Please wait a minute...
Acta Psychologica Sinica    2018, Vol. 50 Issue (7) : 727-738     DOI: 10.3724/SP.J.1041.2018.00727
Reports of Empirical Studies |
The causal role of right dorsolateral prefrontal cortex in visual working memory
Sisi WANG,Yixuan KU()
School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
Download: PDF(898 KB)   HTML Review File (1 KB) 
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks     Supporting Info

The right dorsolateral prefrontal cortex (DLPFC) plays an important role in working memory. Previous neuroimaging and neurophysiological studies have found sustained and elevated DLPFC activity during working memory delay period. Meanwhile, the right DLPFC has been suggested to be more dominant in visuospatial than verbal working memory. While the causal evidence for the relationship between the right DLPFC and visual working memory is still rare.

Transcranial direct current stimulation (tDCS) and EEG were combined to investigate the causal relationship between the right DLPFC and processes of visual working memory. Forty participants performed a color change detection task with memory load of 4 items (load-4) or 6 items (load-6) while their electroencephalography (EEG) was recorded. Before they performed the tasks, either 15 min of 1.5 mA transcranial direct current stimulation (tDCS) or 30 s of 1.5 mA sham stimulation (SHAM) was applied over the right DLPFC. The participants were divided into two groups according to their working memory capacity increment from load-4 to load-6 in the sham condition, the group who gained more increment (the high potential group) under the sham condition also benefit more from the anodal tDCS over the right DLPFC, while the other group (the low potential group) did not show such effects.

To further explore the neural mechanisms, N2pc and SPCN were compared between different conditions. N2pc did not show any stimulating effects or load effects for both low and high potential groups. In contrast, although SPCN did not show significant main effects of load or stimulation, or their interaction for the low potential group, SPCN did show main effects of stimulation for high potential group. The amplitude of SPCN after tDCS over the right DLPFC was significantly larger than that after the sham stimulation under load-4 condition, which coincided with the behavioral findings, and further suggested the role of the right DLPFC in representing the memory information during retrieval.

In sum, anodal tDCS over the right DLPFC promoted visual working memory capacity of those who had more cognitive potential from easier task (load-4) to harder task (load-6). The present study confirmed the causal role of the right DLPFC in representing the visual working memory information during the retrieval period.

