Please wait a minute...
心理学报  2018, Vol. 50 Issue (6): 647-654    DOI: 10.3724/SP.J.1041.2018.00647
     研究报告 本期目录 | 过刊浏览 | 高级检索 |
经颅直流电刺激对健康大学生反应抑制的影响
王慧慧,罗玉丹,石冰,余凤琼,汪凯()
安徽医科大学医学心理学系, 合肥 230000
Excitation of the right dorsolateral prefrontal cortex with transcranial direct current stimulation influences response inhibition
Hui Hui WANG,Yu Dan LUO,Bing SHI,Feng Qiong YU,Kai WANG()
Department of Medical Psychology, Anhui Medical University, Hefei 230000, China
全文: PDF(437 KB)   HTML 评审附件 (1 KB) 
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 

拟观察经颅直流电刺激作用于右侧背外侧前额叶皮层前后, 被试在停止信号任务中的行为变化。实验共入组34名正常大学生, 被试前后两次随机接受真刺激和伪刺激, 两次刺激间隔7天, 每个被试在接受刺激前后均完成停止信号任务, 并在每次实验前后完成Stroop色词任务、词语流畅性、数字广度任务。结果发现真刺激作用于右侧背外侧前额叶皮层后停止信号反应时显著减小, 但伪刺激条件下没有该趋势。本实验证明了作用于右侧背外侧前额叶皮层的经颅直流电刺激可以调节反应抑制能力, 右侧背外侧前额叶皮层是反应抑制的重要脑区。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王慧慧
罗玉丹
石冰
余凤琼
汪凯
关键词 反应抑制背外侧前额叶皮层经颅直流电刺激    
Abstract

Response inhibition is a cognitive process required to cancel an intended movement and can protect from danger. Functional magnetic resonance imaging (FMRI) studies showed that the dorsolateral prefrontal cortex (dlPFC) is a crucial brain region for response inhibition. Repetitive transcranial magnetic stimulation (rTMS) is a technique that can determine the contribution of specific cortical regions to behavior. Previous studies have found that repetitive transcranial magnetic stimulation of the dlPFC affects response inhibition. In the current study, we used transcranial direct current stimulation (tDCS), a non-invasive, painless brain stimulation technique with no known side effects, to alter neuronal excitability. A number of tDCS studies have suggested that tDCS may affect response inhibition. However, to date, limited work has been done to explore whether tDCS over the right dlPFC could alter response inhibition. Therefore, this study aimed to investigate the anodal stimulus effect of tDCS on response inhibition. We hypothesized that exciting the neural activity of the right dlPFC with anodal tDCS would enhance the ability of response inhibition.

A total of 34 healthy subjects (15 males, 19 females) participated in this within-subjects study. Stop-signal task (SST) was established with E-prime software. Participants received both active and sham stimulation on separate days. SST was used to measure the participants’ capacity for response inhibition. In the active stimulation condition, we delivered a 1.5 mA direct current for 25 min (fade-in/fade-out time: 8 s); in the sham condition, we delivered a 1.5 mA direct current for 30 s at the beginning and 30 s at the end of the stimulation time. Anodal and cathodal stimulation electrodes were placed on F4 and FP1, respectively. Participants completed the SST, Stroop color-word matching task, Verbal Fluency test, and Digit Span test before and after the stimulation.

We first calculated the mean reaction time (RT)in the go trials and stop-signal delay for each participant using ANALYZE-IT software. To calculate the individual stop-signal reaction time (SSRT), ANALYZE-IT first computes the mean RTs for all trials without a stop signal and then subtracts the mean stop-signal delay from this value. We performed a series of paired samples t-tests to compare the SSRT of each experimental condition with the SSRT of the sham and active conditions. There were no significant differences in SSRT pre-stimulation in sham or active stimulations, indicating equal response inhibition capacity among the participants. Interestingly, the difference in SSRT before and after stimulation was statistically significant in the active condition, t(33) = -2.25, p < 0.05, Cohens d = 0.38. This demonstrates that participants who received anodal stimulation over the right dlPFC had significantly reduced SSRT change scores on the SST compared to participants in the sham condition.

This study demonstrated that transcranial electrical stimulation of the right dlPFC can regulate response inhibition, in that anodal stimulation improved participants’ response inhibition. We confirm previous work suggesting that the right dlPFC is an important brain region of response inhibition.

