Please wait a minute...
Acta Psychologica Sinica    2020, Vol. 52 Issue (1) : 12-25     DOI: 10.3724/SP.J.1041.2020.00012
Reports of Empirical Studies |
Brain network analysis of cognitive reappraisal and expressive inhibition strategies: Evidence from EEG and ERP
SUN Yan(),BO Siyu,LV Jiaojiao
School of Psychology, Liaoning Normal University, Dalian 116029, China
Download: PDF(2059 KB)   HTML Review File (1 KB) 
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks     Supporting Info
Guide   
Abstract  

The ability to regulate emotions is related to psychological, social, and physical health. The two major emotion regulation strategies are cognitive reappraisal (CR) and expressive suppression (ES). Research suggests that CR produces affective, cognitive, and social consequences that are more beneficial to the individual, whereas ES has been consistently linked to more detrimental consequences. Although an increasing number of studies have begun to focus on the neural mechanisms of different types of emotion regulation, there has not yet been systematic research on the spontaneous brain activity associated with CR and ES. Resting activity has been shown to predict performance outcomes, highlight the functional relevance of the brain’s intrinsic fluctuations in response outputs. However, to date, there have been no studies to explore the relationship between the cognitive process of emotion regulation and the brain's resting EEG activity.
The current study explored the neural mechanisms of spontaneous brain activity during two emotion regulation strategies. Electroencephalography (EEG) enables direct measurement of neuronal activity, allowing characterization of the intrinsic neural cognitive network. Thirty-six college students (17 males and 19 females, aged 17~28 years old) participated in this study. For the first part of the study, EEG data was collected from participants with closed eyes; EEG collection occurred for a duration of 6 minutes. Neurological studies of resting state EEG have identified the predominant role of theta waves in determining cognitive control effort and behavioral performance. In the current study, source localization and graph theory analysis revealed that node efficiency was significantly correlated with the two major emotion regulation strategies, and there were functional connections between brain regions in the theta band.
Then, in order to improve the reliability of the resting result obtained above, a within subjects experiment was carried out. This experiment required subjects to watch emotional pictures under four emotion regulation conditions (watching neutral, watching negative, reappraisal negative, suppressing negative). The Late-positive potential (LPP) amplitude was obtained when viewing the emotional pictures under the four conditions. LPP is an effective physiological indicator of the emotion regulation effect. It allowed us to explore the emotion regulation effect under different emotion regulation strategies, and the intrinsic functional connections and node efficiency of the brain.
The results showed that the habitual use of CR was significantly correlated with several brain regions. Specifically, the prefrontal cortex, anterior cingulate, and parietal cortex. Moreover, the brain regions significantly correlated with the LPP amplitude under CR were the parietal cortex, prefrontal cortex, parahippocampal gyrus, and occipital cortex. The brain regions that were significantly correlated with habitual use of ES included the prefrontal cortex, parietal cortex, insula, and parahippocampal gyrus. Finally, the brain regions that were significantly associated with LPP amplitude under ES included the prefrontal cortex, parietal cortex, parahippocampal gyrus, temporal cortex, and occipital cortex. Thus, these findings reveal that many brain regions are involved in these two mood regulation strategies, including the prefrontal cortex, parahippocampal gyrus, parietal cortex, and occipital cortex. In addition, the brain regions related to the different emotion regulation strategies differed slightly; specifically, CR was significantly associated with the anterior cingulate cortex while ES was related to temporal lobe and insula activation.
In conclusion, the results of this study indicate that use of CR for emotion regulation is associated with activation of multiple brain regions including the prefrontal cortex, anterior cingulate cortex, parietal cortex, parahippocampal gyrus and occipital cortex. On the other hand, the use of ES for emotional regulation was associated with activation of various brain regions including the prefrontal cortex, parietal cortex, parahippocampal gyrus, occipital cortex, temporal cortex and insula. Node efficiency or functional connectivity of these brain regions appears to be a suitable indicator for assessing the effects of the ES and CR emotion regulation strategies.

Keywords emotion regulation      cognitive reappraisal      expressive suppression      functional connection      graph theory     
ZTFLH:  B842  
  B845  
Corresponding Authors: Yan SUN     E-mail: sunyan@lnnu.edu.cn
Issue Date: 21 November 2019
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yan SUN
Siyu BO
Jiaojiao LV
Cite this article:   
Yan SUN,Siyu BO,Jiaojiao LV. Brain network analysis of cognitive reappraisal and expressive inhibition strategies: Evidence from EEG and ERP[J]. Acta Psychologica Sinica, 2020, 52(1): 12-25.