Keywords visual working memory      tDCS      right DLPFC      SPCN      working memory potential     
ZTFLH:  B842  
Issue Date: 29 May 2018
E-mail this article
E-mail Alert
Articles by authors
Yixuan KU
Cite this article:   
Sisi WANG,Yixuan KU. The causal role of right dorsolateral prefrontal cortex in visual working memory[J]. Acta Psychologica Sinica, 2018, 50(7): 727-738.
URL:     OR
[1] Alloway, T.P., &Alloway R.G . ( 2010). Investigating the predictive roles of working memory and IQ in academic attainment. Journal of Experimental Child Psychology, 106( 1), 20-29.
pmid: 20018296 url:
[2] Anderson M. C., Ochsner K. N., Kuhl B., Cooper J., Robertson E., Gabrieli S. W., .. Gabrieli ,J. D. E. ( 2004). Neural systems underlying the suppression of unwanted memories. Science, 303( 5655), 232-235.
pmid: 14716015 url:
[3] Andrews S. C., Hoy K. E., Enticott P. G., Daskalakis Z. J., & Fitzgerald P. B . ( 2011). Improving working memory: The effect of combining cognitive activity and anodal transcranial direct current stimulation to the left dorsolateral prefrontal cortex. Brain Stimulation, 4( 2), 84-89.
pmid: 21511208 url:
[4] Baddeley, A.D., &Hitch G.J . ( 1974). Working memory. Psychology of Learning and Motivation,8, 47-89.
[5] Berryhill, M.E., &Jones K.T . ( 2012). tDCS selectively improves working memory in older adults with more education. Neuroscience Letters, 521( 2), 148-151.
pmid: 22684095 url:
[6] Coffman B. A., Clark V. P., & Parasuraman R . ( 2014). Battery powered thought: Enhancement of attention, learning, and memory in healthy adults using transcranial direct current stimulation. NeuroImage, 85, 895-908.
pmid: 23933040 url:
[7] Courtney S. M., Petit L., Maisog J. M., Ungerleider L. G., & Haxby J. V . ( 1998). An area specialized for spatial working memory in human frontal cortex. Science, 279( 5355), 1347-1351.
pmid: 9478894 url:
[8] Cowan ,N. ( 2001). Metatheory of storage capacity limits. Behavioral and Brain Sciences, 24( 1), 154-176.
[9] Curtis,C.E . ( 2006). Prefrontal and parietal contributions to spatial working memory. Neuroscience, 139( 1), 173-180.
[10] Dedoncker J., Brunoni A. R., Baeken C., & Vanderhasselt M. A . ( 2016). A systematic review and meta-analysis of the effects of transcranial direct current stimulation (tDCS) over the dorsolateral prefrontal cortex in healthy and neuropsychiatric samples: Influence of stimulation parameters. Brain Stimulation, 9( 4), 501-517.
[11] D'Esposito M., Postle B. R., Ballard D., & Lease J . ( 1999). Maintenance versus manipulation of information held in working memory: An event-related fMRI study. Brain and Cognition, 1( 1), 66-86.
[12] Druzgal, T.J., &D'Esposito M. , ( 2003). Dissecting contributions of prefrontal cortex and fusiform face area to face working memory. Journal of Cognitive Neuroscience, 15( 6), 771-784.
pmid: 14511531 url:
[13] Eimer, M. ( 1996). The N2pc component as an indicator of attentional selectivity. Electroencephalography and Clinical Neurophysiology, 99( 3), 225-234.
[14] Eimer, M. &Kiss M. , ( 2010). An electrophysiological measure of access to representations in visual working memory. Psychophysiology, 47( 1), 197-200.
pmid: 2860638 url:
[15] Fregni F., Boggio P. S., Nitsche M., Bermpohl F., Antal A., Feredoes E., .. Pascual-Leone A . ( 2005). Anodal transcranial direct current stimulation of prefrontal cortex enhances working memory. Experimental Brain Research, 166( 1), 23-30.
pmid: 15999258 url:
[16] Fukuda K., Vogel E., Mayr U., & Awh E . ( 2010). Quantity, not quality: The relationship between fluid intelligence and working memory capacity. Psychonomic Bulletin & Review, 17( 5), 673-679.
pmid: 21037165 url:
[17] Funahashi S., Bruce C. J., & Goldman-Rakic P. S . ( 1989). Mnemonic coding of visual space in the monkey's dorsolateral prefrontal cortex. Journal of Neurophysiology, 61( 2), 331-349.
[18] Fuster,J.M., &AlexanderG.E . ( 1971). Neuron activity related to short-term memory. Science, 173( 3997), 652-654.
[19] Giglia G., Brighina F., Rizzo S., Puma A., Indovino S., Maccora S., .. Fierro B . ( 2014). Anodal transcranial direct current stimulation of the right dorsolateral prefrontal cortex enhances memory-guided responses in a visuospatial working memory task. Functional Neurology, 29( 3), 189-193.
pmid: 25473739 url:
[20] Hopf J. M., Boelmans K., Schoenfeld M. A., Luck S. J., & Heinze H. J . ( 2004). Attention to features precedes attention to locations in visual search: Evidence from electromagnetic brain responses in humans. Journal of Neuroscience, 24( 8), 1822-1832.
pmid: 14985422 url:
[21] Jacobson L., Koslowsky M., & Lavidor M . ( 2012). tDCS polarity effects in motor and cognitive domains: A meta- analytical review. Experimental Brain Research, 216( 1), 1-10.
pmid: 21989847 url:
[22] Jolic?ur P., Brisson B., & Robitaille N . ( 2008). Dissociation of the N2pc and sustained posterior contralateral negativity in a choice response task. Brain Research, 1215, 160-172.
[23] Jolic?ur P., Sessa P., Dell’Acqua R., & Robitaille N . ( 2006). On the control of visual spatial attention: Evidence from human electrophysiology. Psychological Research, 70( 6), 414-424.
pmid: 16184394 url:
[24] Jones, K.T., &Berryhill M.E . ( 2012). Parietal contributions to visual working memory depend on task difficulty. Frontiers in Psychiatry, 3, 81.
pmid: 3437464 url:
[25] Klaver P., Talsma D., Wijers A. A., Heinze H. J., & Mulder G . ( 1999). An event-related brain potential correlate of visual short-term memory. NeuroReport, 10( 10), 2001-2005.
pmid: 10424664 url:
[26] Kubota, K., &Niki H. , ( 1971). Prefrontal cortical unit activity and delayed alternation performance in monkeys. Journal of Neurophysiology, 34( 3), 337-347.
pmid: 4997822 url:
[27] Li S. Y., Cai Y., Liu J., Li D. W., Feng Z. F., Chen C. S., & Xue G . ( 2017). Dissociated roles of the parietal and frontal cortices in the scope and control of attention during visual working memory. NeuroImage, 149, 210-219.
pmid: 28131893 url:
[28] Luck, S.J., &Hillyard S.A . ( 1994 a). Spatial filtering during visual search: Evidence from human electrophysiology. Journal of Experimental Psychology: Human Perception and Performance, 20( 5), 1000-1014.
pmid: 7964526 url:
[29] Luck, S.J., &Hillyard S.A . ( 1994 b). Electrophysiological correlates of feature analysis during visual search. Psychophysiology, 31( 3), 291-308.
pmid: 8008793 url:
[30] Luck, S.J., &Vogel E.K . ( 1997). The capacity of visual working memory for features and conjunctions. Nature, 390( 6657), 279-281.
[31] Mazza, V., &Caramazza A. , ( 2012). Perceptual grouping and visual enumeration. PLoS One, 7( 11), e50862.
pmid: 23226408 url:
[32] Meiron, O. , &Lavidor M. , ( 2013). Unilateral prefrontal direct current stimulation effects are modulated by working memory load and gender. Brain Stimulation, 6( 3), 440-447.
pmid: 22743075 url:
[33] Nitsche, M.A., &Paulus W. , ( 2001). Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology, 57( 10), 1899-1901.
pmid: 10990547 url:
[34] Nitsche M. A., Fricke K., Henschke U., Schlitterlau A., Liebetanz D., Lang N., .. Paulus W . ( 2003). Pharmacological modulation of cortical excitability shifts induced by transcranial direct current stimulation in humans. The Journal of Physiology, 553( 1), 293-301.
pmid: 12949224 url:
[35] Nitsche M. A., Liebetanz D., Lang N., Antal A., Tergau F., & Paulus W . ( 2003). Safety criteria for transcranial direct current stimulation (tDCS) in humans. Clinical Neurophysiology, 114( 11), 2220-2222.
pmid: 14580622 url:
[36] Ohn S. H., Park C. I., Yoo W. K., Ko M. H., Choi K. P., Kim G. M., .. Kim Y. H . ( 2008). Time-dependent effect of transcranial direct current stimulation on the enhancement of working memory. NeuroReport, 19( 1), 43-47.
pmid: 18281890 url:
[37] Priori, A. ( 2003). Brain polarization in humans: A reappraisal of an old tool for prolonged non-invasive modulation of brain excitability. Clinical Neurophysiology, 114( 4), 589-595.
pmid: 12686266 url:
[38] Robitaille N., Marois R., Todd J., Grimault S., Cheyne D., &Jolic?ur P . ( 2010). Distinguishing between lateralized and nonlateralized brain activity associated with visual short-term memory: fMRI, MEG, and EEG evidence from the same observers. NeuroImage, 53( 4), 1334-1345.
pmid: 20643214 url:
[39] Rypma B., Berger J. S., & D'Esposito M . ( 2002). The influence of working-memory demand and subject performance on prefrontal cortical activity. Journal of Cognitive Neuroscience, 14( 5), 721-731.
[40] Smith E. E., Jonides J., & Koeppe R. A . ( 1996). Dissociating verbal and spatial working memory using PET. Cerebral Cortex, 6( 1), 11-20.
pmid: 8670634 url:
[41] Todd, J.J., &Marois R. , ( 2004). Capacity limit of visual short-term memory in human posterior parietal cortex. Nature, 428( 6984), 751-754.
