Please wait a minute...
Acta Psychologica Sinica    2019, Vol. 51 Issue (1) : 48-57     DOI: 10.3724/SP.J.1041.2019.00048
Reports of Empirical Studies |
Reward improves cognitive control by enhancing signal monitoring
WANG Yanqing1,CHEN Antao1,*,HU Xueping2,YIN Shouhang1
1 Key Laboratory of Cognition and Personality of Ministry of Education, Faculty of Psychology, Southwest University, Chongqing 400715, China
2 School of Linguistics and Arts, and Collaborative Innovation Center for Language Competence, Jiangsu Normal University, Xuzhou 221009, China
Download: PDF(702 KB)   HTML Review File (1 KB) 
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks     Supporting Info
Guide   
Abstract  

Cognitive control refers to two critical processes: signal monitoring and inhibitory control. Before executing inhibitory control, the individual first monitors the signal of conflict or warning. However, whether the reward influences signal monitoring or inhibitory control remains poorly understood. In addition, some literature employed pretask reward cueing to study the effect of reward, but the role of pretask reward cueing on cognitive control was influenced by response strategies rather than stimulus processing.
To address the above issues, the present study designed three novel variants of the classical stop signal task that combined the reward with certain stimuli or stimulus features and held stimulus-processing demands constant while varying attention demands. For experiment 1, participants tried to cancel responses on trials that were interrupted by the infrequent triangle but not to slow the initiation of the response. The results indicated that the SSRTs could be further accelerated if successful response inhibition were rewarded. Experiment 2 involved separation of signal monitoring from the stop signal task. Participants responded by pressing the left or right button when the trials were interrupted by the infrequent triangle. The results showed that participants could monitor a signal faster when the signal was associated with reward and conflicted with current behavior tendencies. Accordingly, we considered that the individual could more quickly activate behavior in correspondence with the signal and control the conflict because the signal monitoring was enhanced by reward, which indicated that the process needs more attention. Experiment 3 is the same as the second experiment, except that when trials were interrupted by an inverse triangle, participants made a dual button press. We found that the reaction time of the reward-related signal was shorter than that of the reward-unrelated signal in Go trials, even though the processing of the stop signal depletes the attention resource. These findings indicate that the reward-related signal captures more attention and enhances signal monitoring.
In summary, these findings show that the reward-related signal captures more attention than bias for the enhancement of signal monitoring, thereby leading to more efficient stimulus processing and improving cognitive control.

Keywords reward      cognitive control      signal monitoring      stop signal task     
ZTFLH:  B842  
Corresponding Authors: Antao CHEN   
Issue Date: 26 November 2018
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yanqing WANG
Antao CHEN
Xueping HU
Shouhang YIN
Cite this article:   
Yanqing WANG,Antao CHEN,Xueping HU, et al. Reward improves cognitive control by enhancing signal monitoring[J]. Acta Psychologica Sinica, 2019, 51(1): 48-57.
URL:  
http://journal.psych.ac.cn/xlxb/EN/10.3724/SP.J.1041.2019.00048     OR     http://journal.psych.ac.cn/xlxb/EN/Y2019/V51/I1/48
  
行为指标 无奖赏试次 奖赏试次
停止信号SSD (ms) 236 ± 85 247 ± 88
停止信号SSRT (ms) 233 ± 73 220 ± 73
停止信号正确率 0.51 ± 0.06 0.51 ± 0.07
Go试次反应时(ms) 493 ± 77 --
Go试次正确率 0.98 ± 0.02 --
  
  
  
[1] Arias-carrión O.&P?ppel E., ( 2007). Dopamine, learning, and reward-seeking behavior. Acta Neurobiologiae Experimentalis, 67( 4), 481-488.
pmid: 18320725 url: http://www.ncbi.nlm.nih.gov/pubmed/18320725
[2] Aron A. R., Robbins T. W., & Poldrack R. A . ( 2014). Inhibition and the right inferior frontal cortex: One decade on. Trends in Cognitive Sciences, 18( 4), 177-185.