URL:  
http://journal.psych.ac.cn/xlxb/EN/10.3724/SP.J.1041.2020.00012     OR     http://journal.psych.ac.cn/xlxb/EN/Y2020/V52/I1/12
  
情绪调节策略 脑区 r p
CR 顶叶(中央后回)-额叶(额下回/额中回) (1R-46R) 0.63*** 0.00049
ES 海马旁回-额下回/额中回/脑岛(35L-47R) 0.61*** 0.00012
海马旁回-顶叶(顶下回) (37L-40L) 0.60*** 0.00014
额下回/额中回/脑岛-海马旁回(47L-36R) 0.56*** 0.00046
海马旁回-额下回/额中回/脑岛(28L-47R) 0.55*** 0.00063
额下回/额中回/脑岛-海马旁回(47L-35R) 0.54*** 0.00082
  
  
CR ES
脑区 r p 脑区 r p
前额中央后回(4R) -0.51** 0.0016 额下回/额中回/脑岛(47R) 0.36* 0.034
顶叶中央后回(3R) -0.43* 0.010 前额叶皮层(6L) -0.34* 0.044
前扣带回(25L) -0.35* 0.041 内侧前额叶皮层(11R) -0.34* 0.049
  
  
  
CR ES
脑区 r p 脑区 r p
颞下回(20L)-额上回(8R) 0.66*** 0.000016
海马旁回(37L)-海马旁回(37R) -0.72*** 0.0000014 海马旁回(35L)-海马旁回(36L) 0.64*** 0.000036
顶上回(5L)-海马旁回(34L) 0.63*** 0.000057
额内侧回\额上回\额下回(10L)-内侧
前额叶皮层(11R)
-0.60*** 0.00015 海马旁回(36L)-额上回(8R) 0.57*** 0.00034
中央后回(3R)-额上回(8R) 0.57*** 0.00038
顶上回(5L)-海马旁回(28L) 0.56*** 0.00043
额上回(8L)-颞下回(20L) 0.55*** 0.00060
  
CR ES
脑区 r p 脑区 r p
顶叶中央后回(1L) 0.44** 0.0088 额上回(8R) 0.37* 0.031
海马旁回(37L) -0.41* 0.013
枕下回(17L) -0.35* 0.040 枕下回(17L) -0.34* 0.043
  
  
  
[1] Alizadeh A., Fatemizadeh E., & Deevband M. R . ( 2014, November) Investigation of Brain Default Network's activation in autism spectrum disorders Using Group Independent Component Analysis. 21st Iranian Conference on Biomedical Engineering (ICBME 2014), Biomedical Engineering Faculty, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran.
[2] Amrhein C., Mühlberger A., Pauli P., & Wiedemann G . ( 2004). Modulation of event-related brain potentials during affective picture processing: A complement to startle reflex and skin conductance response? International Journal of Psychophysiology, 54( 3), 231-240.
pmid: 15331214 url: https://www.ncbi.nlm.nih.gov/pubmed/15331214
[3] Arnold A. E. G. F., Protzner A. B., Bray S., Levy R. M., & Iaria G . ( 2014). Neural network configuration and efficiency underlies individual differences in spatial orientation ability. Journal of Cognitive Neuroscience, 26( 2), 380-394.
url: http://dx.doi.org/10.1162/jocn_a_00491
[4] Badre D., & Wagner A. D . ( 2004). Selection, integration, and conflict monitoring: Assessing the nature and generality of prefrontal cognitive control mechanisms. Neuron, 41( 3), 473-487.
url: http://www.sciencedirect.com/science/article/pii/S0896627303008511
[5] Balconi M., Grippa E., & Vanutelli M. E . ( 2015). What hemodynamic (FNIRs), electrophysiological (EEG) and autonomic integrated measures can tell us about emotional processing. Brain and Cognition, 95, 67-76.
pmid: 25721430 url: https://www.ncbi.nlm.nih.gov/pubmed/25721430
[6] Barch D., Braver T., Akbudak E., & Ollinger J . ( 2000). Anterior cingulate cortex and response conflict: Effects of response modality and processing domain. Neuroimage, 11( 5), S104-S104.
pmid: 21408006 url: https://www.ncbi.nlm.nih.gov/pubmed/21408006
[7] Batut A. C., Gounot D., Namer I. J., Hirsch E., Kehrli P., & Metz-Lutz M. N . ( 2006). Neural responses associated with positive and negative emotion processing in patients with left versus right temporal lobe epilepsy. Epilepsy & Behavior, 9( 3), 415-423.
pmid: 31901191 url: https://www.ncbi.nlm.nih.gov/pubmed/31901191
[8] Bradley M. M., & Lang P. J . ( 1994). Measuring emotion: The self-assessment manikin and the semantic differential. Journal of Behavior Therapy and Experimental Psychiatry, 25( 1), 49-59.
pmid: 7962581 url: https://www.ncbi.nlm.nih.gov/pubmed/7962581
[9] Braver T. S., Barch D. M., Gray J. R., Molfese D. L., & Snyder A . ( 2001). Anterior cingulate cortex and response conflict: Effects of frequency, inhibition and errors. Cerebral Cortex, 11( 9), 825-836.
pmid: 11532888 url: https://www.ncbi.nlm.nih.gov/pubmed/11532888
[10] Buchanan T. W., Tranel D., & Adolphs R . ( 2006). Memories for emotional autobiographical events following unilateral damage to medial temporal lobe. Brain, 129( 1), 115-127.
pmid: 16291807 url: https://www.ncbi.nlm.nih.gov/pubmed/16291807
[11] Buhle J. T., Silvers J. A., Wager T. D., Lopez R., Onyemekwu C., Kober H., … Ochsner. K. N . ( 2014). Cognitive reappraisal of emotion: A meta-analysis of human neuroimaging studies. Cerebral Cortex, 24( 11), 2981-2990.
url: http://dx.doi.org/10.1093/cercor/bht154
[12] Bush G., Luu P., & Posner M. I . ( 2000). Cognitive and emotional influences in anterior cingulate cortex. Trends in Cognitive Sciences, 4( 6), 215-222.
pmid: 10827444 url: https://www.ncbi.nlm.nih.gov/pubmed/10827444
[13] Butler E. A., Egloff B., Wlhelm F. H., Smith N. C., Erickson E. A., & Gross J. J . ( 2003). The social consequences of expressive suppression. Emotion, 3( 1), 48-67.
pmid: 12899316 url: https://www.ncbi.nlm.nih.gov/pubmed/12899316
[14] Canuet L., Ishii R., Pascual-Marqui R. D., Iwase M., Kurimoto R., Aoki Y., … Takeda M . ( 2011). Resting-state EEG source localization and functional connectivity in schizophrenia-like psychosis of epilepsy. PLOS ONE, 6( 11), e27863.
