Please wait a minute...
Acta Psychologica Sinica    2018, Vol. 50 Issue (6) : 647-654     DOI: 10.3724/SP.J.1041.2018.00647
Reports of Empirical Studies |
Excitation of the right dorsolateral prefrontal cortex with transcranial direct current stimulation influences response inhibition
Hui Hui WANG,Yu Dan LUO,Bing SHI,Feng Qiong YU,Kai WANG()
Department of Medical Psychology, Anhui Medical University, Hefei 230000, China
Download: PDF(437 KB)   HTML Review File (1 KB) 
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks     Supporting Info

Response inhibition is a cognitive process required to cancel an intended movement and can protect from danger. Functional magnetic resonance imaging (FMRI) studies showed that the dorsolateral prefrontal cortex (dlPFC) is a crucial brain region for response inhibition. Repetitive transcranial magnetic stimulation (rTMS) is a technique that can determine the contribution of specific cortical regions to behavior. Previous studies have found that repetitive transcranial magnetic stimulation of the dlPFC affects response inhibition. In the current study, we used transcranial direct current stimulation (tDCS), a non-invasive, painless brain stimulation technique with no known side effects, to alter neuronal excitability. A number of tDCS studies have suggested that tDCS may affect response inhibition. However, to date, limited work has been done to explore whether tDCS over the right dlPFC could alter response inhibition. Therefore, this study aimed to investigate the anodal stimulus effect of tDCS on response inhibition. We hypothesized that exciting the neural activity of the right dlPFC with anodal tDCS would enhance the ability of response inhibition.

A total of 34 healthy subjects (15 males, 19 females) participated in this within-subjects study. Stop-signal task (SST) was established with E-prime software. Participants received both active and sham stimulation on separate days. SST was used to measure the participants’ capacity for response inhibition. In the active stimulation condition, we delivered a 1.5 mA direct current for 25 min (fade-in/fade-out time: 8 s); in the sham condition, we delivered a 1.5 mA direct current for 30 s at the beginning and 30 s at the end of the stimulation time. Anodal and cathodal stimulation electrodes were placed on F4 and FP1, respectively. Participants completed the SST, Stroop color-word matching task, Verbal Fluency test, and Digit Span test before and after the stimulation.

We first calculated the mean reaction time (RT)in the go trials and stop-signal delay for each participant using ANALYZE-IT software. To calculate the individual stop-signal reaction time (SSRT), ANALYZE-IT first computes the mean RTs for all trials without a stop signal and then subtracts the mean stop-signal delay from this value. We performed a series of paired samples t-tests to compare the SSRT of each experimental condition with the SSRT of the sham and active conditions. There were no significant differences in SSRT pre-stimulation in sham or active stimulations, indicating equal response inhibition capacity among the participants. Interestingly, the difference in SSRT before and after stimulation was statistically significant in the active condition, t(33) = -2.25, p < 0.05, Cohens d = 0.38. This demonstrates that participants who received anodal stimulation over the right dlPFC had significantly reduced SSRT change scores on the SST compared to participants in the sham condition.

This study demonstrated that transcranial electrical stimulation of the right dlPFC can regulate response inhibition, in that anodal stimulation improved participants’ response inhibition. We confirm previous work suggesting that the right dlPFC is an important brain region of response inhibition.

Keywords response inhibition      the dorsolateral prefrontal cortex (dlPFC)      transcranial direct current stimulation (tDCS)     
ZTFLH:  B845  
Corresponding Authors: Kai WANG     E-mail:
Issue Date: 28 April 2018
E-mail this article
E-mail Alert
Articles by authors
Hui Hui WANG
Yu Dan LUO
Bing SHI
Feng Qiong YU
Cite this article:   
Hui Hui WANG,Yu Dan LUO,Bing SHI, et al. Excitation of the right dorsolateral prefrontal cortex with transcranial direct current stimulation influences response inhibition[J]. Acta Psychologica Sinica, 2018, 50(6): 647-654.