[3] Anderson B. A., Laurent P. A., & Yantis S . ( 2011). Value-driven attentional capture. Proceedings of the National Academy of Sciences of the United States of America, 108( 25), 10367-10371.
url: http://www.pnas.org/cgi/doi/10.1073/pnas.1104047108
[4] Barbaro L., Peelen M. V., & Hickey C . ( 2017). Valence, not utility, underlies reward-driven prioritization in human vision. Journal of Neuroscience, 37( 43), 1128-1117.
url: http://europepmc.org/abstract/MED/28951452
[5] Boehler C. N., Appelbaum L. G., Krebs R. M., Hopf J-M., & Woldorff M. G . ( 2012). The influence of different Stop- signal response time estimation procedures on behavior-behavior and brain-behavior correlations. Behavioural Brain Research, 229( 1), 123-130.
pmid: 3306010 url: https://linkinghub.elsevier.com/retrieve/pii/S016643281200006X
[6] Boehler C. N., Hopf J.-M., Stoppel C. M., & Krebs R. M . ( 2012). Motivating inhibition - reward prospect speeds up response cancellation. Cognition, 125( 3), 498-503.
pmid: 22921189 url: https://linkinghub.elsevier.com/retrieve/pii/S0010027712001680
[7] Boehler C. N., Müente T. F., Krebs R. M., Heinze H.-J., Schoenfeld M. A., & Hopf J. M . ( 2009). Sensory MEG responses predict successful and failed inhibition in a stop-signal task. Cerebral Cortex, 19( 1), 134-145.
pmid: 18440947 url: https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhn063
[8] Boehler C. N., Schevernels H., Hopf J-M., Stoppel C. M., & Krebs R. M . ( 2014). Reward prospect rapidly speeds up response inhibition via reactive control. Cognitive Affective & Behavioral Neuroscience, 14( 2), 593-609.
pmid: 24448735 url: http://www.ncbi.nlm.nih.gov/pubmed/24448735
[9] Botvinick M.&Braver T., ( 2015). Motivation and cognitive control: From behavior to neural mechanism. Annual Review of Psychology, 66( 1), 83-113.
pmid: 25251491 url: http://www.annualreviews.org/doi/10.1146/annurev-psych-010814-015044
[10] Braver T. S., Krug M. K., Chiew K. S., Kool W., Westbrook J. A., Clement N. J., .. Somerville L. H . ( 2014). Mechanisms of motivation-cognition interaction: Challenges and opportunities. Cognitive Affective & Behavioral Neuroscience, 14( 2), 443-472.
pmid: 4986920 url: http://www.ncbi.nlm.nih.gov/pubmed/24920442
[11] Botvinick M., Nystrom L. E., Fissell K., Carter C. S., & Cohen J. D . ( 1999). Conflict monitoring versus selection- for-action in anterior cingulate cortex. Nature, 402( 785), 179-181.
pmid: 10647008 url: http://www.nature.com/articles/46035
[12] Botvinick M. M., Cohen J. D., & Carter C. S . ( 2004). Conflict monitoring and anterior cingulate cortex: An update. Trends in Cognitive Sciences, 8( 12), 539-546.
pmid: 15556023 url: http://linkinghub.elsevier.com/retrieve/pii/S1364661304002657
[13] Carter C. S., Macdonald A. M., Botvinick M., Ross L. L., Stenger V. A., Noll D., & Cohen J. D . ( 2000). Parsing executive processes: Strategic vs. evaluative functions of the anterior cingulate cortex. Proceedings of the National Academy of Sciences of the United States of America, 97( 4), 1944-1948.
url: http://www.pnas.org/cgi/doi/10.1073/pnas.97.4.1944
[14] Chikazoe J., Jimura K., Asari T., Yamashita K. L., Morimoto H., Hirose S., … Konishi S . ( 2009). Functional dissociation in right inferior frontal cortex during performance of go/no-go task. Cerebral Cortex, 19( 1), 146-152.
pmid: 18445602 url: https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhn065
[15] Derntl B.&Habel U., ( 2016). Angry but not neutral faces facilitate response inhibition in schizophrenia patients. European Archives of Psychiatry and Clinical Neuroscience, 267( 7), 621-627.
pmid: 27866272 url: http://link.springer.com/10.1007/s00406-016-0748-8
[16] Egner T.&Hirsch J., ( 2005). Cognitive control mechanisms resolve conflict through cortical amplification of task-relevant information. Nature Neuroscience, 8( 12), 1784-1790
pmid: 16286928 url: http://www.nature.com/articles/nn1594
[17] Erika-Florence M., Leech R., & Hampshire A . ( 2014). A functional network perspective on response inhibition and attentional control. Nature Communications, 5( 5), 4073.