pmid: 22125634 url: https://www.ncbi.nlm.nih.gov/pubmed/22125634
[15] Canuet L., Tellado I., Couceiro V., Fraile C., Fernandez- Novoa L., Ishii R., … Cacabelos R . ( 2012). Resting-state network disruption and APOE genotype in Alzheimer’s disease: A lagged functional connectivity study. PLOS ONE, 7( 9), e46289.
pmid: 23050006 url: https://www.ncbi.nlm.nih.gov/pubmed/23050006
[16] Cauda F., Costa T., Torta D. M., Sacco K., D'Agata F., & Duca S., … Vercelli A . ( 2012). Meta-analytic clustering of the insular cortex: Characterizing the meta-analytic connectivity of the insula when involved in active tasks. Neuroimage, 62( 1), 343-355.
url: http://dx.doi.org/10.1016/j.neuroimage.2012.04.012
[17] Cheng L., Yuan J. J., He Y. Y., & Li H . ( 2009). Emotion regulation strategies: Cognitive reappraisal is more effective than expressive suppression. Advances in Psychological Science, 17( 4), 730-735.
url: http://118.145.16.229:81/Jweb_xlkxjz/CN/abstract/abstract1945.shtml
[17] [ 程利, 袁加锦, 何媛媛, 李红 . ( 2009). 情绪调节策略: 认知重评优于表达抑制. 心理科学进展, 17( 4), 730-735.]
url: http://118.145.16.229:81/Jweb_xlkxjz/CN/abstract/abstract1945.shtml
[18] Cui X. J., Lu C. J., Guo Y. F., & Shi H. M .( 2012). The relationship between emotion regulation and depression of college students. China Journal of Health Psychology, 20( 3), 431-433.
[18] [ 崔向军, 逯春洁, 郭永芳, 石贺敏 . ( 2012). 大学生情绪调节与抑郁的相关研究. 中国健康心理学杂志, 20( 3), 431-433.]
[19] D’ Avanzato C., Joormann J., Siemer M., & Gotlib I. H . ( 2013). Emotion regulation in depression and anxiety: Examining diagnostic specificity and stability of strategy use. Cognitive Therapy and Research, 37( 5), 968-980.
url: http://dx.doi.org/10.1007/s10608-013-9537-0
[20] Deak A., Bodrogi B., Biro B., Perlaki G., Orsi G., & Bereczkei T . ( 2017). Machiavellian emotion regulation in a cognitive reappraisal task: An fMRI study. Cognitive, Affective, & Behavioral Neuroscience, 17( 3), 528-541.
[21] Dennis T. A . ( 2007). Interactions between emotion regulation strategies and affective style: Implications for trait anxiety versus depressed mood. Motivation and Emotion, 31( 3), 200-207.
url: http://www.springerlink.com/content/t01524650626l872/
[22] Dennis T. A., & Hajcak G . ( 2009). The late positive potential: A neurophysiological marker for emotion regulation in children. Journal of Child Psychology and Psychiatry, 50( 11), 1373-1383.
pmid: 19754501 url: https://www.ncbi.nlm.nih.gov/pubmed/19754501
[23] Dolcos F., Labar K. S., & Cabeza R . ( 2004). Interaction between the amygdala and the medial temporal lobe memory system predicts better memory for emotional events. Neuron, 42( 5), 855-863.
url: http://www.sciencedirect.com/science/article/pii/S0896627304002892
[24] Dougal S., Phelps E. A., & Davachi L . ( 2007). The role of medial temporal lobe in item recognition and source recollection of emotional stimuli. Cognitive Affective & Behavioral Neuroscience, 7( 3), 233-242.
pmid: 31899609 url: https://www.ncbi.nlm.nih.gov/pubmed/31899609
[25] Drabant E. M., Mcrae K., Manuck S. B., Hariri A. R., & Gross J. J . ( 2008). Individual differences in typical reappraisal use predict amygdala and prefrontal responses. Biological Psychiatry, 65( 5), 367-373.
pmid: 18930182 url: https://www.ncbi.nlm.nih.gov/pubmed/18930182
[26] Duncan J., & Owen A. M ., ( 2000). Common regions of the human frontal lobe recruited by diverse cognitive demands. Trends in Neurosciences, 23( 10), 475-483.
pmid: 11006464 url: https://www.ncbi.nlm.nih.gov/pubmed/11006464
[27] Egner T., Etkin A., Gale S., & Hirsch J . ( 2008). Dissociable neural systems resolve conflict from emotional versus nonemotional distracters. Cerebral Cortex, 18( 6), 1475-1484.
pmid: 17940084 url: https://www.ncbi.nlm.nih.gov/pubmed/17940084
[28] Egner T., & Hirsch J . ( 2005). Cognitive control mechanisms resolve conflict through cortical amplification of task- relevant information. Nature Neuroscience, 8, 1784-1790.
pmid: 16286928 url: https://www.ncbi.nlm.nih.gov/pubmed/16286928
[29] Ertl M., Hildebrandt M., Ourina K., Leicht G., & Mulert C . ( 2013). Emotion regulation by cognitive reappraisal - The role of frontal theta oscillations. NeuroImage, 81( 11), 412-421.
pmid: 23689018 url: https://www.ncbi.nlm.nih.gov/pubmed/23689018
[30] Etkin A., Egner T., Peraza D. M., Kandel E. R., & Hirsch J . ( 2006). Resolving emotional conflict: A role for the rostral anterior cingulate cortex in modulating activity in the amygdala. Neuron, 51( 6), 871-882.