URL:     OR
组别 M ± SD t p
真刺激前stroop效应量 6.79 ± 4.58 0.49 0.628
伪刺激前stroop效应量 7.32 ± 4.67
真刺激前后stroop效应量 -0.99 ± 4.52 -1.28 0.209
伪刺激前后stroop效应量 -1.36 ± 4.09 -1.93 0.062
真刺激前数字广度(顺背) 7.94 ± 0.24 1.44 0.160
伪刺激前数字广度(顺背) 8.00 ± 0.00
真刺激前后数字广度(顺背) 0.03 ± 1.17 1.00 0.325
伪刺激前后数字广度(顺背) 0.00 ± 0.00
真刺激前数字广度(倒背) 6.06 ± 0.95 -0.73 0.473
伪刺激前数字广度(倒背) 5.94 ± 0.95
真刺激前后数字广度(倒背) 0.21 ± 0.54 2.23 0.033
伪刺激前后数字广度(倒背) 0.44 ± 0.70 3.65 0.001
真刺激前词语流畅性 27.26 ± 5.46 -0.49 0.625
伪刺激前词语流畅性 26.79 ± 4.93
真刺激前后词语流畅性 3.38 ± 4.06 4.86 0.000
伪刺激前后词语流畅性 4.47 ± 4.53 5.75 0.000
组别 M ± SD t p
真刺激前SSRT 306.70 ± 44.78 -2.25 0.031
真刺激后SSRT 290.82 ± 40.97
伪刺激前SSRT 291.57 ± 33.21 1.99 0.055
伪刺激后SSRT 302.13 ± 40.50
[1] Andrés, P. ( 2003). Frontal cortex as the central executive of working memory: Time to revise our view. Cortex, 39(4-5), 871-895.
pmid: 14584557 url:
[2] Asahi S., Okamoto Y., Okada G., Yamawaki S., & Yokota N . ( 2004). Negative correlation between right prefrontal activity during response inhibition and impulsiveness: A fMRI study. European Archives of Psychiatry and Clinical Neuroscience, 254(4), 245-251.
pmid: 15309395 url:
[3] Bari A., & Robbins T. W . ( 2013). Inhibition and impulsivity: Behavioral and neural basis of response control. Progress in Neurobiology, 108, 44-79.
pmid: 23856628 url:
[4] Beeli G., Casutt G., Baumgartner T., & J?ncke L . ( 2008). Modulating presence and impulsiveness by external stimulation of the brain. Behavioral and Brain Functions, 4, 33.
pmid: 18680573 url:
[5] Boggio P. S., Zaghi S., & Fregni F . ( 2009). Modulation of emotions associated with images of human pain using anodal transcranial direct current stimulation (tDCS). Neuropsychologia, 47(1), 212-217.
pmid: 18725237 url:
[6] Brevet-Aeby C., Brunelin J., Iceta S., Padovan C., & Poulet E . ( 2016). Prefrontal cortex and impulsivity: Interest of noninvasive brain stimulation. Neuroscience & Biobehavioral Reviews, 71, 112-134.
pmid: 27590833 url:
[7] Casey B. J., Trainor R. J., Orendi J. L., Schubert A. B., Nystrom L. E., & Giedd J. N., … Rapoport J. L . ( 1997). A developmental functional MRI study of prefrontal activation during performance of a Go-No-Go task. Journal of Cognitive Neuroscience, 9(6), 835-847.
pmid: 23964603 url:
[8] Dambacher F., Schuhmann T., Lobbestael J., Arntz A., Brugman S., & Sack A. T . ( 2015). No effects of bilateral tDCS over inferior frontal gyrus on response inhibition and aggression. PLoS One, 10(7), e0132170.
pmid: 2005680 url:
[9] Fang J., Zhu Y., Zhao W., Zhang B., & Wang X . ( 2013). Stop signal task and the related models of response inhibiton. Chinese Journal of Clinical Psychology, 21(5), 743-746, 750.