[42] Toepper M., Gebhardt H., Beblo T., Thomas C., Driessen M., Bischoff M., .. & Sammer G . ( 2010). Functional correlates of distractor suppression during spatial working memory encoding. Neuroscience, 165( 4), 1244-1253.
pmid: 19925856 url:
[43] Tseng P., Hsu T. Y., Chang C. F., Tzeng O. J. L., Hung D. L., Muggleton N. G ..&Juan , C. H. ., ( 2012). Unleashing potential: Transcranial direct current stimulation over the right posterior parietal cortex improves change detection in low-performing individuals. Journal of Neuroscience, 32( 31), 10554-10561.
pmid: 22855805 url:
[44] Vanderhasselt M. A., De Raedt R., & Baeken C . ( 2009). Dorsolateral prefrontal cortex and Stroop performance: Tackling the lateralization. Psychonomic Bulletin & Review, 16( 3), 609-612.
pmid: 19451392 url:
[45] Vogel, E.K., &Machizawa M.G . ( 2004). Neural activity predicts individual differences in visual working memory capacity. Nature, 428( 6984), 748-751.
[46] Vogel E. K., McCollough A. W., & Machizawa M. G . ( 2005). Neural measures reveal individual differences in controlling access to working memory. Nature, 438( 7067), 500-503.
pmid: 16306992 url:
[47] Walter H., Bretschneider V., Grön G., Zurowski B., Wunderlich A. P., Tomczak R., & Spitzer M . ( 2003). Evidence for quantitative domain dominance for verbal and spatial working memory in frontal and parietal cortex. Cortex, 39( 4-5), 897-911.
pmid: 14584558 url:
[48] Woodman, G.F . ( 2010). A brief introduction to the use of event-related potentials in studies of perception and attention. Attention, Perception, & Psychophysics, 72( 8), 2031-2046.
pmid: 3816929 url:
[49] Woodman G. F., Arita J. T., & Luck S. J . ( 2009). A cuing study of the N2pc component: An index of attentional deployment to objects rather than spatial locations. Brain Research,1297, 101-111.
pmid: 2758329 url:
[50] Woodman, G.F., &Luck S.J . ( 2003). Serial deployment of attention during visual search. Journal of Experimental Psychology: Human Perception and Performance, 29( 1), 121-138.
pmid: 12669752 url:
[51] Wu Y. J., Tseng P., Chang C. F., Pai M. C., Hsu K. S., Lin C. C., & Juan C. H . ( 2014). Modulating the interference effect on spatial working memory by applying transcranial direct current stimulation over the right dorsolateral prefrontal cortex. Brain and Cognition, 91, 87-94.
pmid: 25265321 url:
[1] Hui Hui WANG, Yu Dan LUO, Bing SHI, Feng Qiong YU, Kai WANG. Excitation of the right dorsolateral prefrontal cortex with transcranial direct current stimulation influences response inhibition[J]. Acta Psychologica Sinica, 2018, 50(6): 647-654.
[2] WANG Jing, XUE Chengbo, LIU Qiang.  Storage mechanism of same-dimension features in visual working memory[J]. Acta Psychologica Sinica, 2018, 50(2): 176-185.
[3] GAN Tian, SHI Rui, LIU Chao, LUO Yuejia.  Cathodal transcranial direct current stimulation on the right temporo-parietal junction modulates the helpful intention processing[J]. Acta Psychologica Sinica, 2018, 50(1): 36-46.
[4] XUE ChengBo; YE ChaoXiong; ZHANG Yin; LIU Qiang. Memory Mechanism of Feature Binding in Visual Working Memory[J]. Acta Psychologica Sinica, 2015, 47(7): 851-858.
[5] LI Cuihong; HE Xu; GUO Chunyan. The Storage Mechanism of Multi-feature Objects in Visual Working Memory[J]. Acta Psychologica Sinica, 2015, 47(6): 734-745.
[6] ZHANG Wei; ZHOU Bingping; ZANG Ling; MO Shuliang. The Attentional Capture of Internet Addicts under the Guidance of Visual Working Memory[J]. Acta Psychologica Sinica, 2015, 47(10): 1223-1234.
[7] GAN Tian;LI Wanqing;TANG Honghong;LU Xiaping;LI Xiaoli;LIU Chao;LUO Yuejia. Exciting the Right Temporo-Parietal Junction with Transcranial Direct Current Stimulation Influences Moral Intention Processing[J]. Acta Psychologica Sinica, 2013, 45(9): 1004-1014.
[8] BAI Xue-Jun,YIN Sha-Sha,YANG Hai-Bo,LV Yong,HU Wei,LUO Yue-Jia. The Influence of Visual Working Memory Contents on Top-down Attentional Control: An ERP Study[J]. , 2011, 43(10): 1103-1113.
[9] ZHANG Bao,JIN Zhi-Cheng,CHEN Cai-Qi. Visual Working Memory Modulates Attentional Orienting at Preattention Stage[J]. , 2008, 40(05): 552-561.

Shen Mowei,Li Jie,Lang Xueming,Gao Tao,Gao Zaifeng,Shui Rende

. The Storage Mechanism of Objects in Visual Working Memory[J]. , 2007, 39(05): 761-767.
[11] Liu-Xiaoping,Wang-Zhaoxin,Chen-Xiangchuan,Zhang-Daren. SUBSYSTEMS IN VISUAL WORKING MEMORY[J]. , 2003, 35(05): 598-603.
Full text



Copyright © Acta Psychologica Sinica
Support by Beijing Magtech