pmid: 16982430 url: https://www.ncbi.nlm.nih.gov/pubmed/16982430
[31] Foti D., & Hajcak G . ( 2008). Deconstructing reappraisal: Descriptions preceding arousing pictures modulate the subsequent neural response. Journal of Cognitive Neuroscience, 20 ( 6), 977-988.
pmid: 18211235 url: https://www.ncbi.nlm.nih.gov/pubmed/18211235
[32] Fraga González G., Van der Molen M., Žarić G., Bonte M., Tijms J., Blomert L., … Van der Molen M. W . ( 2016). Graph analysis of EEG resting state functional networks in dyslexic readers. Clinical Neurophysiology, 127( 9), 3165-3175.
pmid: 27476025 url: https://www.ncbi.nlm.nih.gov/pubmed/27476025
[33] Frank D. W., Dewitt M., Hudgens-Haney M., Schaeffer D. J., Ball B. H., Schwarz N. F., … Sabatinelli D . ( 2014). Emotion regulation: Quantitative meta-analysis of functional activation and deactivation. Neuroscience & Biobehavioral Reviews, 45, 202-211.
pmid: 31901174 url: https://www.ncbi.nlm.nih.gov/pubmed/31901174
[34] Gan T., Luo Y. J., & Zhang Z. J . ( 2009). The Influence of Emotion on Time Perception. Journal of Psychological Science, 32( 4), 836-839.
[34] [ 甘甜, 罗跃嘉, 张志杰 . ( 2009). 情绪对时间知觉的影响. 心理科学, 32( 4), 836-839.]
[35] Garnefski N., & Kraaij V . ( 2007). The Cognitive Emotion Regulation Questionnaire: Psychometric features and prospective relationships with depression and anxiety in adults. European Journal of Psychological Assessment, 23, 141-149.
url: https://econtent.hogrefe.com/doi/10.1027/1015-5759.23.3.141
[36] Giuliani N. R., Drabant E. M., Bhatnagar R., & Gross J. J . ( 2011a). Emotion regulation and brain plasticity: Expressive suppression use predicts anterior insula volume. Neuroimage, 58( 1), 10-15.
pmid: 21704173 url: https://www.ncbi.nlm.nih.gov/pubmed/21704173
[37] Giuliani N. R., Drabant E. M., & Gross J. J . ( 2011b). Anterior cingulate cortex volume and emotion regulation: Is bigger better? Biological Psychology, 86( 3), 379-382.
pmid: 21138751 url: https://www.ncbi.nlm.nih.gov/pubmed/21138751
[38] Goldin P. R., McRae K., Ramel W., & Gross J. J . ( 2008). The neural bases of emotion regulation: Reappraisal and suppression of negative emotion. Biological Psychiatry, 63( 6), 577-586.
pmid: 17888411 url: https://www.ncbi.nlm.nih.gov/pubmed/17888411
[39] Gross J. J . ( 1998). The emerging field of emotion regulation: An integrative review. Review of General Psychology, 2( 3), 271-299.
pmid: 26191007 url: https://www.ncbi.nlm.nih.gov/pubmed/26191007
[40] Gross J. J . ( 2002). Emotion regulation: Affective, cognitive, and social consequences. Psychophysiology, 39( 3), 281-291.
pmid: 12212647 url: https://www.ncbi.nlm.nih.gov/pubmed/12212647
[41] Gross J. J . ( 2015). Emotion regulation: Current status and future prospects. Psychological Inquiry, 26( 1), 1-26.
url: http://www.tandfonline.com/doi/abs/10.1080/1047840X.2014.940781
[42] Gross J. J., & John O.P . ( 2003). Individual differences in two emotion regulation processes: Implications for affect, relationships, and well-being. Journal of Personality and Social Psychology, 85( 2), 348-362.
pmid: 12916575 url: https://www.ncbi.nlm.nih.gov/pubmed/12916575
[43] Gu H., Chen Q., Xing X., Zhao J., & Li X . ( 2019). Facial emotion recognition in deaf children: Evidence from event-related potentials and event-related spectral perturbation analysis. Neuroscience Letters, 703, 198-204.
pmid: 30677434 url: https://www.ncbi.nlm.nih.gov/pubmed/30677434
[44] Haga S. M., Kraft P., & Corby E. K . ( 2009). Emotion regulation: Antecedents and well-being outcomes of cognitive reappraisal and expressive suppression in cross-cultural samples. Journal of Happiness Studies, 10( 3), 271-291.
url: http://www.springerlink.com/content/863010l6t8748270/
[45] Hajcak G., & Nieuwenhuis S . ( 2006). Reappraisal modulates the electrocortical response to unpleasant pictures. Cognitive, Affective, & Behavioral Neuroscience, 6( 4), 291-297.
pmid: 17458444 url: https://www.ncbi.nlm.nih.gov/pubmed/17458444
[46] Hamann S., . ( 2001). Cognitive and neural mechanisms of emotional memory. Trends in Cognitive Sciences, 5( 9), 394-400.
pmid: 11520704 url: https://www.ncbi.nlm.nih.gov/pubmed/11520704
[47] Hermann A., Bieber A., Keck T., Vaitl D., & Stark R . ( 2014). Brain structural basis of cognitive reappraisal and expressive suppression. Social Cognitive & Affective Neuroscience, 9( 9), 1435-1442.
pmid: 31900836 url: https://www.ncbi.nlm.nih.gov/pubmed/31900836
[48] Hermann A., Leutgeb V., Scharmüller W., Vaitl D., & Stark R . ( 2013). Individual differences in cognitive reappraisal usage modulate the time course of brain activation during symptom provocation in specific phobia. Biology of Mood and Anxiety Disorders, 3( 1), 16.
