Please wait a minute...
Acta Psychologica Sinica    2019, Vol. 51 Issue (7) : 795-804     DOI: 10.3724/SP.J.1041.2019.00795
Reports of Empirical Studies |
Role of the human mirror system in automatic processing of musical emotion: Evidence from EEG
ZHAO Huaiyang1,JIANG Jun2,ZHOU Linshu2,JIANG Cunmei2()
1 Department of Psychology, College of Education, Shanghai Normal University, Shanghai 200234, China
2 Music College, Shanghai Normal University, Shanghai 200234, China
Download: PDF(5624 KB)   HTML Review File (1 KB) 
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks     Supporting Info
Guide   
Abstract  

The human mirror system (HMS) consists of a core parietofrontal network of regions in the inferior parietal lobule and inferior frontal gyrus/premotor cortex, which can be activated by action observation and execution. Mu rhythm suppression is considered an electrophysiological indicator of the HMS given their similarity in reaction to action observation and execution. Mu rhythm comprises α (8-13 Hz) and β (15-25 Hz) frequency bands, which are typically measured at the power change of midline electrode sites. The β frequency band is related to the movement preparation, whereas the α frequency band is suppressed during the execution of movement.
Consistent with the role of the HMS in social cognition, such as emotion understanding, theory of mind, and empathy, mu rhythm suppression is modulated by the processing of social information, such as facial emotional information. Emotion is an important component of social communication. In addition to the emotional facial expression, music is an effective means of expressing emotions through imitation, and for most of people, the main purpose of listening to music is to process musical emotions. However, information on whether mu rhythm suppression is involved in the processing of musical emotions is limited.
The aims of the present study were to examine whether mu rhythm suppression is modulated by the processing of musical emotions using Electroencephalogram (EEG). Given that the HMS is involved in the automatic processing of musical emotions, the present study focused on this point by using a cross-modal affective priming paradigm with an SOA of 200 ms. Fifteen musically untrained normal individuals participated in the experiment. Target faces with pleasant and unpleasant emotions were primed by affectively congruous or incongruous chords. Forty-eight congruous and 48 incongruous trials were included in the present study. The participants were instructed to decide as fast and accurately as possible whether the emotion of the face was pleasant or unpleasant.
Behavioral results showed that the affectively congruous target faces (M = 575.17 ms, SD = 75.34) were judged faster than affectively incongruous target faces (M = 605.38 ms, SD = 87.74). However, no difference was observed in the percentages of correct responses to the affectively congruous (M = 98%, SD = 2.4%) and incongruous (M = 97%, SD = 2.5%) target faces. Electrophysiological results revealed that the β frequency band (18-24 Hz) oscillations were less strong for incongruous than for congruous target faces at a time window of 500-650 ms after the onset of chords. A significant desynchronization of the α frequency band was observed for both the congruous and incongruous target stimuli at a time window of 300-450 ms after the onset of chords. Moreover, source analysis exhibited the central-frontal area responsible for automatic musical emotion processing, where the HMS is located.
Overall, the present study showed that mu rhythm suppression was involved in the automatic processing of chord emotions, as shown in the α and β frequency bands. The results extend the role of the mu rhythm and provide electrophysiological support for the role of the HMS in the processing of musical emotions.

Keywords chord emotion      &mu      rhythm      &alpha      frequency band      &beta      frequency band      human mirror system     
ZTFLH:  B845  
Corresponding Authors: Cunmei JIANG     E-mail: cunmeijiang@126.com
Issue Date: 22 May 2019
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHAO Huaiyang
JIANG Jun
ZHOU Linshu
JIANG Cunmei
Cite this article:   
ZHAO Huaiyang,JIANG Jun,ZHOU Linshu, et al. Role of the human mirror system in automatic processing of musical emotion: Evidence from EEG[J]. Acta Psychologica Sinica, 2019, 51(7): 795-804.
URL:  
http://journal.psych.ac.cn/xlxb/EN/10.3724/SP.J.1041.2019.00795     OR     http://journal.psych.ac.cn/xlxb/EN/Y2019/V51/I7/795
  
  
  
[1] Arnstein D., Cui F., Keysers C., Maurits N. M., & Gazzola V . ( 2011). μ-suppression during action observation and execution correlates with BOLD in dorsal premotor, inferior parietal, and SI cortices. The Journal of Neuroscience, 31( 40), 14243-14249.
url: http://www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.0963-11.2011
[2] Bechtold L., Ghio M., Lange J., & Bellebaum C . ( 2018). Event-related desynchronization of mu and beta oscillations during the processing of novel tool names. Brain and Language, 177-178, 44-55.
url: https://linkinghub.elsevier.com/retrieve/pii/S0093934X17301104
[3] Berntsen M. B., Cooper N. R., & Romei V . ( 2017). Transcranial alternating current stimulation to the inferior parietal lobe decreases mu suppression to egocentric, but not allocentric hand movements. Neuroscience, 344, 124-132.
url: https://linkinghub.elsevier.com/retrieve/pii/S030645221630745X
[4] Blood A. J., Zatorre R. J., Bermudez P., & Evans A. C . ( 1999). Emotional responses to pleasant and unpleasant music correlate with activity in paralimbic brain regions. Nature Neuroscience, 2( 4), 382-387.
[5] Braadbaart L., Williams J. H. G., & Waiter G. D . ( 2013). Do mirror neuron areas mediate mu rhythm suppression during imitation and action observation? International Journal of Psychophysiology, 89( 1), 99-105.
url: https://linkinghub.elsevier.com/retrieve/pii/S0167876013001712
[6] Carr L., Iacoboni M., Dubeau M. C., Mazziotta J. C., & Lenzi G. L . ( 2003). Neural mechanisms of empathy in humans: A relay from neural systems for imitation to limbic areas. Proceedings of the National Academy of Sciences of the United States of America, 100( 9), 5497-5502.
url: http://www.pnas.org/cgi/doi/10.1073/pnas.0935845100
[7] Caspers S., Zilles K., Laird A. R., & Eickhoff S. B . ( 2010). ALE meta-analysis of action observation and imitation in the human brain. NeuroImage, 50( 3), 1148-1167.
url: https://linkinghub.elsevier.com/retrieve/pii/S1053811909014013
[8] Chan L. P., Livingstone S. R., & Russo F. A . ( 2013). Facial mimicry in response to song. Music Perception, 30( 4), 361-367.
url: http://mp.ucpress.edu/cgi/doi/10.1525/mp.2013.30.4.361
[9] Chen X. H., Pan Z. H., Wang P., Yang X. H., Liu P., You X. Q., & Yuan J. J . ( 2016). The integration of facial and vocal cues during emotional change perception: EEG markers. Social Cognitive and Affective Neuroscience, 11( 7), 1152-1161.
url: https://academic.oup.com/scan/article-lookup/doi/10.1093/scan/nsv083
[10] Cohen M. X., & Ridderinkhof K. R . ( 2013). EEG source reconstruction reveals frontal-parietal dynamics of spatial conflict processing. PLoS ONE, 8( 2), e57293. doi: 10.1371/journal.pone.0057293
doi: 10.1371/journal.pone.0057293 url: https://dx.plos.org/10.1371/journal.pone.0057293
[11] Collins A. M., & Loftus E. F . ( 1975). A spreading-activation theory of semantic processing. Psychological Review, 82( 6), 407-428.
url: http://content.apa.org/journals/rev/82/6/407
[12] Crowder R. G., Reznick J. S., & Rosenkrantz S. L . ( 1991). Perception of the major/minor distinction: V. Preferences among infants. Bulletin of the Psychonomic Society, 29( 3), 187-188.
url: http://link.springer.com/10.3758/BF03342673
[13] Davies S. , (1994). Musical meaning and expression. New York, NY: Cornell University Press.
[14] de Groot A. M. B, . ( 1984). Primed lexical decision: Combined effects of the proportion of related prime-target pairs and the stimulus-onset asynchrony of prime and target. The Quarterly Journal of Experimental Psychology Section A, 36( 2), 253-280.
url: http://journals.sagepub.com/doi/10.1080/14640748408402158
[15] Debnath R., Salo V. C., Buzzell G. A., Yoo K. H., & Fox N. A . ( 2019). Mu rhythm desynchronization is specific to action execution and observation: Evidence from time-frequency and connectivity analysis. NeuroImage, 184, 496-507.
url: https://linkinghub.elsevier.com/retrieve/pii/S1053811918318585
[16] Désy M. C., & Lepage J. F . ( 2013). Skin color has no impact on motor resonance: Evidence from mu rhythm suppression and imitation. Neuroscience Research, 77( 1-2), 58-63.
url: https://linkinghub.elsevier.com/retrieve/pii/S0168010213001880
[17] Di Cesare G., Fasano F., Errante A., Marchi M., & Rizzolatti G . ( 2016). Understanding the internal states of others by listening to action verbs. Neuropsychologia, 89, 172-179.
url: https://linkinghub.elsevier.com/retrieve/pii/S0028393216302160
[18] Faul F., Erdfelder E., Lang A. G., & Buchner A . ( 2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39( 2), 175-191.
url: http://www.springerlink.com/index/10.3758/BF03193146
[19] Fox N. A., Bakermans-Kranenburg M. J., Yoo K. H., Bowman L. C., Cannon E. N., Vanderwert R. E., van Ijzendoorn, M. H. ., ( 2016). Assessing human mirror activity with EEG mu rhythm: A meta-analysis. Psychological Bulletin, 142( 3), 291-313.
url: http://doi.apa.org/getdoi.cfm?doi=10.1037/bul0000031
[20] Frenkel-Toledo S., Bentin S., Perry A., Liebermann D. G., & Soroker N . ( 2013). Dynamics of the EEG power in the frequency and spatial domains during observation and execution of manual movements. Brain Research, 1509, 43-57.
url: https://linkinghub.elsevier.com/retrieve/pii/S000689931300334X
[21] Fu Y., & Franz E. A . ( 2014). Viewer perspective in the mirroring of actions. Experimental Brain Research, 232( 11), 3665-3674.
url: http://link.springer.com/10.1007/s00221-014-4042-6
[22] Gazzola V., Aziz-Zadeh L., & Keysers C . ( 2006). Empathy and the somatotopic auditory mirror system in humans. Current Biology, 16( 18), 1824-1829.
url: https://linkinghub.elsevier.com/retrieve/pii/S0960982206021178
[23] Goerlich K. S., Witteman J., Schiller N. O., Van Heuven V. J., Aleman A., & Martens S . ( 2012). The nature of affective priming in music and speech. Journal of Cognitive Neuroscience, 24( 8), 1725-1741.
url: http://www.mitpressjournals.org/doi/10.1162/jocn_a_00213
[24] Gong Y., Huang Y. X., Wang Y., & Luo Y. J . ( 2011). Revision of the Chinese facial affective picture system. Chinese Mental Health Journal, 25( 1), 40-46.
[24] [ 龚栩, 黄宇霞, 王妍, 罗跃嘉 . ( 2011). 中国面孔表情图片系统的修订. 中国心理卫生杂志, 25( 1), 40-46. ]
[25] Gramfort A., Papadopoulo T., Olivi E., & Clerc M . ( 2010). OpenMEEG: Opensource software for quasistatic bioelectromagnetics. BioMedical Engineering OnLine, 9( 1), 45. doi: 10.1186/1475-925X-9-45
doi: 10.1186/1475-925X-9-45 url: http://biomedical-engineering-online.biomedcentral.com/articles/10.1186/1475-925X-9-45
[26] Hétu S., Grégoire M., Saimpont A., Coll M. P., Eugène F., Michon P. E., & Jackson P. L . ( 2013). The neural network of motor imagery: An ALE meta-analysis. Neuroscience & Biobehavioral Reviews, 37( 5), 930-949.
[27] Hobson H. M., & Bishop D. V. M . ( 2016). Mu suppression - A good measure of the human mirror neuron system? Cortex, 82, 290-310.
url: https://linkinghub.elsevier.com/retrieve/pii/S0010945216300570
[28] Hobson H. M., & Bishop D. V. M . ( 2017). The interpretation of mu suppression as an index of mirror neuron activity: Past, present and future. Royal Society Open Science, 4( 3). doi: 10.1098/rsos.160662
doi: 10.1098/rsos.160662
[29] Iacoboni M. & Dapretto M. ,( 2006). The mirror neuron system and the consequences of its dysfunction. Nature Reviews Neuroscience, 7( 12), 942-951.
[30] Iacoboni M., Woods R. P., Brass M., Bekkering H., Mazziotta J. C., & Rizzolatti G . ( 1999). Cortical mechanisms of human imitation. Science, 286( 5449), 2526-2528.
url: http://www.sciencemag.org/cgi/doi/10.1126/science.286.5449.2526
[31] Jardri R., Pins D., Bubrovszky M., Despretz P., Pruvo J. P., Steinling M., & Thomas P . ( 2007). Self awareness and speech processing: An fMRI study. NeuroImage, 35( 4), 1645-1653.
url: https://linkinghub.elsevier.com/retrieve/pii/S1053811907001012
[32] Johnson-Laird P. N., & Oatley, K., ,( 2008). Emotions, music, and literature. In M. Lewis, J. M. Haviland-Jones, & L. F. Barrett (Eds.), Handbook of emotions (3rd ed., pp. 102-113). New York, NY: The Guilford Press.
[33] Johnson-Laird P. N., Kang O. E., & Leong Y. C . ( 2012). On musical dissonance. Music Perception, 30( 1), 19-35.
url: http://mp.ucpress.edu/cgi/doi/10.1525/mp.2012.30.1.19
[34] Keuken M. C., Hardie A., Dorn B. T., Dev S., Paulus M. P., Jonas K. J., .. Pineda J. A . ( 2011). The role of the left inferior frontal gyrus in social perception: An rTMS study. Brain Research, 1383, 196-205.
url: https://linkinghub.elsevier.com/retrieve/pii/S0006899311001818
[35] Koelsch S. , ( 2013). Brain and music. West Sussex, UK: John Wiley & Sons.
[36] Koelsch S., Fritz T., v. Cramon D. Y., Müller K., & Friederici A. D . ( 2006). Investigating emotion with music: An fMRI study. Human Brain Mapping, 27( 3), 239-250.
url: http://doi.wiley.com/10.1002/%28ISSN%291097-0193
[37] Kuhlman W. N . ( 1978). Functional topography of the human mu rhythm Topographie fonctionnelle du rythme mu chez l'homme. Electroencephalography and Clinical Neurophysiology, 44( 1), 83-93.
url: https://linkinghub.elsevier.com/retrieve/pii/0013469478901074
[38] Lamm C., Decety J., & Singer T . ( 2011). Meta-analytic evidence for common and distinct neural networks associated with directly experienced pain and empathy for pain. NeuroImage, 54( 3), 2492-2502.
url: https://linkinghub.elsevier.com/retrieve/pii/S1053811910013066
[39] Leman M. , (2007). Embodied music cognition and mediation technology. Cambridge,MA: The MIT Press.
[40] Lense M. D., Gordon R. L., Key A. P. F., & Dykens E. M . ( 2014). Neural correlates of cross-modal affective priming by music in Williams syndrome. Social Cognitive and Affective Neuroscience, 9( 4), 529-537.
url: https://academic.oup.com/scan/article/9/4/529/1631350
[41] Liao Y., Acar Z. A., Makeig S., & Deak G . ( 2015). EEG imaging of toddlers during dyadic turn-taking: Mu-rhythm modulation while producing or observing social actions. NeuroImage, 112, 52-60.
url: https://linkinghub.elsevier.com/retrieve/pii/S1053811915001561
[42] Lin F. H., Witzel T., Ahlfors S. P., Stufflebeam S. M., Belliveau J. W., & Hämäläinen M. S . ( 2006). Assessing and improving the spatial accuracy in MEG source localization by depth-weighted minimum-norm estimates. NeuroImage, 31( 1), 160-171.