Key wordsresponse inhibition    the dorsolateral prefrontal cortex (dlPFC)    transcranial direct current stimulation (tDCS)
收稿日期: 2017-05-29      出版日期: 2018-04-28
ZTFLH:  B845  
基金资助:省高校自然科学研究重点项目(KJ2016A355);安徽医科大学博士科研基金(XJ201521);国家自然科学基金面上项目(31771222);国家自然科学基金面上项目(31571149);国家自然科学基金面上项目(81771456);基金委重大研究计划集成项目资助(91432301)
通讯作者: 汪凯     E-mail: wangkai1964@126.com
引用本文:   
王慧慧, 罗玉丹, 石冰, 余凤琼, 汪凯. 经颅直流电刺激对健康大学生反应抑制的影响[J]. 心理学报, 2018, 50(6): 647-654.
Hui Hui WANG, Yu Dan LUO, Bing SHI, Feng Qiong YU, Kai WANG. Excitation of the right dorsolateral prefrontal cortex with transcranial direct current stimulation influences response inhibition. Acta Psychologica Sinica, 2018, 50(6): 647-654.
链接本文:  
http://journal.psych.ac.cn/xlxb/CN/10.3724/SP.J.1041.2018.00647      或      http://journal.psych.ac.cn/xlxb/CN/Y2018/V50/I6/647
  电极片放置位置
  停止信号任务流程图注:彩图见电子版
组别 M ± SD t p
真刺激前stroop效应量 6.79 ± 4.58 0.49 0.628
伪刺激前stroop效应量 7.32 ± 4.67
真刺激前后stroop效应量 -0.99 ± 4.52 -1.28 0.209
伪刺激前后stroop效应量 -1.36 ± 4.09 -1.93 0.062
真刺激前数字广度(顺背) 7.94 ± 0.24 1.44 0.160
伪刺激前数字广度(顺背) 8.00 ± 0.00
真刺激前后数字广度(顺背) 0.03 ± 1.17 1.00 0.325
伪刺激前后数字广度(顺背) 0.00 ± 0.00
真刺激前数字广度(倒背) 6.06 ± 0.95 -0.73 0.473
伪刺激前数字广度(倒背) 5.94 ± 0.95
真刺激前后数字广度(倒背) 0.21 ± 0.54 2.23 0.033
伪刺激前后数字广度(倒背) 0.44 ± 0.70 3.65 0.001
真刺激前词语流畅性 27.26 ± 5.46 -0.49 0.625
伪刺激前词语流畅性 26.79 ± 4.93
真刺激前后词语流畅性 3.38 ± 4.06 4.86 0.000
伪刺激前后词语流畅性 4.47 ± 4.53 5.75 0.000
  真伪刺激前后神经心理学测验结果比较
组别 M ± SD t p
真刺激前SSRT 306.70 ± 44.78 -2.25 0.031
真刺激后SSRT 290.82 ± 40.97
伪刺激前SSRT 291.57 ± 33.21 1.99 0.055
伪刺激后SSRT 302.13 ± 40.50
  刺激前后SSRT差异比较
  刺激前后SSRT值
  真刺激和伪刺激前后SSRT值
  真刺激前后男女SSRT值
[1] Andrés, P. ( 2003). Frontal cortex as the central executive of working memory: Time to revise our view. Cortex, 39(4-5), 871-895.
pmid: 14584557
[2] Asahi S., Okamoto Y., Okada G., Yamawaki S., & Yokota N . ( 2004). Negative correlation between right prefrontal activity during response inhibition and impulsiveness: A fMRI study. European Archives of Psychiatry and Clinical Neuroscience, 254(4), 245-251.
pmid: 15309395
[3] Bari A., & Robbins T. W . ( 2013). Inhibition and impulsivity: Behavioral and neural basis of response control. Progress in Neurobiology, 108, 44-79.
pmid: 23856628
[4] Beeli G., Casutt G., Baumgartner T., & J?ncke L . ( 2008). Modulating presence and impulsiveness by external stimulation of the brain. Behavioral and Brain Functions, 4, 33.
pmid: 18680573
[5] Boggio P. S., Zaghi S., & Fregni F . ( 2009). Modulation of emotions associated with images of human pain using anodal transcranial direct current stimulation (tDCS). Neuropsychologia, 47(1), 212-217.
pmid: 18725237
[6] Brevet-Aeby C., Brunelin J., Iceta S., Padovan C., & Poulet E . ( 2016). Prefrontal cortex and impulsivity: Interest of noninvasive brain stimulation. Neuroscience & Biobehavioral Reviews, 71, 112-134.