pmid: 24517388 url: https://www.ncbi.nlm.nih.gov/pubmed/24517388
[49] Hofmann S. G., Heering S., Sawyer A. T., & Asnaani A . ( 2009). How to handle anxiety: The effects of reappraisal, acceptance, and suppression strategies on anxious arousal. Behaviour Research and Therapy, 47( 5), 389-394.
url: http://www.sciencedirect.com/science/article/pii/S0005796709000527
[50] Karamacoska D., Barry R. J., & Steiner G. Z . ( 2017). Resting state intrinsic EEG impacts on go stimulus-response processes. Psychophysiology, 54( 6), 894-903.
pmid: 28258583 url: https://www.ncbi.nlm.nih.gov/pubmed/28258583
[51] Karamacoska D., Barry R. J., Steiner G. Z., Coleman E. P., & Wilson E. J . ( 2018). Intrinsic EEG and task-related changes in EEG affect go/nogo task performance. International Journal of Psychophysiology, S0167876017306864.
pmid: 29409782 url: https://www.ncbi.nlm.nih.gov/pubmed/29409782
[52] Krach S., Jansen A., Krug A., Markov V., Thimm M., Sheldrick A. J., … Kircher T . ( 2010). Comt genotype and its role on hippocampal-prefrontal regions in declarative memory. Neuroimage, 53( 3), 978-984.
pmid: 20060911 url: https://www.ncbi.nlm.nih.gov/pubmed/20060911
[53] Samuelson K. W . ( 2011). Post-traumatic stress disorder and declarative memory functioning: A review. Dialogues in Clinical Neuroscience, 13( 3), 346-351.
pmid: 22033732 url: https://www.ncbi.nlm.nih.gov/pubmed/22033732
[54] Langer N., Pedroni A., Gianotti L. R. R., Hänggi J., Knoch D., & Jäncke L . ( 2012). Functional brain network efficiency predicts intelligence. Human Brain Mapping, 33( 6), 1393-1406.
url: http://dx.doi.org/10.1002/hbm.21297
[55] Langner C. A., Epel E., Matthews K., Moskowitz J. T., & Adler N . ( 2012). Social hierarchy and depression: The role of emotion suppression. Journal of Psychology, 146( 4), 417-436.
url: http://dx.doi.org/10.1080/00223980.2011.652234
[56] Langeslag S. J. E., Jansma B. M., Franken I. H. A., & Strien J. W. V . ( 2007). Event-related potential responses to love-related facial stimuli. Biological Psychology, 76( 1-2), 109-115.
pmid: 17681417 url: https://www.ncbi.nlm.nih.gov/pubmed/17681417
[57] Langeslag S. J. E., & van Strien J. W . ( 2017). Preferential processing of task-irrelevant beloved-related information and task performance: Two event-related potential studies. Neuropsychologia, S002839321730341X.
pmid: 31887313 url: https://www.ncbi.nlm.nih.gov/pubmed/31887313
[58] Lee T. W., Dolan R. J., & Critchley H. D . ( 2008). Controlling emotional expression: Behavioral and neural correlates of nonimitative emotional responses. Cerebral Cortex, 18( 1), 104-113.
pmid: 17483530 url: https://www.ncbi.nlm.nih.gov/pubmed/17483530
[59] Li X., Lu J., Li B., Li H., Jin L., & Qiu J . ( 2017). The role of ventromedial prefrontal cortex volume in the association of expressive suppression and externally oriented thinking. Journal of Affective Disorders, 222, 112-119.
pmid: 28688264 url: https://www.ncbi.nlm.nih.gov/pubmed/28688264
[60] Li Z. Q., Wang L., Zhang H. C., & Liu H. C . ( 2010). Personality traits and subjective well-being: The mediating role of emotion regulation. Journal of Psychological Science, 33( 1), 165-167.
[60] [ 李中权, 王力, 张厚粲, 柳恒超 . ( 2010). 人格特质与主观幸福感: 情绪调节的中介作用. 心理科学, 33( 1), 165-167.]
[61] Liu X., Banich M. T., Jacobson B. L., & Tanabe J. L . ( 2004). Common and distinct neural substrates of attentional control in an integrated Simon and spatial Stroop task as assessed by event-related fMRI. Neuroimage, 22( 3), 1097-1106.
url: http://www.sciencedirect.com/science/article/pii/S1053811904001405
[62] Lou Y. X., Cai A. Y., Yang J. M., & Yuan J. J . ( 2014). The impact of introversion-extraversion on emotion regulations and the neurophysiological underpinnings. Advances in Psychological Science, 22( 12), 1855-1866.
url: http://118.145.16.229:81/Jweb_xlkxjz/CN/abstract/abstract3225.shtml
[62] [ 娄熠雪, 蔡阿燕, 杨洁敏, 袁加锦 . ( 2014). 内-外倾人格对情绪调节的影响及神经机制. 心理科学进展, 22(12), 1855-1866.]
url: http://118.145.16.229:81/Jweb_xlkxjz/CN/abstract/abstract3225.shtml
[63] Makris N., Goldstein J. M., Kennedy D., Hodge S. M., Caviness V. S., & Faraone S. V., … Seidmancdfi L. J . ( 2006). Decreased volume of left and total anterior insular lobule in schizophrenia. Schizophrenia Research, 83( 2-3), 155-171.
pmid: 16448806 url: https://www.ncbi.nlm.nih.gov/pubmed/16448806
[64] Mcrae K., Hughes B., Chopra S., Gabrieli J. D. E., Gross J. J., & Ochsner K. N . ( 2010). The neural bases of distraction and reappraisal. Journal of Cognitive Neuroscience, 22( 2), 248-262.
pmid: 19400679 url: https://www.ncbi.nlm.nih.gov/pubmed/19400679
[65] Miller E. K., & Cohen J. D . ( 2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24, 167-202.