pmid: 4059922 url: http://www.nature.com/articles/ncomms5073
[18] Freeman S.M., & Aron A.R . ( 2016). Withholding a reward-driven action: Studies of the rise and fall of motor activation and the effect of cognitive depletion. Journal of Cognitive Neuroscience, 28( 2), 237-251.
pmid: 5208043 url: http://www.mitpressjournals.org/doi/10.1162/jocn_a_00893
[19] Freeman S. M., Razhas L., & Aron A. R . ( 2014). Top-down response suppression mitigates action tendencies triggered by a motivating stimulus. Current Biology, 24( 2), 212-216.
pmid: 4396623 url: https://linkinghub.elsevier.com/retrieve/pii/S0960982213015789
[20] Hampshire A., & Sharp D.J . ( 2015). Contrasting network and modular perspectives on inhibitory control. Trends in Cognitive Sciences, 19( 8), 445-452.
pmid: 26160027 url: https://linkinghub.elsevier.com/retrieve/pii/S1364661315001436
[21] Hickey C., & Peelen M.V . ( 2015). Neural mechanisms of incentive salience in naturalistic human vision. Neuron, 85( 3), 512-518.
pmid: 25654257 url: https://linkinghub.elsevier.com/retrieve/pii/S0896627314011581
[22] Jiang J., Xiang L., Zhang Q. L., & Chen A. T . ( 2014). Conflict adaptation is independent of consciousness: Behavioral and ERP evidence. Acta Psychologica Sinica, 46( 5), 581-592.
url: http://d.wanfangdata.com.cn/Periodical/xlxb201405002
[22] [ 蒋军, 向玲, 张庆林, 陈安涛 . ( 2014). 冲突适应独立于意识: 来自行为和ERP的证据. 心理学报,46( 5), 581-592.]
url: http://d.wanfangdata.com.cn/Periodical/xlxb201405002
[23] Kerns J. G., Cohen J. D., MacDonald Ⅲ, A. W.., Cho R. Y.., Stenger V. A., & Carter C. S . ( 2004). Anterior cingulate conflict monitoring and adjustments in control. Science, 303( 5660), 1023-1026.
url: http://www.sciencemag.org/cgi/doi/10.1126/science.1089910
[24] Krawczyk D. C., Gazzaley A., & D'Esposito M . ( 2007). Reward modulation of prefrontal and visual association cortex during an incentive working memory task. Brain Research, 1141( 4), 168-177.
pmid: 17320835 url: http://linkinghub.elsevier.com/retrieve/pii/S0006899307000716
[25] Krebs R. M., Boehler C. N., Appelbaum L. G., & Woldorff M. G . ( 2013). Reward associations reduce behavioral interference by changing the temporal dynamics of conflict processing. PLoS One, 8( 1), e53894.
pmid: 3542315 url: https://dx.plos.org/10.1371/journal.pone.0053894
[26] Krebs R. M., Boehler C. N., Egner T., & Woldorff M. G . ( 2011). The neural underpinnings of how reward associations can both guide and misguide attention. Journal of Neuroscience, 31( 26), 9752-9759.
pmid: 3142621 url: http://www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.0732-11.2011
[27] Krebs R. M., Boehler C. N., Roberts K. C., Song A. W., & Woldorff M. G . ( 2012). The involvement of the dopaminergic midbrain and cortico-striatal-thalamic circuits in the integration of reward prospect and attentional task demands. Cerebral Cortex, 22( 3), 607-615.
pmid: 21680848 url: https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhr134
[28] Krebs R. M., Boehler C. N., & Woldorff M. G . ( 2010). The influence of reward associations on conflict processing in the Stroop task. Cognition, 117( 3), 341-347.
pmid: 2967668 url: https://linkinghub.elsevier.com/retrieve/pii/S0010027710001988
[29] Lee H. W., Lu M-S., Chen C-Y., Muggleton N. G., Hsu T-Y., & Juan C-H . ( 2016). Roles of the pre-SMA and rIFG in conditional stopping revealed by transcranial magnetic stimulation. Behavioural Brain Research, 296, 459-467.
pmid: 26304720 url: https://linkinghub.elsevier.com/retrieve/pii/S016643281530156X
[30] Leotti L.A., & , Wager T.D . ( 2010). Motivational influences on response inhibition measures. Journal of Experimental Psychology: Human Perception and Performance, 36( 2), 430-447.
