Please wait a minute...
Acta Psychologica Sinica    2019, Vol. 51 Issue (7) : 759-771     DOI: 10.3724/SP.J.1041.2019.00759
Reports of Empirical Studies |
Visually induced inhibition of return affects the audiovisual integration under different SOA conditions
PENG Xing1,CHANG Ruosong1,LI Qi2,WANG Aijun3(),TANG Xiaoyu1()
1 School of Psychology, Liaoning Collaborative Innovation Center of Children and Adolescents Healthy Personality Assessment and Cultivation, Liaoning Normal University, Dalian 116029, China
2 School of Computer Science and Technology, Changchun University of Science and Technology, Changchun 130022, China
3 Department of Psychology, Research Center for Psychology and Behavioral Sciences, Soochow University, Suzhou 215123, China
Download: PDF(852 KB)   HTML Review File (1 KB) 
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks     Supporting Info
Guide   
Abstract  

Both audiovisual integration and inhibition of return (IOR) can facilitate the processing of sensory information, such as enhancing the perceptual processing. Previous studies found that IOR decreased the audiovisual integration at previously attended locations. Several hypotheses have been put forward to explain the effect of IOR on audiovisual integration: perceptual sensitivity, spatial uncertainty, and differences in unimodal signal strength. In present study, we used cue-target paradigm and manipulated the SOA conditions (400~600 ms vs. 1000~1200 ms) to investigate how audiovisual integration would be modulated by IOR induced by visual exogenous spatial cues.
The current study was a 2 (SOA conditions: 400~600 ms, 1000~1200 ms) × 3 (target modalities: visual, auditory, audiovisual) × 2 (cue validities: cued, uncued) factorial design. Twenty-seven undergraduate students were recruited as paid volunteers from a university. The visual (V) target was a red and white block (1°×1°). The auditory (A) target (duration of 100 ms) was a 1000 Hz sinusoidal tone presented by speakers. The audiovisual (AV) target was composed by the simultaneous presentation of both the visual and the auditory stimuli. At the beginning of each trial, the fixation stimulus was presented for 800~1000 ms in the center of the display. Following the fixation stimulus, a visual white square served as a exogenous cue was presented for 50 ms at the left or right location randomly. Then, the fixation stimulus was randomly presented for 150~250/450~550 ms, which was followed by a central cue with a delay of 50 ms. Before the target (100 ms) occurrence, the fixation stimulus randomly appeared again for 150~250/450~550 ms. Thus, the SOA between the peripheral cue and the target was completed in 400~600/1000~1200 ms. The target (A, V, or AV) randomly appeared (6/7) for 100 ms in the left or right locations, or no stimulus appeared (1/7). During the experiment, participants were instructed to respond to the target stimulus at any possible locations by pressing a response button as quickly and accurately as possible.
The results showed that the responses to AV targets were faster than V or A targets, indicating the appearance of the bimodal advancement effect. A smaller magnitude of audiovisual IOR as compared to visual IOR was found whether it’s in short or long SOA conditions. In addition, visual IOR effect was significantly reduced under the long SOA condition compared with the short SOA condition while the audiovisual integration effect increased by SOA. The results of the relative multisensory response enhancement (rMRE), race model (probability difference) and positive area under the curve (pAUC) showed that audiovisual integration decreased at cued compared to uncued locations under the short SOA condition but not the long SOA condition.
Based on the aforementioned findings, it is assumed that visual IOR decreased the audiovisual integration in the short SOA, and audiovisual integration would be modulated by different SOA conditions. The current result supported the hypothesis of differences in unimodal signal strength.

Keywords exogenous spatial attention      audiovisual integration      inhibition of return      race model      cue-target paradigm     
ZTFLH:  B842  
Corresponding Authors: Aijun WANG,Xiaoyu TANG     E-mail: ajwang@suda.edu.cn;tangyu-2006@163.com
Issue Date: 22 May 2019
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xing PENG
Ruosong CHANG
Qi LI
Aijun WANG
Xiaoyu TANG
Cite this article:   
Xing PENG,Ruosong CHANG,Qi LI, et al. Visually induced inhibition of return affects the audiovisual integration under different SOA conditions[J]. Acta Psychologica Sinica, 2019, 51(7): 759-771.
URL:  
http://journal.psych.ac.cn/xlxb/EN/10.3724/SP.J.1041.2019.00759     OR     http://journal.psych.ac.cn/xlxb/EN/Y2019/V51/I7/759
  
  
条件 M 95% CI t p
下限 上限
短SOA
Cueing effect (ms)
V 38.77 31.54 46.00 11.09 0.000
A 1.83 -1.43 5.10 1.16 0.257
AV 16.00 11.55 20.45 7.43 0.000
Cueing effect对比(ms)
AV vs. V -22.77 -30.12 -15.43 -6.41 0.000
V vs. A 36.94 28.53 45.34 9.09 0.000
AV vs. A 14.17 9.06 19.28 5.74 0.000
rMRE对比(%)
无效vs.有效 3.20 1.53 4.87 3.97 0.001
pAUC对比(ms)
无效vs.有效 -4.30 -6.64 -1.96 -3.80 0.001
长SOA
Cueing effect (ms)
V 26.98 19.42 34.54 7.38 0.000
A 5.88 0.51 11.24 2.26 0.033
AV 10.85 5.88 15.83 4.51 0.000
Cueing effect对比(ms)
AV vs. V -16.13 -26.51 -5.74 -3.21 0.004
V vs. A 21.10 14.24 27.97 6.36 0.000
AV vs. A 4.98 -2.88 12.84 1.31 0.203
rMRE对比(%)
无效 vs. 有效 0.4 -1.78 2.59 0.38 0.706
pAUC对比(ms)
无效 vs. 有效 2.14 -1.12 5.40 1.36 0.188
  
  
  
  
[1] Agusti A. I., Satorres E., Pitarque A., & Meléndez J. C . ( 2017). Effects of SOA and age on the inhibition of return in a localization task. Current Psychology, 1-6.
[2] Calvert G. A., Spence C.& Stein, B. E.. ,( 2004). The handbook of multisensory processes. MIT Press.
[3] Carrasco M. , (2011). Visual attention: The past 25 years. Vision Research, 51( 13), 1484-1525.
url: https://linkinghub.elsevier.com/retrieve/pii/S0042698911001544
[4] Chica A. B., Bartolomeo P., & Lupiáñez J . ( 2013). Two cognitive and neural systems for endogenous and exogenous spatial attention. Behavioural Brain Research, 237( 1), 107-123.
url: https://linkinghub.elsevier.com/retrieve/pii/S0166432812006134
[5] Chica A. B., Lupianez J., & Bartolomeo P . ( 2006). Dissociating inhibition of return from endogenous orienting of spatial attention: Evidence from detection and discrimination tasks. Cognitive Neuropsychology, 23( 7), 1015-1034.
url: http://www.tandfonline.com/doi/abs/10.1080/02643290600588277
[6] Cohen J. , ( 1988). Statistical power analysis for the behavioral sciences (2nd Edition). . Erlbaum Associates.
[7] Giard M.H., & Peronnet F. , ( 1999). Auditory-visual integration during multimodal object recognition in humans: A behavioral and electrophysiological study. Journal of Cognitive Neuroscience, 11( 5), 473-490.
url: http://www.mitpressjournals.org/doi/10.1162/089892999563544
[8] Hershenson M. , ( 1962). Reaction time as a measure of intersensory facilitation. Journal of Experimental Psychology, 63( 3), 289-293.
url: http://content.apa.org/journals/xge/63/3/289
[9] Klein R. , ( 1988). Inhibitory tagging system facilitates visual search. Nature, 334( 6181), 430-431.
[10] Klein R. . ( 2000). Inhibition of return. Trends in Cognitive Sciences, 4( 4), 138-147.
url: https://linkinghub.elsevier.com/retrieve/pii/S1364661300014522
[11] Koningsbruggen M. G., Gabay S., Sapir A., Henik A., & Rafal R. D . ( 2010). Hemispheric asymmetry in the remapping and maintenance of visual saliency maps: A TMS study. Journal of Cognitive Neuroscience, 22( 8), 1730-1738.
url: http://www.mitpressjournals.org/doi/10.1162/jocn.2009.21356
[12] Laurienti P. J., Burdette J. H., Maldjian J. A., & Wallace M. T . ( 2006). Enhanced multisensory integration in older adults. Neurobiology of Aging, 27( 8), 1155-1163.
url: https://linkinghub.elsevier.com/retrieve/pii/S0197458005001600
[13] Lippert M., Logothetis N. K., & Kayser C . ( 2007). Improvement of visual contrast detection by a simultaneous sound. Brain Research, 1173( 1173), 102-109.
url: https://linkinghub.elsevier.com/retrieve/pii/S0006899307017921
[14] Liu Q . ( 2010). The research on brain mechanism of the multisenory integration (Unpublished doctorial dissertation). Southwest University, China.
[14] [ 刘强 . ( 2010). 多感觉整合脑机制研究(博士学位论文). 西南大学.]
[15] Lupiáñez J., Milán E. G., Tornay F. J., Madrid E., & Tudela P . ( 1997). Does IOR occur in discrimination tasks? Yes, it does, but later. Perception & Psychophysics, 59( 8), 1241-1254.
[16] Lupiáñez J., Ruz M., Funes M. J., & Milliken B . ( 2007). The manifestation of attentional capture: Facilitation or IOR depending on task demands. Psychological Research, 71( 1), 77-91.
url: http://link.springer.com/10.1007/s00426-005-0037-z
[17] Macaluso E., Noppeney U., Talsma D., Vercillo T., Hartcher-O’Brien J., & Adam R . ( 2016). The curious Incident of attention in multisensory integration: Bottom- up vs. top-down. Multisensory Research, 29( 6-7), 557-583.
url: https://brill.com/view/journals/msr/29/6-7/article-p557_3.xml
[18] Martínarévalo E., Chica A. B., & Lupiáñez J . ( 2015). No single electrophysiological marker for facilitation and inhibition of return: A review. Behavioural Brain Research, 300, 1-10.
[19] McDonald J. J., Tedersälejärvi W. A., Russo F. D., & Hillyard S. A . ( 2005). Neural basis of auditory-induced shifts in visual time-order perception. Nature Neuroscience, 8( 9), 1197-1202.
[20] Miller J. , ( 1982). Divided attention: Evidence for coactivation with redundant signals. Cognitive Psychology, 14( 2), 247-279.
url: https://linkinghub.elsevier.com/retrieve/pii/001002858290010X
[21] Miller J. ( 1986). Time course of coactivation in bimodal divided attention. Perception & Psychophysics, 40( 5), 331-343.
[22] Noesselt T., Tyll S., Boehler C. N., Budinger E., Heinze H. J., & Driver J . ( 2010). Sound-induced enhancement of low-intensity vision: Multisensory influences on human sensory-specific cortices and thalamic bodies relate to perceptual enhancement of visual detection sensitivity. Journal of Neuroscience, 30( 41), 13609-13623.
url: http://www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.4524-09.2010
[23] Otto T. U., Dassy B., & Mamassian P . ( 2013). Principles of multisensory behavior. Journal of Neuroscience, 33( 17), 7463-7474.
url: http://www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.4678-12.2013
[24] Posner M.I., & Cohen Y. , ( 1984). Components of visual orienting. Attention and Performance X: Control of Language Processes, 32, 531-556.
[25] Posner M. I., Rafal R. D., Choate L. S., & Vaughan J . ( 1985). Inhibition of return: Neural basis and function. Cognitive Neuropsychology, 2( 3), 211-228.
url: http://www.tandfonline.com/doi/abs/10.1080/02643298508252866
[26] Pratt J., & Fischer M.H . ( 2002). Examining the role of the fixation cue in inhibition of return. Canadian Journal of Experimental Psychology/Revue Canadienne de Psychologie Expérimentale, 56( 4), 294-301.
url: http://doi.apa.org/getdoi.cfm?doi=10.1037/h0087405
[27] Prime D. J., Visser T. A. W., & Ward L. M . ( 2006). Reorienting attention and inhibition of return. Perception & Psychophysics, 68( 8), 1310-1323.
[28] Prime D.J., & Ward L.M . ( 2006). Cortical expressions of inhibition of return. Brain Research, 1072( 1), 161-174.
url: https://linkinghub.elsevier.com/retrieve/pii/S0006899305016902
[29] Raab D.H . ( 1962). Statistical facilitation of simple reaction times. Transactions of the New York Academy of Sciences, 24( 5), 574-590.
url: http://doi.wiley.com/10.1111/j.2164-0947.1962.tb01433.x
[30] Reuter-Lorenz P. A., Jha A. P., & Rosenquist J. N . ( 1996). What is inhibited in inhibition of return? Journal of Experimental Psychology: Human Perception and Performance, 22( 2), 367-378.
url: http://doi.apa.org/getdoi.cfm?doi=10.1037/0096-1523.22.2.367
[31] Schmitt M., Postma A., & De H. E . ( 2000). Interactions between exogenous auditory and visual spatial attention. The Quarterly Journal of Experimental Psychology. A, Human Experimental Psychology, 53( 1), 105-130.
url: http://journals.sagepub.com/doi/10.1080/713755882
[32] Senkowski D., Saint-Amour D., Höfle M., & Foxe J. J . ( 2011). Multisensory interactions in early evoked brain activity follow the principle of inverse effectiveness. Neuroimage, 56( 4), 2200-2208.
url: https://linkinghub.elsevier.com/retrieve/pii/S1053811911003697
[33] Slagter H. A., Prinssen S., Reteig L. C., & Mazaheri A . ( 2016). Facilitation and inhibition in attention: Functional dissociation of pre-stimulus alpha activity, P1, and N1 components. Neuroimage, 125( 6), 25-35.
url: https://linkinghub.elsevier.com/retrieve/pii/S1053811915008800
[34] Spence C. , ( 2010). Crossmodal spatial attention. Annals of the New York Academy of Sciences, 1191( 1), 182-200.
url: http://blackwell-synergy.com/doi/abs/10.1111/nyas.2010.1191.issue-1
[35] Spence C., & Driver J. , ( 2004). Crossmodal space and crossmodal attention. Politics.
[36] Spence C., Lloyd D., Mcglone F., Nicholls M. E. R., & Driver J . ( 2000). Inhibition of return is supramodal: A demonstration between all possible pairings of vision, touch, and audition. Experimental Brain Research, 134( 1), 42-48.
url: http://link.springer.com/10.1007/s002210000442
[37] Stein B. E., London N., Wilkinson L. K., & Price D. D . ( 1996). Enhancement of perceived visual intensity by auditory stimuli: a psychophysical analysis. Journal of Cognitive Neuroscience, 8( 6), 497-506.
url: http://www.mitpressjournals.org/doi/10.1162/jocn.1996.8.6.497
[38] Stein B.E., & Meredith M.A . ( 1993). The merging of the senses. Journal of Cognitive Neuroscience, 5( 3), 373-374.
url: http://www.mitpressjournals.org/doi/10.1162/jocn.1993.5.3.373
[39] Stein B.E., & Stanford T.R . ( 2008). Multisensory integration: Current issues from the perspective of the single neuron. Nature Reviews Neuroscience, 9( 4), 255-266.
[40] Talsma D., Doty T. J., & Woldorff M. G . ( 2007). Selective attention and audiovisual integration: Is attending to both modalities a prerequisite for early integration? Cerebral Cortex, 17( 3), 679-690.
[41] Talsma D., Senkowski D., Soto-Faraco S., & Woldorff M. G . ( 2010). The multifaceted interplay between attention and multisensory integration. Trends in Cognitive Sciences, 14( 9), 400-410.
url: https://linkinghub.elsevier.com/retrieve/pii/S1364661310001452
[42] Talsma D., & Woldorff M.G . ( 2005). Selective attention and multisensory integration: Multiple phases of effects on the evoked brain activity. Journal of Cognitive Neuroscience, 17( 7), 1098-1114.
url: http://www.mitpressjournals.org/doi/10.1162/0898929054475172
[43] Tang X. Y., Wu J. L., & Shen Y . ( 2016). The interactions of multisensory integration with endogenous and exogenous attention. Neuroscience & Biobehavioral Reviews, 61, 208-224.
[44] Tang X. Y., Gao Y. L., Yang W. P., Ren Y. N., Wu J. L., Zhang M., Wu Q .(in press). Bimodal-divided attention attenuates visually induced inhibition of return with audiovisual targets. Experimental Brain Research. First online 15 Feb. 2019,
url: https://doi.org/10.1007/s00221-019-05488-0
[45] Tassinari G., Aglioti S., Chelazzi L., Peru A., & Berlucchi G . ( 1994). Do peripheral non-informative cues induce early facilitation of target detection? Vision Research, 34( 2), 179-189.
url: https://linkinghub.elsevier.com/retrieve/pii/0042698994903301
[46] Ulrich R., Miller J., & Schröter H . ( 2007). Testing the race model inequality: An algorithm and computer programs. Behavior Research Methods, 39( 2), 291-302.
url: http://www.springerlink.com/index/10.3758/BF03193160
[47] van der Burg E., Olivers C. N. L., Bronkhorst A. W., & Theeuwes J . ( 2008). Pip and pop: Nonspatial auditory signals improve spatial visual search. Journal of Experimental Psychology: Human Perception and Performance, 34( 5), 1053-1065.
url: http://doi.apa.org/getdoi.cfm?doi=10.1037/0096-1523.34.5.1053
[48] van der Burg E., Talsma D., Olivers C. N. L., Hickey C., & Theeuwes J . ( 2011). Early multisensory interactions affect the competition among multiple visual objects. Neuroimage, 55( 3), 1208-1218.
url: https://linkinghub.elsevier.com/retrieve/pii/S105381191001671X
[49] van der Stoep N., van der Stigchel S& Nijboer, T. C. W. ., ( 2015). Erratum to: Exogenous spatial attention decreases audiovisual integration. Attention Perception & Psychophysics, 77( 1), 464-482.
[50] van der Stoep N., van der Stigchel S., Nijboer T. C., & Spence C . ( 2016). Visually induced inhibition of return affects the integration of auditory and visual information. Perception, 46( 1), 6-17.
[51] Ward L. M., Mcdonald J. J., & Lin D . ( 2000). On asymmetries in cross-modal spatial attention orienting. Percept Psychophys, 62( 6), 1258-1264.
url: http://www.springerlink.com/index/10.3758/BF03212127
[52] Wascher E., & Tipper S.P . ( 2004). Revealing effects of noninformative spatial cues: an EEG study of inhibition of return. Psychophysiology, 41( 5), 716-728.
url: http://www.blackwell-synergy.com/toc/psyp/41/5
[53] WEN Z. L., FAN X. T., YE B. J., & CHEN Y. S . ( 2016). Characteristics of an effect size and appropriateness of mediation effect size measures revisited. Acta Psychologica Sinica, 48( 4), 435-443.
[53] [ 温忠麟, 范息涛, 叶宝娟, 陈宇帅 . ( 2016). 从效应量应有的性质看中介效应量的合理性. 心理学报, 48( 4), 435-443.]
[54] Yang W. P., Chu B. Q., Yang J. J., Yu Y. H., Wu J. L., & Yu S. Y . ( 2014). Elevated audiovisual temporal interaction in patients with migraine without aura. The Journal of Headache and Pain, 15( 1), 44.
[55] Yang Z., & Mayer A.R . ( 2014). An event-related FMRI study of exogenous orienting across vision and audition. Human Brain Mapping, 35( 3), 964-974.
url: http://doi.wiley.com/10.1002/hbm.22227
[1] CHEN Airui, WANG Aijun, WANG Tianqi, TANG Xiaoyu, ZHANG Ming.  The primary visual cortex modulates attention oscillation[J]. Acta Psychologica Sinica, 2018, 50(2): 158-167.
[2] WANG Aijun, LIU Xiaole, TANG Xiaoyu, ZHANG Ming.  Inhibition of return at different eccentricities in visual field under three-dimensional (3D) world[J]. Acta Psychologica Sinica, 2017, 49(6): 723-732.
[3] XU Ju; HU Yuanyan; WANG Shuang; LI Aisu; ZHANG Ming; ZHANG Yang. Cognitive neural mechanism of training effect on inhibition of return: Evidence from an ERP study[J]. Acta Psychologica Sinica, 2016, 48(6): 658-670.
[4] XU Ju; MA Fangyuan; ZHANG Ming; ZHANG Yang. Dissociation of Inhibitory Tagging from Inhibition of Return by Long-term Training[J]. Acta Psychologica Sinica, 2015, 47(8): 981-991.
[5] WANG Aijun; LI Biqin; ZHANG Ming. Location-based Inhibition of Return along Depth Plane in Three-dimensional Space[J]. Acta Psychologica Sinica, 2015, 47(7): 859-868.
[6] FAN Hainan; XU Baihua. The Role of Color and Identity of an Object in Inhibition of Return in a Dynamic Display[J]. Acta Psychologica Sinica, 2014, 46(11): 1628-1638.
[7] ZHANG Yu;ZHENG Xifu;HUANG Shanshan;LI Yue;DU Xiaofen;ZHOU Wei. Inhibition of Return in Trait Anxieties Under Different Cues[J]. Acta Psychologica Sinica, 2013, 45(4): 446-452.
[8] XU Danni;ZHANG Jiayue;LI Xianchun. Sex Differences in Inhibition of Return in Face-gender Discrimination[J]. Acta Psychologica Sinica, 2013, 45(2): 161-168.
[9] WANG Jingxin;JIA Liping;BAI Xuejun;LUO Yuejia. Emotional Faces Processing Takes Precedence of Inhibition of Return: ERPs Study[J]. Acta Psychologica Sinica, 2013, 45(1): 1-10.
[10] LIU Pan,XIE Ning,WU Yan-Hong. The Modulation of Intentional Control on Automatic Inhibition in Cognitive Aging[J]. , 2010, 42(10): 981-987.
[11] DENG Xiao-Hong,ZHANG De-Xuan,HUANG Shi-Xue,YUAN Wen,ZHOU Xiao-Lin. Effects of Supra- and Sub-liminal Emotional Cues on Inhibition of Return[J]. , 2010, 42(03): 325-333.
[12] DAI Qin, FENG Zheng-Zhi. Deficient Inhibition of Return for Emotional Faces in Depression[J]. , 2009, 41(12): 1175-1188.
[13] Shen-Mowei,Gao-Zaifeng,Zhang-Guangqiang,Shui-Rende,Qiao-Xinxi,Li-Weijian. Inhibition of Return on Three-dimensional Slant Plane[J]. , 2007, 39(06): 951-958.
[14] Zhang-Ming,Zhang-Yang,Fu-Jia. The Influence of The Working Memory on Object-based Inhibition of Return in Dynamic Displays[J]. , 2007, 39(01): 35-42.
[15] Sui Guangyuan,Wu Yan. Overt Visual-Spatial Attention Shifts in Children[J]. , 2006, 38(06): 841-848.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Acta Psychologica Sinica
Support by Beijing Magtech