pmid: 11283309 url: https://www.ncbi.nlm.nih.gov/pubmed/11283309
[66] Moore S. A., Zoellner L. A., & Mollenholt N . ( 2008). Are expressive suppression and cognitive reappraisal associated with stress-related symptoms?. Behaviour Research and Therapy, 46( 9), 993-1000.
url: http://www.sciencedirect.com/science/article/pii/S0005796708001162
[67] Moser J. S., Hajcak G., Bukay E., & Simons R. F . ( 2006). Intentional modulation of emotional responding to unpleasant pictures: An ERP study. Psychophysiology, 43( 3), 292-296.
pmid: 16805868 url: https://www.ncbi.nlm.nih.gov/pubmed/16805868
[68] Nallasamy N., & Tsao D. Y . ( 2011). Functional connectivity in the brain: Effects of anesthesia. The Neuroscientist, 17( 1), 94-106.
pmid: 21343409 url: https://www.ncbi.nlm.nih.gov/pubmed/21343409
[69] Nelson B. D., Fitzgerald D. A., Klumpp H., Shankman S. A., & Phan K. L . ( 2015). Prefrontal engagement by cognitive reappraisal of negative faces. Behavioural Brain Research, 279, 218-225.
pmid: 25433095 url: https://www.ncbi.nlm.nih.gov/pubmed/25433095
[70] Ochsner K. N., Bunge S. A., Gross J. J., & Gabrieli J. D. E . ( 2002). Rethinking feelings: An FMRI study of the cognitive regulation of emotion. Journal of Cognitive Neuroscience, 14( 8), 1215-1229.
pmid: 12495527 url: https://www.ncbi.nlm.nih.gov/pubmed/12495527
[71] Ochsner K. N., Hughes B., Robertson E. R., Cooper J. C., & Gabrieli J. D. E . ( 2009). Neural systems supporting the control of affective and cognitive conflicts. Journal of Cognitive Neuroscience, 21( 9), 1841-1854.
pmid: 18823233 url: https://www.ncbi.nlm.nih.gov/pubmed/18823233
[72] Ohira H., Nomura M., Ichikawa N., Isowa T., Iidaka T., Sato A., … Yamada J .( 2006). Association of neural and physiological responses during voluntary emotion suppression. NeuroImage, 29( 3), 721-733.
pmid: 17239620 url: https://www.ncbi.nlm.nih.gov/pubmed/17239620
[73] Ohmatsu S., Nakano H., Tominaga T., Terakawa Y., Murata T., & Morioka S . ( 2014). Activation of the serotonergic system by pedaling exercise changes anterior cingulate cortex activity and improves negative emotion. Behavioural Brain Research, 270, 112-117.
url: http://dx.doi.org/10.1016/j.bbr.2014.04.017
[74] Pagani M., Di Lorenzo G., Verardo A. R., Nicolais G., Monaco L., & Lauretti G., … Siracusano A . ( 2012). Neurobiological correlates of EMDR monitoring - An EEG study. PLOS ONE, 7( 9), e45753.
pmid: 23049852 url: https://www.ncbi.nlm.nih.gov/pubmed/23049852
[75] Pan J., Zhan L., Hu C. L., Yang J., Wang C., Gu L., … Wu X . ( 2018). Emotion regulation and complex brain networks: Association between expressive suppression and efficiency in the fronto-parietal network and default-mode network. Frontiers in Human Neuroscience, 12, 70.
pmid: 29662443 url: https://www.ncbi.nlm.nih.gov/pubmed/29662443
[76] Pannu H. J., Morey R. A., Petty C. M., Srishti S., Smoski M. J., Gregory M. C., & Labar K. S . ( 2010). Staying cool when things get hot: Emotion regulation modulates neural mechanisms of memory encoding. Frontiers in Human Neuroscience, 4, 230.
pmid: 21212840 url: https://www.ncbi.nlm.nih.gov/pubmed/21212840
[77] Pascual-Marqui R. D., Lehmann D., Koukkou M., Kochi K., Anderer P., Saletu B., … Kinoshita T . ( 2011) Assessing interactions in the brain with exact low resolution electromagnetic tomography. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 369, 3768-3784.
pmid: 21893527 url: https://www.ncbi.nlm.nih.gov/pubmed/21893527
[78] Pei X., Wang J., Deng B., Wei X., & Yu H . ( 2014). Wlpvg approach to the analysis of eeg-based functional brain network under manual acupuncture. Cognitive Neurodynamics, 8( 5), 417-428.
url: http://dx.doi.org/10.1007/s11571-014-9297-x
[79] Phan K. L., Fitzgerald D. A., Nathan P. J., Moore G. J., Uhde T. W., & Tancer M. E . ( 2005). Neural substrates for voluntary suppression of negative affect: A functional magnetic resonance imaging study. Biological Psychiatry, 57( 3), 210-219.
pmid: 15691521 url: https://www.ncbi.nlm.nih.gov/pubmed/15691521
[80] Qian L., Xi C., Tom H., Duo X., Frederick C., & James B. R . ( 2014). Theta band activity in response to emotional expressions and its relationship with gamma band activity as revealed by MEG and advanced beamformer source imaging. Frontiers in Human Neuroscience, 7, 940.
pmid: 24550804 url: https://www.ncbi.nlm.nih.gov/pubmed/24550804
[81] Scult M. A., Knodt A. R., Swartz J. R., Brigidi B. D., & Hariri A. R . ( 2017). Thinking and feeling: Individual differences in habitual emotion regulation and stress- related mood are associated with prefrontal executive control. Clinical Psychological Science, 5( 1), 150-157.
pmid: 28191365 url: https://www.ncbi.nlm.nih.gov/pubmed/28191365
[82] Sheline Y. I., Price J. L., Yan Z., & Mintun M. A . ( 2010). Resting-state functional MRI in depression unmasks increased connectivity between networks via the dorsal nexus. Proceedings of the National Academy of Sciences, 107( 24), 11020-11025.
pmid: 20534464 url: https://www.ncbi.nlm.nih.gov/pubmed/20534464
[83] Shigeto H., Ishiguro J., & Nittono H . ( 2011). Effects of visual stimulus complexity on event-related brain potentials and viewing duration in a free-viewing task. Neuroscience Letters, 497( 2), 85-89.
pmid: 21540078 url: https://www.ncbi.nlm.nih.gov/pubmed/21540078
[84] Stam C. J., Nolte G., & Daffertshofer A . ( 2007). Phase lag index: Assessment of functional connectivity from multichannel EEG and MEG with diminished bias from common sources. Human Brain Mapping, 28( 11), 1178-1193.
pmid: 17266107 url: https://www.ncbi.nlm.nih.gov/pubmed/17266107
[85] Szaflarski J. P., Allendorfer J. B., Heyse H., Mendoza L., Szaflarski B. A., & Cohen N . ( 2014). Functional mri of facial emotion processing in left temporal lobe epilepsy. Epilepsy & Behavior, 32, 92-99.
pmid: 31901191 url: https://www.ncbi.nlm.nih.gov/pubmed/31901191
[86] Urbain C., Sato J., Pang E. W., & Taylor M. J . ( 2017). The temporal and spatial brain dynamics of automatic emotion regulation in children. Developmental Cognitive Neuroscience, 26, 62-68.
pmid: 28527986 url: https://www.ncbi.nlm.nih.gov/pubmed/28527986
[87] van den Heuvel M. P., Stam C. J., Kahn R. S., & Hulshoff Pol H. E . ( 2009). Efficiency of functional brain networks and intellectual performance. Journal of Neuroscience, 29( 23), 7619-7624.
pmid: 19515930 url: https://www.ncbi.nlm.nih.gov/pubmed/19515930
[88] van den Heuvel, M. P., & Hulshoff Pol, H. E . ( 2010). Exploring the brain network: A review on resting-state fMRI functional connectivity. European Neuropsychopharmacology, 20( 8), 519-534.
url: http://www.sciencedirect.com/science/article/pii/S0924977X10000684
[89] Vanderhasselt M. A., Kuhn S., & De Raedt R . ( 2013). "Put on your poker face": Neural systems supporting the anticipation for expressive suppression and cognitive reappraisal. Social Cognitive and Affective Neuroscience, 8( 8), 903-910.
pmid: 22956675 url: https://www.ncbi.nlm.nih.gov/pubmed/22956675
[90] van Diessen E., Numan T., van Dellen E., van der Kooi A.W., Boersma M., Hofman D., … Stam C. J . ( 2015). Opportunities and methodological challenges in EEG and MEG resting state functional brain network research. Clinical Neurophysiology, 126( 8), 1468-1481.
pmid: 25511636 url: https://www.ncbi.nlm.nih.gov/pubmed/25511636
[91] Varnum M. E. W., & Hampton R. S . ( 2016). Cultures differ in the ability to enhance affective neural responses. Social Neuroscience, 12( 5), 1-10.
pmid: 27420406 url: https://www.ncbi.nlm.nih.gov/pubmed/27420406
[92] Viviani R . ( 2014). Neural correlates of emotion regulation in the ventral prefrontal cortex and the encoding of subjective value and economic utility. Frontiers in Psychiatry, 5.
pmid: 25691873 url: https://www.ncbi.nlm.nih.gov/pubmed/25691873
[93] Wagner M., Fuchs M., & Kastner J . ( 2004). Evaluation of sLORETA in the presence of noise and multiple sources. Brain Topography, 16( 4), 277-280.
url: http://www.springerlink.com/content/p7072454p061p245/
[94] Wang J. X., Wang C. M., Xie F., Chang M., & Zhang K . ( 2015). The effect of cognitive reappraisal and distraction in regulating negative emotion: ERPs study. Journal of Psychological Science, 38( 5), 1039-1044.
[94] [ 王敬欣, 王春梅, 谢芳, 常敏, 张阔 . ( 2015). 负性情绪调节中认知重评和分心策略的作用: ERPs研究. 心理科学, 38( 5), 1039-1044.]
[95] Wang J., Wang X., Xia M., Liao X., Evans A., & He Y . ( 2015). Gretna: A graph theoretical network analysis toolbox for imaging connectomics. Frontiers in Human Neuroscience, 9.
pmid: 28652747 url: https://www.ncbi.nlm.nih.gov/pubmed/28652747
[96] Wang J., Zuo X., & He Y . ( 2010). Graph-based network analysis of resting-state functional MRI. Frontiers in Systems Neuroscience, 4.
pmid: 21283555 url: https://www.ncbi.nlm.nih.gov/pubmed/21283555
[97] Wang K., Huang H., Chen L., Hou X., Zhang Y., Yang J., … Qiu J . ( 2017). MRI correlates of interaction between gender and expressive suppression among the Chinese population. Neuroscience, 347, 76-84.
pmid: 28188856 url: https://www.ncbi.nlm.nih.gov/pubmed/28188856
[98] Wang L., Liu H. C., Li Z. Q., & Du W .( 2007). Reliability and validity of emotion regulation questionnaire Chinese revised version. China Journal of Health Psychology, 15( 6), 503-505.