pmid: 3983778 url: http://doi.apa.org/getdoi.cfm?doi=10.1037/a0016802
[31] Logan G.D., & Cowan W.B . ( 1984). On the ability to inhibit thought and action: A theory of an act of control. Psychological Review, 91( 3), 295-327.
url: http://content.apa.org/journals/rev/91/3/295
[32] Navalpakkam V.&Treisman A., ( 2010). Optimal reward harvesting in complex perceptual environment. Proceedings of the National Academy of Sciences of the United States of America, 107( 11), 5232-5237.
pmid: 20194768 url: http://www.pnas.org/cgi/doi/10.1073/pnas.0911972107
[33] Pawliczek C. M., Derntl B., Kellermann T., Kohn N., Gur R. C., & Habel U . ( 2013). Inhibitory control and trait aggression: Neural and behavioral insights using the emotional stop signal task. Neuroimage, 79( 6), 264-274.
pmid: 23660028 url: https://linkinghub.elsevier.com/retrieve/pii/S1053811913004631
[34] Pessoa L. ( 2009). How do emotion and motivation direct executive control? Trends in Cognitive Sciences, 13( 4), 160-166.
pmid: 19285913 url: https://linkinghub.elsevier.com/retrieve/pii/S1364661309000461
[35] Pessoa L., & Engelmann J.B . ( 2010). Embedding reward signals into perception and cognition. Frontiers in Neuroscience, 4( 17), 4-17.
pmid: 2940450 url: http://europepmc.org/articles/PMC2940450/
[36] Salinas E., & Stanford T.R . ( 2013). The countermanding task revisited: Fast stimulus detection is a key determinant of psychophysical performance. Journal of Neuroscience, 33( 13), 5668-5685.
pmid: 3650622 url: http://www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.3977-12.2013
[37] Schevernels H., Bombeke K., Van der Borght L., Hopf J-M., Krebs R. M., & Boehler C. N . ( 2015). Electrophysiological evidence for the involvement of proactive and reactive control in a rewarded stop-signal task. Neuroimage, 121, 115-125.
pmid: 26188262 url: http://europepmc.org/abstract/med/26188262
[38] Sharp D. J., Bonnelle V., De Boissezon X., Beckmann C. F., James S. G., Patel M. C., & Mehta M. A . ( 2010). Distinct frontal systems for response inhibition, attentional capture, and error processing. Proceedings of the National Academy of Sciences of the United States of America, 107( 13), 6106-6111.
pmid: 20220100 url: http://www.pnas.org/cgi/doi/10.1073/pnas.1000175107
[39] Tang D.D., & Chen A.T . ( 2013). Neural oscillation mechanisms of conflict adaptation. Scientia Sinica Vitae, 43( 11), 992-1002.
[39] [ 唐丹丹, 陈安涛 . ( 2013). 冲突适应的神经振荡机制. 中国科学:生命科学, 43( 11), 992-1002.]
[40] van den Berg B., Krebs R. M., Lorist M. M., & Woldorff M. G . ( 2014). Utilization of reward-prospect enhances preparatory attention and reduces stimulus conflict. Cognitive Affective & Behavioral Neuroscience, 14( 2), 561-577.
pmid: 24820263 url: http://www.ncbi.nlm.nih.gov/pubmed/24820263
[41] van Steenbergen H., Band G. P. H., & Hommel B . ( 2012). Reward valence modulates conflict-driven attentional adaptation: Electrophysiological evidence. Biological Psychology, 90( 3), 234-241.
pmid: 22504294 url: https://linkinghub.elsevier.com/retrieve/pii/S0301051112000889
[42] Verbruggen F., Chambers C. D., & Logan G. D . ( 2013). Fictitious inhibitory differences: How skewness and slowing distort the estimation of stopping latencies. Psychological Science, 24( 3), 352-362.
url: http://journals.sagepub.com/doi/10.1177/0956797612457390
[43] Wang X. P., Zhao X. Y., Xue G., & Chen A. T . ( 2016). Alertness function of thalamus in conflict adaptation. Neuroimage, 132, 274-282.
pmid: 26908318 url: https://linkinghub.elsevier.com/retrieve/pii/S1053811916001579
[44] Westbrook A., & Braver T.S . ( 2016). Dopamine does double duty in motivating cognitive effort. Neuron, 89( 4), 695-710.
pmid: 26889810 url: https://linkinghub.elsevier.com/retrieve/pii/S0896627315011319
[45] Xu K. Z., Anderson B. A., Emeric E. E., Sali A. W., Stuphorn V., Yantis S., & Courtney S. M . ( 2017). Neural basis of cognitive control over movement inhibition: Human fMRI and primate electrophysiology evidence. Neuron, 96( 6), 1447-1458.
pmid: 29224723 url: https://linkinghub.elsevier.com/retrieve/pii/S0896627317310632
[1] ZHANG Yan, CAO Huimin, ZHENG Yuanjie, REN Yanju.  Top-down goals modulate attentional orienting to and disengagement from rewarded distractors[J]. Acta Psychologica Sinica, 2018, 50(4): 377-389.
[2] YANG Ruijuan, YOU Xuqun.  Advancing the Effort-Reward Imbalance Model: Economic rewards influence on teachers’ mental health[J]. Acta Psychologica Sinica, 2017, 49(9): 1184-1194.
[3] HU Cenlou; ZHANG Bao; HUANG Sai. Does irrelevant long-term memory representation guide the deployment of visual attention?[J]. Acta Psychologica Sinica, 2017, 49(5): 590-601.
[4] LIU Yu; CHEN Hong; LI Shuhui; LUO Nian. Reducing unsuccessful restrained eaters’ unhealthy food choice: An internet-based inhibition control training[J]. Acta Psychologica Sinica, 2017, 49(2): 219-227.
[5] ZHANG Bao; HU Cenlou; Huang Sai. What do eye movements reveal about the role of cognitive control in attention guidance from working memory representation[J]. Acta Psychologica Sinica, 2016, 48(9): 1105-1118.
[6] LIU Cong; JIAO Lu; SUN Xun; WANG Ruiming. Immediate effect of language switch on non-proficient bilinguals’ cognitive control components[J]. Acta Psychologica Sinica, 2016, 48(5): 472-481.
[7] WANG Jiaying; JIAO Runkai; ZHANG Ming. The mechanism of the effect of task setting on negative compatibility effect: The effect of top-down cognition control on subliminal prime processing[J]. Acta Psychologica Sinica, 2016, 48(11): 1370-1378.
[8] ZENG Hong; SU Dequan; JIANG Xing; CHEN Qi; YE Haosheng. Activations of Sensory-motor Brain Regions in Response to Different Types of Drug-associated Cues[J]. Acta Psychologica Sinica, 2015, 47(7): 890-902.
[9] LIU Xiaoyu; HE Chaodan; CHEN Jun; DENG Qinli. The Bilingual Cognitive Control Mechanism of Highly Proficient Cantonese-Mandarin Speakers: Evidence from A Dual-task Switching Paradigm[J]. Acta Psychologica Sinica, 2015, 47(4): 439-454.
[10] GU Li; BAI Xuejun; WANG Qin. Impact of Reward/punishment Conditions on Behavioral Inhibition and Automatic Physiological Responses in the Stages[J]. Acta Psychologica Sinica, 2015, 47(1): 39-49.
[11] DOU Weiwei;ZHENG Xifu;YANG Huifang;WANG Junfang;LI Yue;E Xiaotian;Chen Qianqian. The Effect of Cognitive Distraction’s Intensity on the Process of Trauma-related Information: Evidence from ERP[J]. Acta Psychologica Sinica, 2014, 46(5): 656-665.
[12] XU Lei;WANG Lijun;ZHAO Yuanfang;TAN Jinfeng;CHEN Antao. Subliminal Reward Modulates the Tradeoff between Proactive and Reactive Cognitive Control[J]. Acta Psychologica Sinica, 2014, 46(4): 459-466.
[13] GU Li; BAI Xuejun; WANG Qin. Timeliness of Impact of Reward/punishment Stimulations on Behavioral Inhibition Ability and Automatic Physiological Responses[J]. Acta Psychologica Sinica, 2014, 46(10): 1476-1485.
[14] XU Sihua;FANG Zhuo;RAO Hengyi. Real or Hypothetical Monetary Rewards Modulates Risk Taking Behavior[J]. Acta Psychologica Sinica, 2013, 45(8): 874-886.
[15] WANG Zhenhong;LIU Ya;JIANG Changhao. The Effect of Low versus High Approach-Motivated Positive Affect on Cognitive Control[J]. Acta Psychologica Sinica, 2013, 45(5): 546-555.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Acta Psychologica Sinica
Support by Beijing Magtech