pmid: 27590833
[7] Casey B. J., Trainor R. J., Orendi J. L., Schubert A. B., Nystrom L. E., & Giedd J. N., … Rapoport J. L . ( 1997). A developmental functional MRI study of prefrontal activation during performance of a Go-No-Go task. Journal of Cognitive Neuroscience, 9(6), 835-847.
pmid: 23964603
[8] Dambacher F., Schuhmann T., Lobbestael J., Arntz A., Brugman S., & Sack A. T . ( 2015). No effects of bilateral tDCS over inferior frontal gyrus on response inhibition and aggression. PLoS One, 10(7), e0132170.
pmid: 2005680
[9] Fang J., Zhu Y., Zhao W., Zhang B., & Wang X . ( 2013). Stop signal task and the related models of response inhibiton. Chinese Journal of Clinical Psychology, 21(5), 743-746, 750.
[ 方菁, 朱叶, 赵伟, 张蓓, 王湘 . ( 2013). 停止信号任务及其相关反应抑制理论模型综述. 中国临床心理学杂志, 21(5), 743-746, 750.]
[10] Horvath J. C., Forte J. D., & Carter O . ( 2015). Quantitative review finds no evidence of cognitive effects in healthy populations from single-session transcranial direct current stimulation (tDCS). Brain Stimulation, 8(3), 535-550.
pmid: 25701175
[11] Hughes M. E., Budd T. W., Fulham W. R., Lancaster S., Woods W., Rossell S. L., & Michie P. T . ( 2014). Sustained brain activation supporting stop-signal task performance. European Journal of Neuroscience, 39(8), 1363-1369.
pmid: 24528168
[12] Hwang J. H., Kim S. H., Park C. S., Bang S. A., & Kim S. E . ( 2010). Acute high-frequency rTMS of the left dorsolateral prefrontal cortex and attentional control in healthy young men. Brain Research, 1329, 152-158.
pmid: 20226772
[13] Jurcak V., Tsuzuki D., & Dan I . ( 2007). 10/20, 10/10, and 10/5 systems revisited: Their validity as relative head- surface-based positioning systems. NeuroImage, 34(4), 1600-1611.
pmid: 17207640
[14] Konishi S., Nakajima K., Uchida I., Kikyo H., Kameyama M., & Miyashita Y . ( 1999). Common inhibitory mechanism in human inferior prefrontal cortex revealed by event- related functional MRI. Brain, 122(5), 981-991.
pmid: 10355680
[15] Leyman L., De Raedt R., Vanderhasselt M. A., & Baeken C . ( 2009). Influence of high-frequency repetitive transcranial magnetic stimulation over the dorsolateral prefrontal cortex on the inhibition of emotional information in healthy volunteers. Psychological Medicine, 39(6), 1019-1028.
pmid: 18834555
[16] Li Y., Wang L., Jia M., Guo J., Wang H., & Wang M . ( 2017). The effects of high-frequency rTMS over the left DLPFC on cognitive control in young healthy participants. PLoS One, 12(6), e0179430.
pmid: 5470713
[17] Loftus A. M., Yalcin O., Baughman F. D., Vanman E. J., & Hagger M. S . ( 2015). The impact of transcranial direct current stimulation on inhibitory control in young adults. Brain and Behavior, 5(5), e00332.
pmid: 4389055
[18] Logan G. D., & Cowan W. B . ( 1984). On the ability to Inhibit thought and action: A theory of an act of control. Psychoogical Review, 91, 295-327.
[19] Menon, V. ( 2011). Large-scale brain networks and psychopathology: A unifying triple network model. Trends in Cognitive Sciences, 15(10), 483-506.
pmid: 21908230
[20] Meron D., Hedger N., Garner M. G., & Baldwin D. S . ( 2015). Transcranial direct current stimulation (tDCS) in the treatment of depression: Systematic review and meta-analysis of efficacy and tolerability. Neuroscience & Biobehavioral Reviews, 57, 46-62.
pmid: 26232699
[21] Nigg, J. T . ( 2000). On inhibition/disinhibition in developmental psychopathology: Views from cognitive and personality psychology and a working inhibition taxonomy. Psychological Bulletin, 126, 220-246.
pmid: 10748641
[22] Nitsche M. A., & Paulus W . ( 2000). Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. The Journal of Physiology, 527(3), 633-639.
