Please wait a minute...
Acta Psychologica Sinica    2019, Vol. 51 Issue (10) : 1102-1115     DOI: 10.3724/SP.J.1041.2019.01102
Reports of Empirical Studies |
The influence of dopaminergic genetic variants and maternal parenting on adolescent depressive symptoms: A multilocus genetic study
CAO Yanmiao,ZHANG Wenxin()
School of Psychology, Shandong Normal University, Jinan 250014, China
Download: PDF(805 KB)   HTML Review File (1 KB) 
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks     Supporting Info
Guide   
Abstract  

For decades, there is increasing evidence for the importance of single-gene by environment interactions (G × E) in understanding the etiology of depression. However, several concerns have been raised about the ignoring the polygenic traits of depression when conducting G × E research using single loci. Within this context, the multilocus genetic profile score (MGPS) have recently emerged as an approach of capturing polygenic nature across multiple genes. In line with the monoamine deficiency hypothesis, recent research has begun to show that the combined effects of multiple dopaminergic genetic variants are stronger than the influence of any single gene examined in isolation. Additionally, genes related to the functioning of the dopaminergic system, which coordinates individual’s response to stress. However, existing G × E research has largely focused on adverse family environments (i.e., maltreatment, maternal unresponsiveness) and to a lesser extent on positive environment, such as positive parenting. Therefore, the present study aimed to examine the interaction between dopaminergic genetic variants and maternal parenting on adolescent depressive symptoms, by adopting the approach of multilocus genetic profile score.

Participants were 1052 mother-offspring (adolescents mean age 12.31 ± 0.37 years old at the first time point, 50.2% females) dyads recruited from the community. Youth completed assessments twice with an interval of one year. Saliva samples, self-reported depressive symptoms and mother-reported parenting were collected. All measures showed good reliability. Genotyping in three dopaminergic genes were performed for each participant in real time with MassARRAY RT software version 3.0.0.4 and analyzed using the MassARRAY Typer software version 3.4 (Sequenom). To examine whether multilocus genetic profile score moderates the effects of parenting on adolescent depressive symptoms and whether this potential moderating effect act in a diathesis-stress or differential susceptibility manner, hierarchical regression analyses were conducted. We also tested above questions by recoding into categorical variables and re-conducted analyses.

The results found that multilocus genetic profile score was a significant risk factor of depression, with higher dopamine genetic risk scores (indicating lower dopaminergic neurotransmission) predicting higher levels of depression. After controlling for gender and prior depressive symptoms, the G × E effect with positive and negative parenting were also significant, suggesting that G × E interaction significantly predicted change in depression level between Time 1 and Time 2. Specifically, adolescents with higher MGPS exhibited higher risk for depression when encountered with lower levels of positive parenting and higher levels of negative parenting, compared to their counterparts with lower MGPS. The results support the diathesis-stress model and highlight the complex ways that genes and environment interact to influence development.

These finding underscores complex polygenic underpinnings of depression and lends support for the mulitlocus genetic profile scores-environment interactions implicated in the etiology of depressive symptoms.

Keywords adolescent depression      maternal parenting      dopamine      multilocus genetic profile score      gene- environment interaction     
ZTFLH:  B844  
  B845  
Fund: 
Corresponding Authors: Wenxin ZHANG     E-mail: zhangwenxin@sdnu.edu.cn
Issue Date: 19 August 2019
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CAO Yanmiao
ZHANG Wenxin
Cite this article:   
CAO Yanmiao,ZHANG Wenxin. The influence of dopaminergic genetic variants and maternal parenting on adolescent depressive symptoms: A multilocus genetic study[J]. Acta Psychologica Sinica, 2019, 51(10): 1102-1115.
URL:  
http://journal.psych.ac.cn/xlxb/EN/10.3724/SP.J.1041.2019.01102     OR     http://journal.psych.ac.cn/xlxb/EN/Y2019/V51/I10/1102
位点 MAF H-W (χ2) 携带低活性等位基因数量
0 1 2
rs6267 7.9% 0.07 (p = 0.79) GG (891) GT (155) TT (6)
rs27072 23.0% 1.74 (p = 0.19) TT (63) CT (357) CC (632)
rs1799978 18.4% 0.01 (p = 0.93) AA (701) AG (315) GG (36)
  
模型 模型拟合 模型拟合改变量
R2 F (df) R2 F (df)a
积极教养
模型1:分解模型 0.373 40.15 (15, 1012)
模型2:线性基因效应模型 0.371 66.58 (9, 1018) 0.002 0.69 (6, 1012)
模型3:等基因效应模型 0.365 117.63 (5, 1022) 0.006 2.13 (4, 1018)
消极教养
模型1:分解模型 0.378 41.04 (15, 1012)
模型2:线性基因效应模型 0.374 67.49 (9, 1018) 0.005 1.22 (6, 1012)
模型3:等基因效应模型 0.370 120.14 (5, 1022) 0.005 1.42 (4, 1018)
母亲教养敏感性(补充分析)
模型1:分解模型 0.376 40.68 (15, 1012)
模型2:线性基因效应模型 0.374 67.52 (9, 1018) 0.002 0.63 (6, 1012)
模型3:等基因效应模型 0.368 119.27 (5, 1022) 0.006 2.16 (4, 1018)
  
变量 M SD 1 2 3 4 5 6
1. 性别 1
2. 多基因累加得分 -0.01 1
3. 积极教养 0.52 0.64 -0.05 -0.01 1
4. 消极教养 0.30 0.43 0.08* 0.01 -0.52*** 1
5. 教养敏感性 -0.00 0.59 -0.06* -0.01 0.95*** -0.76*** 1
6. T1抑郁 0.22 0.24 0.06 0.07* -0.15*** 0.17*** -0.18*** 1
7. T2抑郁 0.27 0.25 0.03 0.09** -0.12*** 0.17*** -0.15*** 0.60***
  
模型 R2 b SE β p
模型1
性别 0.359 -0.00 0.01 -0.01 0.76
早期抑郁 0.64 0.03 0.59*** <0.001
多基因累加得分(PS) 0.003 0.01 0.01 0.05* 0.04
积极教养 -0.01 0.01 -0.03 0.24
PS×积极教养 0.003 -0.01 0.01 -0.05* 0.03
模型2
性别 0.359 -0.02 0.01 -0.01 0.66
早期抑郁 0.63 0.03 0.59*** <0.001
多基因累加得分(PS) 0.01 0.01 0.01 0.05* 0.05
消极教养 0.02 0.01 0.07** 0.01
PS×消极教养 0.004 0.01 0.01 0.06** 0.01
模型3(补充分析)
性别 0.359 -0.00 0.01 -0.01 0.71
早期抑郁 0.63 0.03 0.59*** <0.001
多基因累加得分(PS) 0.01 0.01 0.01 0.05* 0.04
教养敏感性 -0.01 0.01 -0.05* 0.048
PS×教养敏感性 0.01 0.02 0.01 0.07** 0.006
  
  
参数 积极教养行为 消极教养行为 教养敏感性总分(补充分析)
“不同易感性” “素质-压力” “不同易感性” “素质-压力” “不同易感性” “素质-压力”
B1 -0.00 (0.01) -0.00 (0.01) -0.01 (0.01) -0.01 (0.01) -0.00 (0.01) -0.00 (0.01)
B2 0.64 (0.03)*** 0.63 (0.03)*** 0.63 (0.03)*** 0.62 (0.03)*** 0.63 (0.03)*** 0.63 (0.03)***
B3 -0.01 (0.01) -0.01 (0.01) 0.02 (0.01)** 0.02 (0.01)** -0.01 (0.01)* -0.01 (0.01)*
B4 -0.01 (0.01)* -0.01 (0.003)** 0.01 (0.01)* 0.01 (0.003)** -0.02 (0.01)** -0.01 (0.003)**
C 0.88 (0.58) 1.52(—)a -0.77 -1.31 (—)a 0.69 (0.41) 1.60 (—)a
95% CI of C [0.03, 12.31] a [-3.79, -0.01] a [0.03, 2.69] a
R2 0.37 0.37 0.37 0.37 0.37 0.37
F(df) 117.63 (5, 1022)*** 146.93 (4, 1023)*** 117.97 (5, 1022)*** 150.04 (4, 1023)*** 119.25 (5, 1022)*** 148.48 (4, 1023)***
F a vs. b (df) 0.64 (1, 1022) 0.71 (1, 1022) 1.92 (1, 1022)
AIC -554.82 -556.18 -562.81 -564.09 -560.06 -560.13
BIC -520.27 -526.57 -528.26 -534.48 -525.52 -530.52
  
  
模型 R2 b SE β p
模型1
性别 0.003 0.02 0.01 0.05 0.09
多基因累加得分(PS) 0.03 0.01 0.01 0.07* 0.03
积极教养 -0.03 0.01 -0.15*** < 0.001
PS×积极教养 0.001 0.01 0.01 0.03 0.27
模型2
性别 0.003 0.02 0.01 0.05 0.14
多基因累加得分(PS) 0.03 0.01 0.01 0.07* 0.02
消极教养 0.04 0.01 0.17*** < 0.001
PS×消极教养 < 0.001 0.00 0.01 -0.01 0.87
模型3
性别 0.003 0.02 0.01 0.05 0.13
多基因累加得分(PS) 0.04 0.01 0.01 0.07* 0.03
教养敏感性 -0.04 0.01 -0.17*** < 0.001
PS×教养敏感性 0.001 0.01 0.01 0.03 0.35
  
模型 R2 b SE β p
模型1
性别 0.001 0.01 0.01 0.03 0.37
多基因累加得分(PS) 0.02 0.02 0.01 0.09** 0.002
积极教养 -0.03 0.01 -0.12*** < 0.001
PS×积极教养 0.001 -0.01 0.01 -0.03 0.30
模型2
性别 0.001 0.01 0.01 0.02 0.51
多基因累加得分(PS) 0.04 0.02 0.01 0.09** 0.002
消极教养 0.04 0.01 0.17*** < 0.001
PS×消极教养 0.003 0.01 0.01 0.06* 0.05
模型3
性别 0.003 0.01 0.01 0.02 0.45
多基因累加得分(PS) 0.03 0.02 0.01 0.09** 0.002
教养敏感性 -0.04 0.01 -0.15*** < 0.001
PS×教养敏感性 0.002 -0.01 0.01 -0.05 0.10
  
[1] Aliev F., Latendresse S. J., Bacanu S. A., Neale M. C., & Dick D. M. ( 2014). Testing for measured gene-environment interaction: Problems with the use of cross-product terms and a regression model reparameterization solution. Behavior Genetics, 44( 2), 165-181.
[2] Andersen, S. L., & Teicher, M. H. ( 2008). Stress, sensitive periods and maturational events in adolescent depression. Trends in Neurosciences, 31( 4), 183-191.
[3] Beauchaine T. P., Gatzke-Kopp L., & Mead H. K. ( 2007). Polyvagal theory and developmental psychopathology: Emotion dysregulation and conduct problems from preschool to adolescence. Biological Psychology, 74( 2), 174-184.
[4] Belmaker, R. H., & Agam, B. ( 2008). Major depressive disorder. The New England Journal of Medicine, 358( 1), 55-68.
[5] Belsky, J., & Pluess, M. ( 2009). Beyond diathesis stress: Differential susceptibility to environmental influences. Psychological Bulletin, 135( 6), 885-908.
[6] Benjamini, Y., & Hochberg, Y. ( 1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, Series B (Methodological), 57( 1), 289-300.
[7] Bischoff A. R., Pokhvisneva I., Léger é., Gaudreau H., Steiner M., Kennedy J. L., .. Silveira P. P. ( 2017). Dynamic interaction between fetal adversity and a genetic score reflecting dopamine function on developmental outcomes at 36 months. PloS One, 12( 5), e0177344.
[8] Cao C., Rijlaarsdam J., van der Voort A., Ji L. Q., Zhang W. X., & Bakermans-Kranenburg M. J. ( 2018). Associations between dopamine D2 receptor (DRD2) gene, maternal positive parenting and trajectories of depressive symptoms from early to mid-adolescence. Journal of Abnormal Child Psychology, 46( 2), 365-379.
[9] Cao Y. M., Lin X. N., Chen L., Ji L. Q., & Zhang W. X. ( 2018). The catechol-O-methyltransferase and dopamine transporter genes moderated the impact of peer relationships on adolescent depressive symptoms: A gene-gene- environment study. Journal of Youth and Adolescence, 47( 11), 2468-2480.
[10] Cao Y. M., Wang M. P., Cao C., Ji L. Q., & Zhang W. X . ( 2017). The interaction between dopamine D2 receptor gene TaqIA polymorphim and peer victimization on early adolescent depression. Acta Psychologica Sinica, 49( 1), 28-39.
[10] [ 曹衍淼, 王美萍, 曹丛, 纪林芹, 张文新 . ( 2017). DRD2基因TaqIA多态性与同伴侵害对青少年早期抑郁的交互作用. 心理学报, 49, 28-39.]
[11] Chen J., Li X. Y., & McGue M. ( 2013). The interacting effect of the BDNF Val66Met polymorphism and stressful life events on adolescent depression is not an artifact of gene-environment correlation: Evidence from a longitudinal twin study. Journal of Child Psychology and Psychiatry, 54( 10), 1066-1073.
[12] Chen X. Y., Bian Y. F., Xin T., Wang L., & Silbereisen R. K. ( 2010). Perceived social change and childrearing attitudes in China. European Psychologist, 15( 4), 260-270.
[13] Christ C. C., Schwartz J. A., Stoltenberg S. F., Brauer J. R., & Savolainen J. ( 2018). The effect of MAOA and stress sensitivity on crime and delinquency: A replication study. Journal of Contemporary Criminal Justice, 34( 3), 336-353.
[14] Cole D. A., Tram J. M., Martin J. M., Hoffman K. B., Ruiz M. D., Jacquez F. M., & Maschman T. L. ( 2002). Individual differences in the emergence of depressive symptoms in children and adolescents: A longitudinal investigation of parent and child reports. Journal of Abnormal Psychology, 111( 1), 156-165.
[15] Coley R. L., Sims J., & Carrano J. ( 2017). Environmental risks outweigh dopaminergic genetic risks for alcohol use and abuse from adolescence through early adulthood. Drug and Alcohol Dependence, 175, 106-118.
[16] Costa A., Riedel M., Müller U., M?ller H. J., & Ettinger U. ( 2011). Relationship between SLC6A3 genotype and striatal dopamine transporter availability: A meta-analysis of human single photon emission computed tomography studies. Synapse, 65( 10), 998-1005.
[17] Dallaire D. H., Pineda A. Q., Cole D. A., Ciesla J. A., Jacquez F., LaGrange B., & Bruce A. E. ( 2006). Relation of positive and negative parenting to children's depressive symptoms. Journal of Clinical Child & Adolescent Psychology, 35( 2), 313-322.
[18] Dalton E. D., Hammen C. L., Najman J. M., & Brennan P. ( 2014). Genetic susceptibility to family environment: BDNF Val66met and 5-HTTLPR influence depressive symptoms. Journal of Family Psychology, 28( 6), 947-956.
[19] Davies P., Cicchetti D., & Hentges R. F. ( 2015). Maternal unresponsiveness and child disruptive problems: The interplay of uninhibited temperament and dopamine transporter genes. Child Development, 86( 1), 63-79.
[20] Dick D. M., Agrawal A., Keller M. C., Adkins A., Aliev F., Monroe S., .. Sher K. J. ( 2015). Candidate gene- environment interaction research: Reflections and recommendations. Perspectives on Psychological Science, 10( 1), 37-59.
[21] Doehring A., Kirchhof A., & L?tsch J. ( 2009). Genetic diagnostics of functional variants of the human dopamine D2 receptor gene. Psychiatric Genetics, 19( 5), 259-268.
[22] Duncan, L. E., & Keller, M. C. ( 2011). A critical review of the first 10 years of candidate gene-by-environment interaction research in psychiatry. American Journal of Psychiatry, 168( 10), 1041-1049.
[23] Dunlop, B. W., & Nemeroff, C. B. ( 2007). The role of dopamine in the pathophysiology of depression. Archives of General Psychiatry, 64( 3), 327-337.
[24] Dunn E. C., Uddin M., Subramanian S. V., Smoller J. W., Galea S., & Koenen K. C. ( 2011). Research review: Gene-environment interaction research in youth depression - A systematic review with recommendations for future research. Journal of Child Psychology and Psychiatry, 52( 12), 1223-1238.
[25] Evans, M. G. ( 1985). A Monte Carlo study of the effects of correlated method variance in moderated multiple regression analysis. Organizational Behavior and Human Decision Processes, 36( 3), 305-323.
[26] Ferro M. A., Gorter J. W., & Boyle M. H. ( 2015). Trajectories of depressive symptoms during the transition to young adulthood: The role of chronic illness. Journal of Affective Disorders, 174, 594-601.
[27] Giros B., Jaber M., Jones S. R., Wightman R. M., & Caron M. G. ( 1996). Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter. Nature, 379, 606-612.
[28] Hamza, C. A., & Willoughby, B. ( 2011). Perceived parental monitoring, adolescent disclosure, and adolescent depressive symptoms: A longitudinal examination. Journal of Youth and Adolescence, 40( 7), 902-915.
[29] Heinz A., Goldman D., Jones D. W., Palmour R., Hommer D., Gorey J. G., .. Weinberger D. R. ( 2000). Genotype influences in vivo dopamine transporter availability in human striatum. Neuropsychopharmacology, 22( 2), 133-139.
[30] Kim S. H., Yoon H., Kim H., & Hamann S. ( 2015). Individual differences in sensitivity to reward and punishment and neural activity during reward and avoidance learning. Social Cognitive and Affective Neuroscience, 10( 9), 1219-1227.
[31] Kovacs, M. ( 1992). Children’s depression inventory (CDI) manual. Toronto, Canada: Multi-Health Systems Inc.
[32] Lee S. G., Joo Y., Kim B., Chung S., Kim H. L., Lee I., .. Song K. ( 2005). Association of Ala72Ser polymorphism with COMT enzyme activity and the risk of schizophrenia in Koreans. Human Genetics, 116( 4), 319-328.
[33] Lewis D. A., Melchitzky D. S., Sesack S. R., Whitehead R. E., & Sampson A. ( 2001). Dopamine transporter immunoreactivity in monkey cerebral cortex: Regional, laminar, and ultrastructural localization. Journal of Comparative Neurology, 432( 1), 119-136.
[34] Lin C. H., Chaudhuri K. R., Fan J. Y., Ko C. I., Rizos A., Chang C. W., .. Wu Y. R. ( 2017). Depression and catechol-O-methyltransferase (COMT) genetic variants are associated with pain in Parkinson’s disease. Scientific Reports, 7, 6306.
[35] Luebbe, A. M., & Bell, D. J. ( 2014). Positive and negative family emotional climate differentially predict youth anxiety and depression via distinct affective pathways. Journal of Abnormal Child Psychology, 42( 6), 897-911.
[36] Manolio T. A., Collins F. S., Cox N. J., Goldstein D. B., Hindorff L. A., Hunter D. J., .. Cho J. H. ( 2009). Finding the missing heritability of complex diseases. Nature, 461( 7265), 747-753.
[37] Matsumoto M., Weickert C. S., Beltaifa S., Kolachana B., Chen J., Hyde T. M., .. Kleinman J. E. ( 2003). Catechol O-methyltransferase (COMT) mRNA expression in the dorsolateral prefrontal cortex of patients with schizophrenia. Neuropsychopharmacology, 28( 8), 1521-1530.
[38] Monroe, S. M., & Simons, A. D. ( 1991). Diathesis-stress theories in the context of life stress research: Implications for the depressive disorders. Psychological Bulletin, 110( 3), 406-425.
[39] Natsuaki M. N., Biehl M. C., & Ge X. ( 2009). Trajectories of depressed mood from early adolescence to young adulthood: The effects of pubertal timing and adolescent dating. Journal of Research on Adolescence, 19( 1), 47-74.
[40] Nikolova Y. S., Ferrell R. E., Manuck S. B., & Hariri A. R. ( 2011). Multilocus genetic profile for dopamine signaling predicts ventral striatum reactivity. Neuropsychopharmacology, 36( 9), 1940-1947.
[41] Nivard M. G., Dolan C. V., Kendler K. S., Kan K. J., Willemsen G., van Beijsterveldt, C. E. M., .. Boomsma D. I. ( 2015). Stability in symptoms of anxiety and depression as a function of genotype and environment: A longitudinal twin study from ages 3 to 63 years. Psychological Medicine, 45( 5), 1039-1049.
[42] Noble E. P., Gottschalk L. A., Fallon J. H., Ritchie T. L., & Wu J. C. ( 1997). D2 dopamine receptor polymorphism and brain regional glucose metabolism. American Journal of Medical Genetics, 74( 2), 162-166.
[43] Olino T. M., McMakin D. L., Nicely T. A., Forbes E. E., Dahl R. E., & Silk J. S. ( 2016). Maternal depression, parenting, and youth depressive symptoms: Mediation and moderation in a short-term longitudinal study. Journal of Clinical Child & Adolescent Psychology, 45( 3), 279-290.
[44] Opmeer E. M., Kortekaas R., & Aleman A. ( 2010). Depression and the role of genes involved in dopamine metabolism and signalling. Progress in Neurobiology, 92( 2), 112-133.
[45] Pearson-Fuhrhop K. M., Dunn E. C., Mortero S., Devan W. J., Falcone G. J., Lee P., .. Cramer S. C. ( 2014). Dopamine genetic risk score predicts depressive symptoms in healthy adults and adults with depression. PLoS One, 9( 5), e93772.
[46] Petersen I. T., Bates J. E., Goodnight J. A., Dodge K. A., Lansford J. E., Pettit G. S., .. Dick D. M. ( 2012). Interaction between serotonin transporter polymorphism (5-HTTLPR) and stressful life events in adolescents' trajectories of anxious/depressed symptoms. Developmental Psychology, 48( 5), 1463-1475.
[47] Peyrot W. J., Milaneschi Y., Abdellaoui A., Sullivan P. F., Hottenga J. J., Boomsma D. I., & Penninx, B. W. J. H. ( 2014). Effect of polygenic risk scores on depression in childhood trauma. The British Journal of Psychiatry, 205( 2), 113-119.
[48] Pinsonneault J. K., Han D. D., Burdick K. E., Kataki M., Bertolino A., Malhotra A. K., .. Sadee W. ( 2011). Dopamine transporter gene variant affecting expression in human brain is associated with bipolar disorder. Neuropsychopharmacology, 36( 8), 1644-1655.
[49] Plomin R. , DeFries, J. C., McClearn, G. E., & McGuffin, P.( 2001) . Behavioral Genetics (Wen, N., Wang, X. H., Yang, Y. P., & Liu, X. L. Trans.). Shanghai, China: Huadong Normal University Press. (Original work published 2001).
[49] [ Plomin R., DeFries, J. C., McClearn, G. E., & McGuffin, P.( 2001). 行为遗传学. (温暖, 王小惠, 杨彦平, 刘晓陵译). 上海: 华东师范大学出版社.]
[50] Quach A. S., Epstein N. B., Riley P. J., Falconier M. K., & Fang X. ( 2015). Effects of parental warmth and academic pressure on anxiety and depression symptoms in Chinese adolescents. Journal of Child and Family Studies, 24( 1), 106-116.
[51] Roisman G. I., Newman D. A., Fraley R. C., Haltigan J. D., Groh A. M., & Haydon K. C. ( 2012). Distinguishing differential susceptibility from diathesis-stress: Recommendations for evaluating interaction effects. Development and Psychopathology, 24( 2), 389-409.
[52] Smokowski P. R., Bacallao M. L., Cotter K. L., & Evans, C. B. R. ( 2015). The effects of positive and negative parenting practices on adolescent mental health outcomes in a multicultural sample of rural youth. Child Psychiatry & Human Development, 46( 3), 333-345.
[53] Stocker C. M., Masarik A. S., Widaman K. F., Reeb B. T., Boardman J. D., Smolen A., .. Conger K. J. ( 2017). Parenting and adolescents’ psychological adjustment: Longitudinal moderation by adolescents’ genetic sensitivity. Development and Psychopathology, 29( 4), 1289-1304.
[54] Vrshek-Schallhorn S., Stroud C. B., Mineka S., Zinbarg R. E., Adam E. K., Redei E. E., .. Craske M. G. ( 2015). Additive genetic risk from five serotonin system polymorphisms interacts with interpersonal stress to predict depression. Journal of Abnormal Psychology, 124( 4), 776-790.
[55] Wang C. X., Xia Y., Li W. Z., Wilson S. M., Bush K., & Peterson G. ( 2016). Parenting behaviors, adolescent depressive symptoms, and problem behavior: The role of self-esteem and school adjustment difficulties among Chinese adolescents. Journal of Family Issues, 37( 4), 520-542.
[56] Wang, M. P . ( 2015). Theory models on gene-environment interaction. Advances in Psychological Science, 23, 1852-1858.
[56] [ 王美萍 . ( 2015). 基因-环境交互作用理论模型及其检验方法. 心理科学进展, 23, 1852-1858.]
[57] Widaman K. F., Helm J. L., Castro-Schilo L., Pluess M., Stallings M. C., & Belsky J. ( 2012). Distinguishing ordinal and disordinal interactions. Psychological Methods, 17( 4), 615-622.
[58] Xia, L. W., & Yao, S. Q. ( 2015). The involvement of genes in adolescent depression: A systematic review. Frontiers in Behavioral Neuroscience, 9, 329.
[59] Xing Q. H., Qian X. Q., Li H. F., Wong S. M., Wu S. N., Feng G. Y., .. He L. ( 2007). The relationship between the therapeutic response to risperidone and the dopamine D2 receptor polymorphism in Chinese schizophrenia patients. International Journal of Neuropsychopharmacology, 10( 5), 631-637.
[60] Zhang, J. P., & Malhotra, A. K. ( 2011). Pharmacogenetics and antipsychotics: therapeutic efficacy and side effects prediction. Expert Opinion on Drug Metabolism & Toxicology, 7( 1), 9-37.
[61] Zhang W. X., Cao Y. M., Wang M. P., Ji L. Q., Chen L., & Deater-Deckard K. ( 2015). The dopamine D2 receptor Polymorphism (DRD2 TaqIA) interacts with maternal parenting in predicting early adolescent depressive symptoms: Evidence of differential susceptibility and age differences. Journal of Youth and Adolescence, 44( 7), 1428-1440.
[1] WANG Meiping; JI Linqin; ZHANG Wenxin. Interaction Effects between rs6323 Polymorphism in the MAOA Gene and Peer Relationship on Early Depression among Male Adolescents[J]. Acta Psychologica Sinica, 2015, 47(10): 1260-1268.
[2] WU Shuai;AN Shucheng;CHEN Huibin;LI Fei. Orbital Frontal Cortex D1 Dopamine Receptor Modulate Glutamate and NMDA Receptor in Depression Induced by Chronic Unpredictable Mild Stress[J]. Acta Psychologica Sinica, 2014, 46(1): 69-78.
[3] YUAN Shui-Xia,XU Hui,LI Xia,GU Kai,ZUO Yang-Fan,LU Qin-Qin,DAI Shu-Fen,YU Ping. The Effects of Haloperidol on Neuronal Firing in Rats Anterior Cingulate Cortex During Cost-Benefit Decision-Making Tasks[J]. , 2012, 44(3): 338-353.
[4] Sui Nan, Chen Jing (Institute of Psychology, Chinese Academy of Sciences, Beijing 100101). DRUG ADDICTION BEHAVIOR AND ITS POTENTIAL BIOLOGICAL MECHANISM[J]. , 2000, 32(02): 235-240.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Acta Psychologica Sinica
Support by Beijing Magtech