[9] [ 方菁, 朱叶, 赵伟, 张蓓, 王湘 . ( 2013). 停止信号任务及其相关反应抑制理论模型综述. 中国临床心理学杂志, 21(5), 743-746, 750.]
[10] Horvath J. C., Forte J. D., & Carter O . ( 2015). Quantitative review finds no evidence of cognitive effects in healthy populations from single-session transcranial direct current stimulation (tDCS). Brain Stimulation, 8(3), 535-550.
pmid: 25701175 url:
[11] Hughes M. E., Budd T. W., Fulham W. R., Lancaster S., Woods W., Rossell S. L., & Michie P. T . ( 2014). Sustained brain activation supporting stop-signal task performance. European Journal of Neuroscience, 39(8), 1363-1369.
pmid: 24528168 url:
[12] Hwang J. H., Kim S. H., Park C. S., Bang S. A., & Kim S. E . ( 2010). Acute high-frequency rTMS of the left dorsolateral prefrontal cortex and attentional control in healthy young men. Brain Research, 1329, 152-158.
pmid: 20226772 url:
[13] Jurcak V., Tsuzuki D., & Dan I . ( 2007). 10/20, 10/10, and 10/5 systems revisited: Their validity as relative head- surface-based positioning systems. NeuroImage, 34(4), 1600-1611.
pmid: 17207640 url:
[14] Konishi S., Nakajima K., Uchida I., Kikyo H., Kameyama M., & Miyashita Y . ( 1999). Common inhibitory mechanism in human inferior prefrontal cortex revealed by event- related functional MRI. Brain, 122(5), 981-991.
pmid: 10355680 url:
[15] Leyman L., De Raedt R., Vanderhasselt M. A., & Baeken C . ( 2009). Influence of high-frequency repetitive transcranial magnetic stimulation over the dorsolateral prefrontal cortex on the inhibition of emotional information in healthy volunteers. Psychological Medicine, 39(6), 1019-1028.
pmid: 18834555 url:
[16] Li Y., Wang L., Jia M., Guo J., Wang H., & Wang M . ( 2017). The effects of high-frequency rTMS over the left DLPFC on cognitive control in young healthy participants. PLoS One, 12(6), e0179430.
pmid: 5470713 url:
[17] Loftus A. M., Yalcin O., Baughman F. D., Vanman E. J., & Hagger M. S . ( 2015). The impact of transcranial direct current stimulation on inhibitory control in young adults. Brain and Behavior, 5(5), e00332.
pmid: 4389055 url:
[18] Logan G. D., & Cowan W. B . ( 1984). On the ability to Inhibit thought and action: A theory of an act of control. Psychoogical Review, 91, 295-327.
[19] Menon, V. ( 2011). Large-scale brain networks and psychopathology: A unifying triple network model. Trends in Cognitive Sciences, 15(10), 483-506.
pmid: 21908230 url:
[20] Meron D., Hedger N., Garner M. G., & Baldwin D. S . ( 2015). Transcranial direct current stimulation (tDCS) in the treatment of depression: Systematic review and meta-analysis of efficacy and tolerability. Neuroscience & Biobehavioral Reviews, 57, 46-62.
pmid: 26232699 url:
[21] Nigg, J. T . ( 2000). On inhibition/disinhibition in developmental psychopathology: Views from cognitive and personality psychology and a working inhibition taxonomy. Psychological Bulletin, 126, 220-246.
pmid: 10748641 url:
[22] Nitsche M. A., & Paulus W . ( 2000). Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. The Journal of Physiology, 527(3), 633-639.
[23] Nordmann G., Azorina V., Langguth B., Schecklmann M ., ( 2015). A systematic review of non-motor rTMS induced motor cortex plasticity. Frontiers in Human Neuroscience, 9, 416.
pmid: 4508515 url:
[24] Palm U., Hasan A., Strube W., & Padberg F . ( 2016). tDCS for the treatment of depression: A comprehensive review. European Archives of Psychiatry and Clinical Neuroscience, 266(8), 681-694.
pmid: 26842422 url:
[25] Penolazzi B., Stramaccia D. F., Braga M., Mondini S., & Galfano G . ( 2014). Human memory retrieval and inhibitory control in the brain: Beyond correlational evidence. The Journal of Neuroscience, 34(19), 6606-6610.
pmid: 24806685 url:
[26] Reyes-López, J., Ricardo-Garcell, J., Armas-Casta?eda, G., García-Anaya, M., Arango-De Montis, I., González-Olvera, J. J., & Pellicer, F.( 2017). Clinical improvement in patients with borderline personality disorder after treatment with repetitive transcranial magnetic stimulation: Preliminary results. Revista Brasileira de Psiquiatria, doi: 10.1590/1516-4446-2016-2112. (in Press)
doi: 10.1590/1516-4446-2016-2112 pmid: 28614492 url:
[27] Rubia K., Smith A. B., Brammer M. J., & Taylor E . ( 2003). Right inferior prefrontal cortex mediates response inhibition while mesial prefrontal cortex is responsible for error detection. NeuroImage, 20, 351-358.
pmid: 14527595 url:
[28] Soltaninejad Z., Nejati V., & Ekhtiari H . ( 2015). Effect of anodal and cathodal transcranial direct current stimulation on DLPFC on modulation of inhibitory control in ADHD. Journal of Attention Disorders, 101(4), 291-302.
pmid: 26689935 url:
[29] Stramaccia D. F., Penolazzi B., Sartori G., Braga M., Mondini S., & Galfano G . ( 2015). Assessing the effects of tDCS over a delayed response inhibition task by targeting the right inferior frontal gyrus and right dorsolateral prefrontal cortex. Experimental Brain Research, 233(8), 2283-2290.
pmid: 25925996 url:
[30] van Holst R. J., van Holstein M., van den Brink W., Veltman D. J., & Goudriaan A. E . ( 2012). Response inhibition during cue reactivity in problem gamblers: An fmri study. PLoS One, 7, e30909.
pmid: 3316530 url:
[31] Wang Y., & Cai H. D . ( 2010). Mental processing models and neural mechanisms for response inhibition. Advances in Psychological Science, 18(2), 220-229.
[31] [ 王琰, 蔡厚德 . ( 2010). 反应抑制的心理加工模型与神经机制. 心理科学进展, 18(2), 220-229.]
[32] Weidacker K., Weidemann C. T., Boy F., & Johnston S. J . ( 2016). Cathodal tDCS improves task performance in participants high in Coldheartedness. Clinical Neurophysiology, 127(9), 3102-3109.
pmid: 27472546 url:
[33] Zhou D. D., Wang W., Wang G. M., Li D. Q., & Kuang L . ( 2017). An updated meta-analysis: Short-term therapeutic effects of repeated transcranial magnetic stimulation in treating obsessive-compulsive disorder. Journal of Affective Disorders, 215, 187-196.
pmid: 28340445 url:
[1] GAN Tian, SHI Rui, LIU Chao, LUO Yuejia.  Cathodal transcranial direct current stimulation on the right temporo-parietal junction modulates the helpful intention processing[J]. Acta Psychologica Sinica, 2018, 50(1): 36-46.
[2] GAN Tian;LI Wanqing;TANG Honghong;LU Xiaping;LI Xiaoli;LIU Chao;LUO Yuejia. Exciting the Right Temporo-Parietal Junction with Transcranial Direct Current Stimulation Influences Moral Intention Processing[J]. Acta Psychologica Sinica, 2013, 45(9): 1004-1014.
[3] YU Feng-Qiong,YUAN Jia-Jin,LUO Yue-Jia. ERP Study on Effects of Emotion on Auditory Response Conflict Monitoring[J]. , 2009, 41(07): 594-601.
[4] Wang Yonghui,Zhou Xiaolin,Wang Yufeng,Zhang Yaxu. RESPONSE INHIBITION IN TWO SUBTYPES OF CHILDREN WITH ADHD[J]. , 2005, 37(02): 178-188.
Full text



Copyright © Acta Psychologica Sinica
Support by Beijing Magtech