[23] Nordmann G., Azorina V., Langguth B., Schecklmann M ., ( 2015). A systematic review of non-motor rTMS induced motor cortex plasticity. Frontiers in Human Neuroscience, 9, 416.
pmid: 4508515
[24] Palm U., Hasan A., Strube W., & Padberg F . ( 2016). tDCS for the treatment of depression: A comprehensive review. European Archives of Psychiatry and Clinical Neuroscience, 266(8), 681-694.
pmid: 26842422
[25] Penolazzi B., Stramaccia D. F., Braga M., Mondini S., & Galfano G . ( 2014). Human memory retrieval and inhibitory control in the brain: Beyond correlational evidence. The Journal of Neuroscience, 34(19), 6606-6610.
pmid: 24806685
[26] Reyes-López, J., Ricardo-Garcell, J., Armas-Casta?eda, G., García-Anaya, M., Arango-De Montis, I., González-Olvera, J. J., & Pellicer, F.( 2017). Clinical improvement in patients with borderline personality disorder after treatment with repetitive transcranial magnetic stimulation: Preliminary results. Revista Brasileira de Psiquiatria, doi: 10.1590/1516-4446-2016-2112. (in Press)
doi: 10.1590/1516-4446-2016-2112 pmid: 28614492
[27] Rubia K., Smith A. B., Brammer M. J., & Taylor E . ( 2003). Right inferior prefrontal cortex mediates response inhibition while mesial prefrontal cortex is responsible for error detection. NeuroImage, 20, 351-358.
pmid: 14527595
[28] Soltaninejad Z., Nejati V., & Ekhtiari H . ( 2015). Effect of anodal and cathodal transcranial direct current stimulation on DLPFC on modulation of inhibitory control in ADHD. Journal of Attention Disorders, 101(4), 291-302.
pmid: 26689935
[29] Stramaccia D. F., Penolazzi B., Sartori G., Braga M., Mondini S., & Galfano G . ( 2015). Assessing the effects of tDCS over a delayed response inhibition task by targeting the right inferior frontal gyrus and right dorsolateral prefrontal cortex. Experimental Brain Research, 233(8), 2283-2290.
pmid: 25925996
[30] van Holst R. J., van Holstein M., van den Brink W., Veltman D. J., & Goudriaan A. E . ( 2012). Response inhibition during cue reactivity in problem gamblers: An fmri study. PLoS One, 7, e30909.
pmid: 3316530
[31] Wang Y., & Cai H. D . ( 2010). Mental processing models and neural mechanisms for response inhibition. Advances in Psychological Science, 18(2), 220-229.
[ 王琰, 蔡厚德 . ( 2010). 反应抑制的心理加工模型与神经机制. 心理科学进展, 18(2), 220-229.]
[32] Weidacker K., Weidemann C. T., Boy F., & Johnston S. J . ( 2016). Cathodal tDCS improves task performance in participants high in Coldheartedness. Clinical Neurophysiology, 127(9), 3102-3109.
pmid: 27472546
[33] Zhou D. D., Wang W., Wang G. M., Li D. Q., & Kuang L . ( 2017). An updated meta-analysis: Short-term therapeutic effects of repeated transcranial magnetic stimulation in treating obsessive-compulsive disorder. Journal of Affective Disorders, 215, 187-196.
pmid: 28340445
[1] 王思思, 库逸轩. 右侧背外侧前额叶在视觉工作记忆中 的因果性作用[J]. 心理学报, 2018, 50(7): 727-738.
[2] 甘甜, 石睿, 刘超, 罗跃嘉.  经颅直流电刺激右侧颞顶联合区 对助人意图加工的影响[J]. 心理学报, 2018, 50(1): 36-46.
[3] 罗俊; 叶航;郑昊力;贾拥民;陈姝; 黄达强. 左右侧颞顶联合区对道德意图信息加工能力的共同作用——基于经颅直流电刺激技术[J]. 心理学报, 2017, 49(2): 228-240.
[4] 窦伟伟;郑希付;杨慧芳;王俊芳;李悦;俄小天;陈倩倩. 认知分心的强度对创伤性信息加工的影响[J]. 心理学报, 2014, 46(5): 656-665.
[5] 甘甜;李万清;唐红红;陆夏平;李小俚;刘超;罗跃嘉. 经颅直流电刺激右侧颞顶联合区对道德意图加工的影响[J]. 心理学报, 2013, 45(9): 1004-1014.
[6] 余凤琼,袁加锦,罗跃嘉. 情绪干扰听觉反应冲突的ERP研究[J]. 心理学报, 2009, 41(07): 594-601.
[7] 王勇慧,周晓林,王玉凤,张亚旭. 两种亚型ADHD儿童在停止信号任务中的反应抑制[J]. 心理学报, 2005, 37(02): 178-188.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《心理学报》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn