinese character recognition (II). Acta Psychologica Sinica, 35(5), 576-581.
[14] [ 陈宝国, 王立新, 彭聃龄 . (2003). 汉字识别中形音义激活时间进程的研究(II). 心理学报, 35(5), 576-581.]
[15] Crepaldi D., Rastle K., Coltheart M., & Nickels L . (2010). “Fell” primes“fall”, but does “bell” prime “ball”? Masked priming with irregularly inflected primes. Journal of Memory & Language, 63(1), 83-99.
[16] Dambacher M., Kliegl R., Hofmann M., & Jacobs A. M . (2006). Frequency and predictability effects on event-related potentials during reading. Brain Research, 1084(1), 89-103.
[17] Diependaele K., Sandra D., & Grainger J . (2005). Masked cross-modal morphological priming: Unravelling morpho- orthographic and morpho-semantic influences in early word recognition. Language and Cognitive Processes, 20(1-2), 75-114.
[18] Diependaele K., Sandra D., & Grainger J . (2009). Semantic transparency and masked morphological priming: The case of prefixed words. Memory & Cognition, 37(6), 895-908.
[19] Dominguez A., Cuetos F., & Segui J . (2002). The time course of inflexional morphological priming. Linguistics, 40(2), 235-259.
[20] Dominguez A., de Vega. M., & Barber H . (2004). Event- related brain potentials elicited by morphological, homographic, orthographic, and semantic priming. Journal of Cognitive Neuroscience, 16(4), 598-608.
[21] Feldman L. B., Kostić A., Gvozdenović V., O’Connor P. A., & Martín F. M. P . (2012). Semantic similarity influences early morphological priming in Serbian: A challenge to form-then-meaning accounts of word recognition. Psychonomic Bulletin and Review, 19(4), 668-676.
[22] Feldman L. B., O’Connor P. A., & Martín F. M. P . (2009). Early morphological processing is morphosemantic and not simply morpho-orthographic: A violation of from-then- meaning accounts of word recognition. Psychonomic Bulletin and Review, 16(4), 684-691.
[23] Ford M. A., Davis M. H., & Marslen-Wilson W. D . (2010). Derivational morphology and base morpheme frequency. Journal of Memory & Language, 63(1), 117-130.
[24] Forster K. I . (1998). The pros and cons of masked priming. Journal of Psycholinguistic Research, 27(2), 203-233.
[25] Giraudo H., & Grainger J . (2001). Priming complex words: Evidence for supralexical representation of morphology. Psychonomic Bulletin & Review, 8(1), 127-131.
[26] Giraudo H., & Grainger J . (2003). A supralexical model for French derivational morphology. In D. Sandra & H. Assink (Eds.), Reading complex words (pp. 139-157). Amsterdam, The Netherlands: Kluwer.
[27] Gonnerman L. M., Seidenberg M. S., & Andersen E. S . (2007). Graded semantic and phonological similarity effects in priming: Evidence for a distributed connectionist approach to morphology. Journal of Experimental Psychology: General, 136(2), 323-345.
[28] Grainger J., & Ziegler J. C . (2011). A dual-route approach to orthographic processing. Frontiers in Psychology, 2, 54-67.
[29] Grainger J., Kiyonaga K., & Holcomb P. J . (2006). The time course of orthographic and phonological code activation. Psychology Science, 17(12), 1021-1026.
[30] Hackley S. A., Woldorff M., & Hillyard S. A . (1990). Cross-modal selective attention effects on retinal, myogenic, brainstem, and cerebral evoked potentials. Psychophysiology, 27(2), 195-208.
[31] Jarvikivi J., Pyykkonen P., & Niemi J . (2009). Exploiting degrees of inflectional ambiguity: stem form and the time course of morphological processing. Journal of Experimental Psychology: Learning, Memory, and Cognition, 35(1), 221-237.
[32] Kempen G., & Hoenkamp E . (1987). An incremental procedural grammar for sentence formulation. Cognitive Science, 11(2), 201-258.
[33] Kempen G., & Huijbers P . (1983). The lexicalization process in sentence production and naming: Indirect election of words. Cognition, 14(2), 185-209.
[34] Kiefer M., & Brendel D . (2006). Attentional modulation of unconscious “automatic” processes: Evidence from event-related potentials in a masked priming paradigm. Journal of Cognitive Neuroscience, 18(2), 184-198.
[35] Kong L., Zhang J. X., Kang C., Du Y., Zhang B., & Wang S . (2010). P200 and phonological processing in Chinese word recognition. Neuroscience Letters, 473(1), 37-41.
[36] Landi N., & Perfetti C. A . (2007). An electrophysiological investigation of semantic and phonological processing in skilled and less skilled comprehenders. Brain and Language, 102(1), 30-45.
[37] Laszlo S., & Federmeier K. D . (2007). Better the dvl you know: Acronyms reveal the contribution of familiarity to single-word reading. Psychological Science, 18(2), 122-126.
[38] Laudanna A., Badecker W., & Caramazza A . (1989). Priming homographic stems. Journal of Memory and Language, 28(5), 531-546.
[39] Laudanna A., Badecker W., & Caramazza A . (1992). Processing inflectional and derivational morphology. Journal of Memory and Language, 31(3), 333-348.
[40] Laudanna A., Voghera M., & Gazzellini S . (2002). Lexical representations of written nouns and verbs in Italian. Brain and Language, 81(1-3), 250-263.
[41] Lee C. Y., Tsai J. L., Chan W. H., Hsu C. H., Hung D., & Tzeng O . (2007). Temporal dynamics of the consistency effect in reading Chinese: An event-related potentials study. Neuroreport, 18(2), 147-151.
[42] Levelt W . (1989). Speaking: From intention to articulation. Cambridge, MA: MIT Press.
[43] Liu B., Jin Z., Qing Z., & Wang Z . (2011). The processing of phonological, orthographical, and lexical information of Chinese characters in sentence contexts: An ERP study. Brain Research, 1372, 81-91.
[44] Liu H., Zhang G., & Liu B . (2017). Semantic integration of audio-visual information of polyphonic characters in a sentence context: An event-related potential study. Experimental Brain Research, 235(4), 1119-1128.
[45] Liu Y., Perfetti C. A., & Hart L . (2003). ERP evidence for the time course of graphic, phonological, and semantic information in Chinese meaning and pronunciation decisions. Journal of Experimental Psychology: Learning, Memory, and Cognition, 29(6), 1231-1247.
[46] Liu Y., Shu H., & Li P . (2007). Word naming and psycholinguistic norms: Chinese. Behavior Research Methods, 39(2), 192-198.
[47] Luck S. J., & Hillyard S. A . (1994). Electrophysiological correlates of feature analysis during visual search. Psychophysiology, 31(3), 291-308.
[48] Marslen-Wilson W., Tyler L. K., Waksler R., & Older L . (1994). Morphology and meaning in the English mental lexicon. Psychological Review, 101(1), 3-33.
[49] Martin F. H., Kaine A., & Kirby M . (2006). Event-related brain potentials elicited during word recognition by adult good and poor phonological decoders. Brain and Language, 96(1), 1-13.
[50] McClelland J. L., & Rumelhart D. E . (1981). An interactive activation model of context effects in letter perception, Part I: An account of basic findings. Psychological Review, 88(5), 375-407.
[51] Meng X., Jian J., Shu H., Tian X., & Zhou X . (2008). ERP correlates of the development of orthographical and phonological processing during Chinese sentence reading. Brain Research, 1219, 91-102.
[52] Meunier F., & Longtin C. M . (2007). Morphological decomposition and semantic integration in word processing. Journal of Memory & Language, 56(4), 457-471.
[53] Meyler A., & Breznitz Z . (2005). Impaired phonological and orthographic word representations among adult dyslexic readers: Evidence from event-related potentials. The Journal of Genetic Psychology, 166(2), 215-240.
[54] Morris J., Frank T., Grainger J., & Holcomb P. J . (2007). Semantic transparency and masked morphological priming: An ERP investigation. Psychophysiology, 44(4), 506-521.
[55] Niznikiewicz M., & Squires N. K . (1996). Phonological processing and the role of strategy in silent reading: Behavioral and electrophysiological evidence. Brain and Language, 52(2), 342-364.
[56] Plaut D. C., & Booth J. R . (2000). Individual and developmental differences in semantic priming: Empirical and computational support for a single-mechanism account of lexical processing. Psychological Review, 107(4), 786-823.
[57] Rastle K., & Davis M. H . (2003). Reading morphologically complex words: Some thoughts from masked priming In S. Kinoshita & S. J. Lupker (Eds.), Masked Priming, the State of the Art (pp. 279-305). Hove, UK: Psychology Press.
[58] Rastle K., & Davis M. H . (2008). Morphological decomposition based on the analysis of orthography. Language & Cognitive Processes, 23(7-8), 942-971.
[59] Rastle K., Davis M. H., & New B . (2004). The broth in my brother’s brothel: Morpho-orthographic segmentation in visual word recognition. Psychonomic Bulletin and Review, 11(6), 1090-1098.
[60] Seidenberg M. S., & McClelland J. L . (1989). A distributed, developmental model of word recognition and naming. Psychological Review, 96(4), 523-568.
[61] Sereno S. C., Rayner K., & Posner M. I . (1998). Establishing a time-line of word recognition: Evidence from eye movements and event-related potentials. Neuroreport, 9(10), 2195-2200.
[62] Simon D. A., Lewis G., & Marantz A . (2012). Disambiguating form and lexical frequency effects in MEG responses using homonyms. Language and Cognitive Processes, 27(2), 275-287.
[63] Su I.-F., Mak S.-C. C., Cheung L.-Y. M., & Law S.-P . (2012). Taking a radical position: Evidence for position specific radical representations in Chinese character recognition using masked priming ERP. Frontiers in Psychology, 3, 333-344.
[64] Taft M . (1994). Interactive-activation as a framework for understanding morphological processing. Language & Cognitive Processes, 9(3), 271-294.
[65] Taft M . (2004). Morphological decomposition and the reverse base frequency effect. Journal of Experimental Psychology, 57(4), 745-765.
[66] Taft M., & Forster K. I . (1975). Lexical storage and retrieval of prefixed words. Journal of Verbal Learning & Verbal Behavior, 14(6), 638-647.
[67] Taft M., & Nguyen-Hoan M . (2010). A sticky stick? The locus of morphological representation in the lexicon. Language and Cognitive Processes, 25(2), 277-296.
[68] Tan L. H., & Peng D. L . (1991). Visual recognition processes of Chinese character: A research to the effect of grapheme and phoneme. Acta Psychologica Sinica, 23(3), 272-278.
[68] [ 谭力海, 彭聃龄 . (1991). 汉字的视觉识别过程: 对形码和音码作用的考察. 心理学报, 23(3), 272-278.]
[69] Tan L. H., & Perfetti C. A . (1999). Phonological activation in visual identification of Chinese two-character words. Journal of Experimental Psychology: Learning Memory & Cognition, 25(2), 382-393.
[70] Tsang Y. K., & Chen H. C . (2010). Morphemic ambiguity resolution in Chinese: Activation of the subordinate meaning with a prior dominant-biased context. Psychonomic Bulletin and Review, 17(6), 875-881.
[71] Tsang Y. K., & Chen H. C . (2013a). Morpho-semantic processing in word recognition: evidence from balanced and biased ambiguous morphemes. Journal of Experimental Psychology: Learning Memory & Cognition, 39(6), 1990-2001.
[72] Tsang Y. K., & Chen H. C . (2013b). Early morphological processing is sensitive to morphemic meanings: Evidence from processing ambiguous morphemes. Journal of Memory & Language, 68(3), 223-239.
[73] Tsang Y. K., Wong A. W. K., Huang J., & Chen H. C . (2014). Morpho-orthographic and morpho-semantic processing in word recognition and production: Evidence from ambiguous morphemes. Language Cognition and Neuroscience, 29(5), 543-560.
[74] Wu Y., Tsang Y. K., Wong A. W. K., & Chen H. C . (2016). The processing of homographic morphemes in Chinese: An ERP study. Language Cognition & Neuroscience, 32(1), 102-116.
[75] Xu J., & Taft M . (2014). Solely soles: Inter-lemma competition in inflected word recognition. Journal of Memory and Language, 76, 127-140.
[76] Zhang Q., Zhang J. X., & Kong L . (2009). An ERP study on the time course of phonological and semantic activation in Chinese word recognition. International Journal of Psychophysiology, 73(3), 235-245.
[77] Zhang Q. F., & Yang Y. F . (2004). The time course of semantic, orthographic and phonological activation in Chinese word production. Acta Psychologica Sinica, 36(1), 1-8.
[77] [ 张清芳, 杨玉芳 . (2004). 汉语词汇产生中语义、字形和音韵激活的时间进程. 心理学报, 36(1), 1-8.]
[78] Zhang Z., Zhang G., Zhang Y., Liu H., Xu J., & Liu B . (2017). Cross-modal integration of polyphonic characters in chinese audio-visual sentences: a mvpa study based on functional connectivity. Experimental Brain Research, 235(12), 3743-3755.
[79] Zhou L., Fong C. M., Minett J. W., Peng G., & Wang S. Y . (2014). Pre-lexical phonological processing in reading Chinese characters: An ERP study. Journal of Neurolinguistics, 30, 14-26.
[80] Zhou X. L., Marslen-Wilson W., Taft M., & Shu H . (1999). Morphology, orthography and phonology reading Chinese compound words. Language & Cognitive Processes, 14(5-6), 525-565.
[81] Ziegler J. C., Benraiss A., & Besson M . (1999). From print to meaning: An electrophysiological investigation of the role of phonology in accessing word meaning. Psychophysiology, 36(6), 775-785.
[82] Zou L., Desroches A. S., Liu Y., Xia Z., & Shu H . (2012). Orthographic facilitation in Chinese spoken word recognition: An ERP study. Brain and Language, 123(3), 164-173.
[83] Zou L., Packard J. L., Xia Z., Liu Y., & Shu H . (2019). Morphological and whole-word semantic processing are distinct: Event related potentials evidence from spoken word recognition in Chinese. Frontiers in Human Neuroscience, 13, 133-146.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Acta Psychologica Sinica
Support by Beijing Magtech