[98] [ 王力, 柳恒超, 李中权, 杜卫 . ( 2007). 情绪调节问卷中文版的信效度研究. 中国健康心理学杂志, 15( 6), 503-505.]
[99] Wang Y. N., Zhou L. M., Qu C., & Luo Y. J . ( 2007). Implicitly processing of affective connotation of chinese words evidence from event-related brain potential. Journal of Beijing Normal University (Natural Science), 43( 4), 466-470.
[99] [ 王一牛, 周立明, 曲琛, 罗跃嘉 . ( 2007). 感情色彩双字词内隐加工的ERP研究. 北京师范大学学报(自然科学版), 43( 4), 466-470.]
[100] Xing M., Tadayonnejad R., MacNamara A., Ajilore O., Phan K. L., Klumpp H., & Leow A . ( 2016). EEG based functional connectivity reflects cognitive load during emotion regulation. IEEE International Symposium on Biomedical Imaging. IEEE.
[101] Zhang W., Li X., Liu X., Duan X., Wang D., & Shen J . ( 2013). Distraction reduces theta synchronization in emotion regulation during adolescence. Neuroscience Letters, 550, 81-86.
pmid: 23827226 url: https://www.ncbi.nlm.nih.gov/pubmed/23827226
[102] Zhao L.Y., Tian J., Wang W., Qin W., Shi J., Li Q., … Lu L . ( 2012). The role of dorsal anterior cingulate cortex in the regulation of craving by reappraisal in smokers. PLOS ONE, 7( 8), e43598.
pmid: 22928000 url: https://www.ncbi.nlm.nih.gov/pubmed/22928000
[103] Zhou Y., Yu C., Zheng H., Liu Y., Song M., Qin W., … Jiang T . ( 2010). Increased neural resources recruitment in the intrinsic organization in major depression. Journal of Affective Disorders, 121( 3), 220-230.
pmid: 19541369 url: https://www.ncbi.nlm.nih.gov/pubmed/19541369
[1] SUN Juncai,XUN Fengjiao,LIU Ping,ZHANG Wenhai. The implicit advantage of a high kindness trait in the action control of emotion regulation[J]. Acta Psychologica Sinica, 2019, 51(7): 781-794.
[2] PENG Wanqing,LUO Wei,ZHOU Renlai. HRV evidence for the improvement of emotion regulation in university students with depression tendency by working memory training[J]. Acta Psychologica Sinica, 2019, 51(6): 648-661.
[3] LI Hong,YANG Xiaoguang,ZHENG Wenyu,WANG Chao. Emotional regulation goals of young adults with depression inclination: An event-related potential study[J]. Acta Psychologica Sinica, 2019, 51(6): 637-647.
[4] YE Wanqing, LE Xiaotong, WANG Dahua.  The relationship between cognitive emotion regulation of negative marital events and marital satisfaction among older people: A cross-lagged analysis[J]. Acta Psychologica Sinica, 2018, 50(4): 426-435.
[5] YANG Qingqing, HU Na, CHEN Xu, NIU Juan, ZHAI Jing.  Electrophysiological evidences of different emotional regulation strategies between the avoidant and the secure attachment individuals in the context of lovers, intimacy[J]. Acta Psychologica Sinica, 2018, 50(3): 306-316.
[6] LYU Mengsi, XI Juzhe, LUO Yirui.  Daily emotional characteristics in individuals with different resilience levels: Supplementary evidence from experience-sampling method (ESM)[J]. Acta Psychologica Sinica, 2017, 49(7): 928-940.
[7] HOU Lulu, JIANG Qi, WANG Huanzhen, LI Changran.  The relationship between trait anger and aggressive behavior: Based on the perspective of the integrative cognitive model[J]. Acta Psychologica Sinica, 2017, 49(12): 1548-1558.
[8] CHEN Yingyuan;ZOU Zhimin; PAN Junhao. Effects of overqualification on employees’ organizational citizenship behavior: From the perspective of emotion[J]. Acta Psychologica Sinica, 2017, 49(1): 72-82.
[9] ZHOU Xiao; WU Xinchun; ZENG Min; TIAN Yuxin. The relationship between emotion regulation and PTSD/PTG among adolescents after the Ya’an earthquake: The moderating role of social support[J]. Acta Psychologica Sinica, 2016, 48(8): 969-980.
[10] CAI Ayan; YANG Jiemin; XU Shuang; YUAN Jiajin. The male advantage in regulating negative emotion by expressive suppression: An event-related potential study[J]. Acta Psychologica Sinica, 2016, 48(5): 482-494.
[11] LIAO Sunqun; ZHENG Xifu. Inhibition of cognitive reappraisal on the negative valence facilitates extinction in conditioned fear[J]. Acta Psychologica Sinica, 2016, 48(4): 352-361.
[12] AN Xianli; CHEN Siguang. Inhibitory effects of reappraisal on conditioned fear acquisition and expression: Long-term influences measured by a spontaneous recovery test[J]. Acta Psychologica Sinica, 2016, 48(10): 1239-1247.
[13] BAI Xuejun;YUE Pengfei. Affect Labeling can Reduce Negative Emotions: Evidences from Autonomic Nervous Activity[J]. Acta Psychologica Sinica, 2013, 45(7): 715-724.
[14] TANG Gan-Qi,HUANG Min-Er. Diverse Consequences of Negative Emotional Responses Between High and Low Happiness People[J]. Acta Psychologica Sinica, 2012, 44(8): 1086-1099.
[15] Lu Jiamei,Sun Juncai,Liu Wei. The Impacts of Interpersonal and Intrapersonal Emotion Regulation on Negative-Emotion-Induced Prospective Memory[J]. , 2008, 40(12): 1258-1265.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Acta Psychologica Sinica
Support by Beijing Magtech