url: https://linkinghub.elsevier.com/retrieve/pii/S1053811905024973
[43] Lindquist K. A., Satpute A. B., Wager T. D., Weber J., & Barrett L. F . ( 2016). The brain basis of positive and negative affect: Evidence from a meta-analysis of the human neuroimaging literature. Cerebral Cortex, 26( 5), 1910-1922.
url: https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhv001
[44] Logeswaran N. & Bhattacharya J. , ( 2009). Crossmodal transfer of emotion by music. Neuroscience Letters, 455( 2), 129-133.
url: https://linkinghub.elsevier.com/retrieve/pii/S0304394009003279
[45] Lui F., Buccino G., Duzzi D., Benuzzi F., Crisi G., Baraldi P., .. Rizzolatti G . ( 2008). Neural substrates for observing and imagining non-object-directed actions. Social Neuroscience, 3( 3-4), 261-275.
url: http://www.tandfonline.com/doi/abs/10.1080/17470910701458551
[46] Mizuhara H. , ( 2012). Cortical dynamics of human scalp EEG origins in a visually guided motor execution. NeuroImage, 62( 3), 1884-1895.
url: https://linkinghub.elsevier.com/retrieve/pii/S1053811912005605
[47] Molenberghs P., Cunnington R., & Mattingley J. B . ( 2012). Brain regions with mirror properties: A meta-analysis of 125 human fMRI studies. Neuroscience & Biobehavioral Reviews, 36( 1), 341-349.
[48] Molnar-Szakacs I., & Overy K. , ( 2006). Music and mirror neurons: From motion to ’e’motion. Social Cognitive and Affective Neuroscience, 1( 3), 235-241.
url: https://academic.oup.com/scan/article-lookup/doi/10.1093/scan/nsl029
[49] Moore A., Gorodnitsky I., & Pineda J . ( 2012). EEG mu component responses to viewing emotional faces. Behavioural Brain Research, 226( 1), 309-316.
url: https://linkinghub.elsevier.com/retrieve/pii/S016643281100578X
[50] Moore M. R., & Franz, E. A . ( 2017). Mu rhythm suppression is associated with the classification of emotion in faces. Cognitive, Affective, & Behavioral Neuroscience, 17( 1), 224-234.
[51] Musch J., & Klauer K. C . ( 2003). The psychology of evaluation: Affective processes in cognition and emotion. Mahwah, NJ: Lawrence Erlbaum Associates.
[52] Muthukumaraswamy S. D., & Singh K. D . ( 2008). Modulation of the human mirror neuron system during cognitive activity. Psychophysiology, 45( 6), 896-905.
url: http://blackwell-synergy.com/doi/abs/10.1111/psyp.2008.45.issue-6
[53] Neely J. H . ( 1977). Semantic priming and retrieval from lexical memory: Roles of inhibitionless spreading activation and limited-capacity attention. Journal of Experimental Psychology: General, 106( 3), 226-254.
url: http://content.apa.org/journals/xge/106/3/226
[54] Nigbur R., Cohen M. X., Ridderinkhof K. R., & Stürmer B . ( 2012). Theta dynamics reveal domain-specific control over stimulus and response conflict. Journal of Cognitive Neuroscience, 24( 5), 1264-1274.
url: http://www.mitpressjournals.org/doi/10.1162/jocn_a_00128
[55] Peled-Avron L., Goldstein P., Yellinek S., Weissman-Fogel I., & Shamay-Tsoory S. G . ( 2018). Empathy during consoling touch is modulated by mu-rhythm: An EEG study. Neuropsychologia, 116, 68-74
url: https://linkinghub.elsevier.com/retrieve/pii/S0028393217301550
[56] Phillips M. L., Young A. W., Senior C., Brammer M., Andrew C., Calder A. J., .. David A. S . ( 1997). A specific neural substrate for perceiving facial expressions of disgust. Nature, 389( 6650), 495-498.
[57] Rayson H., Bonaiuto J. J., Ferrari P. F., & Murray L . ( 2016). Mu desynchronization during observation and execution of facial expressions in 30-month-old children. Developmental Cognitive Neuroscience, 19, 279-287.
url: https://linkinghub.elsevier.com/retrieve/pii/S1878929315301067
[58] Ricciardi E., Bonino D., Sani L., Vecchi T., Guazzelli M., Haxby J. V., … Pietrini P . ( 2009). Do we really need vision? How blind people “see” the actions of others. The Journal of Neuroscience, 29( 31), 9719-9724.
url: http://www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.0274-09.2009
[59] Rizzolatti G.& Craighero L. , ( 2004). The mirror-neuron system. Annual Review of Neuroscience, 27, 169-192.
url: http://www.annualreviews.org/doi/10.1146/annurev.neuro.27.070203.144230
[60] Sakreida K., Higuchi S., Di Dio C., Ziessler M., Turgeon M., Roberts N., & Vogt S . ( 2018). Cognitive control structures in the imitation learning of spatial sequences and rhythms—An fMRI study. Cerebral Cortex, 28( 3), 907-923.
url: https://academic.oup.com/cercor/article/28/3/907/2888458
[61] Schneider T. R., Debener S., Oostenveld R., & Engel A. K . ( 2008). Enhanced EEG gamma-band activity reflects multisensory semantic matching in visual-to-auditory object priming. NeuroImage, 42( 3), 1244-1254.
url: https://linkinghub.elsevier.com/retrieve/pii/S1053811908006502
[62] Sievers B., Polansky L., Casey M., & Wheatley T . ( 2013). Music and movement share a dynamic structure that supports universal expressions of emotion. Proceedings of the National Academy of Sciences of the United States of America, 110( 1), 70-75.
url: http://www.pnas.org/cgi/doi/10.1073/pnas.1209023110
[63] Simos P. G., Kavroulakis E., Maris T., Papadaki E., Boursianis T., Kalaitzakis G., & Savaki H. E . ( 2017). Neural foundations of overt and covert actions. NeuroImage, 152, 482-496.
url: https://linkinghub.elsevier.com/retrieve/pii/S1053811917302446
[64] Singer T., Seymour B., Doherty J., Kaube H., Dolan R. J., & Frith C. D . ( 2004). Empathy for pain involves the affective but not sensory components of pain. Science, 303( 5661), 1157-1162.
url: http://www.sciencemag.org/cgi/doi/10.1126/science.1093535
[65] Sollberge B., Rebe R., & Eckstein D . ( 2003). Musical chords as affective priming context in a word-evaluation task. Music Perception, 20( 3), 263-282.
url: http://mp.ucpress.edu/cgi/doi/10.1525/mp.2003.20.3.263
[66] Stančák A., Riml A., & Pfurtscheller G . ( 1997). The effects of external load on movement-related changes of the sensorimotor EEG rhythms. Electroencephalography and Clinical Neurophysiology, 102( 6), 495-504.
[67] Steinbeis N. & Koelsch S. ,( 2008). Comparing the processing of music and language meaning using EEG and fMRI provides evidence for similar and distinct neural representations. PLoS ONE, 3( 5), e2226. doi: 10.1371/journal.pone. 0002226
doi: 10.1371/journal.pone. 0002226 url: https://dx.plos.org/10.1371/journal.pone.0002226
[68] Steinbeis N. & Koelsch S. , ( 2011). Affective priming effects of musical sounds on the processing of word meaning. Journal of Cognitive Neuroscience, 23( 3), 604-621.
url: http://www.mitpressjournals.org/doi/10.1162/jocn.2009.21383
[69] Tang D. D., Hu L., & Chen A. T . ( 2013). The neural oscillations of conflict adaptation in the human frontal region. Biological Psychology, 93( 3), 364-372.
url: https://linkinghub.elsevier.com/retrieve/pii/S0301051113000938
[70] Tettamanti M., Buccino G., Saccuman M. C., Gallese V., Danna M., Scifo P., … Perani D . ( 2005). Listening to action-related sentences activates fronto-parietal motor circuits. Journal of Cognitive Neuroscience, 17( 2), 273-281.
url: http://www.mitpressjournals.org/doi/10.1162/0898929053124965
[71] Tettamanti M., Manenti R., Della Rosa P. A., Falini A., Perani D., Cappa S. F., & Moro A . ( 2008). Negation in the brain: Modulating action representations. NeuroImage, 43( 2), 358-367.
url: https://linkinghub.elsevier.com/retrieve/pii/S1053811908009014
[72] Tzagarakis C., Ince N. F., Leuthold A. C., & Pellizzer G . ( 2010). Beta-band activity during motor planning reflects response uncertainty. The Journal of Neuroscience, 30( 34), 11270-11277.
url: http://www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.6026-09.2010
[73] van Elk M., van Schie H. T., Zwaan R. A., & Bekkering H . ( 2010). The functional role of motor activation in language processing: Motor cortical oscillations support lexical-semantic retrieval. NeuroImage, 50( 2), 665-677.
url: https://linkinghub.elsevier.com/retrieve/pii/S1053811910000042
[74] Warren J. E., Sauter D. A., Eisner F., Wiland J., Dresner M. A., Wise R. J., … Scott S. K . ( 2006). Positive emotions preferentially engage an auditory-motor “mirror” system. The Journal of Neuroscience, 26( 50), 13067-13075.
url: http://www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.3907-06.2006
[75] Wicker B., Keysers C., Plailly J., Royet J. P., Gallese V., & Rizzolatti G . ( 2003). Both of us disgusted in My insula: The common neural basis of seeing and feeling disgust. Neuron, 40( 3), 655-664.
url: https://linkinghub.elsevier.com/retrieve/pii/S0896627303006792
[76] Wolpaw J. R., McFarland D. J., Neat G. W., & Forneris C. A . ( 1991). An EEG-based brain-computer interface for cursor control. Electroencephalography and Clinical Neurophysiology, 78( 3), 252-259.
url: https://linkinghub.elsevier.com/retrieve/pii/001346949190040B
[77] Yang C. Y., Decety J., Lee S., Chen C., & Cheng Y. W . ( 2009). Gender differences in the mu rhythm during empathy for pain: An electroencephalographic study. Brain Research, 1251, 176-184.
url: https://linkinghub.elsevier.com/retrieve/pii/S0006899308028278
[78] Zhang Y., Chen Y. H., Bressler S. L., & Ding M. Z . ( 2008). Response preparation and inhibition: The role of the cortical sensorimotor beta rhythm. Neuroscience, 156( 1), 238-246.
url: https://linkinghub.elsevier.com/retrieve/pii/S0306452208009809
[1] GU Chuanhua; WANG Yali; WU Caifu; XIE Xianglong; CUI Chengzhu; WANG Yaxian; WANG Wanzhen; HU Biying; ZHOU Zongkui. Brain Correlates underlying Social Creative Thinking: EEG Alpha Activity in Trait vs. State Creativity[J]. Acta Psychologica Sinica, 2015, 47(6): 765-773.
[2] Wang-Yunjia,Chu-Min,He-Lin. Classification and Distribution of Sentence Stress in Mandarin[J]. , 2003, 35(06): 734-742.
[3] Liu Shiyi (Shanghai Institute of Physiology, Academia Sinica, Shanghai 200031, China ). SOME CONTEMPORARY THEORETICAL QUESTIONS IN SLEEP RESEARCH[J]. , 1996, 28(03): 299-306.
[4] Liu Shiyi,Chen Ming,Zhang Yi,Zhang Wenyuan,Dai Xiuju Shanghai Institute of Physiology, Academia Sinica. A STUDY ON CIRCADIAN BODY TEMPERATURE “CLOCK” IN YOUNG ADULT SUBJECTS[J]. , 1993, 25(03): 42-48.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Acta Psychologica Sinica
Support by Beijing Magtech