Please wait a minute...
心理学报  2017, Vol. 49 Issue (11): 1473-1482    DOI: 10.3724/SP.J.1041.2017.01473
  本期目录 | 过刊浏览 | 高级检索 |
 分类精确性指数Entropy在潜剖面分析中的 表现:一项蒙特卡罗模拟研究
 王孟成1,2,3;邓俏文1,2;毕向阳4;叶浩生1,2,3;杨文登1,3
 (1广州大学心理系; 2广州大学心理测量与潜变量建模研究中心; 3广东省未成年人心理健康与教育认知神经科学实验室, 广州 510006) (4中国政法大学社会学院, 北京 102249)
 Performance of the entropy as an index of classification accuracy in latent profile analysis: A Monte Carlo simulation study
 WANG Meng-Cheng1,2,3; DENG Qiaowen1,2; BI Xiangyang4; YE Haosheng1,2,3; YANG Wendeng1,3
 (1 Department of Psychology, Guangzhou University; 2 The Center for Psychometrics and Latent Variable Modeling, Guangzhou University; 3 The Key Laboratory for Juveniles Mental Health and Educational Neuroscience in Guangdong Province, Guangzhou University, Guangzhou 510006, China) (4 School of Sociology, China University of Political Science and Law, Beijing 102249, China)
全文: PDF(470 KB)   评审附件 (1 KB) 
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要  本研究通过蒙特卡洛模拟考查了分类精确性指数Entropy及其变式受样本量、潜类别数目、类别距离和指标个数及其组合的影响情况。研究结果表明:(1) 尽管Entropy值与分类精确性高相关, 但其值随类别数、样本量和指标数的变化而变化, 很难确定唯一的临界值; (2) 其他条件不变的情况下, 样本量越大, Entropy的值越小, 分类精确性越差; (3) 类别距离对分类精确性的影响具有跨样本量和跨类别数的一致性; (4) 小样本(N = 50~100)的情况下, 指标数越多, Entropy的结果越好; (5) 在各种条件下Entropy对分类错误率比其它变式更灵敏。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王孟成
邓俏文
毕向阳
叶浩生
杨文登
关键词 潜剖面分析 分类精确性 Entropy 潜类别距离 蒙特卡洛模拟    
Abstract: Latent Profile Analysis (LPA) is a latent variable modeling technique that identifies latent (unobserved) subgroups of individuals within a population based on continuous indicators. LPA has become a popular statistical method for modelling unobserved population heterogeneity in social and behavioral science. Entropy is a standardized index of model-based classification accuracy, with higher values indicating more precise assignment of individuals to latent profiles. In lots of conditions, the aim of substantial research was to assign individual to different latent subgroup. Therefore, Entropy was chosen to report as an index reflecting accuracy of class membership assignment. Unfortunately, very few methodological studies have examined the behavior of Entropy under the conditions where sample sizes, latent class separations, number of indicators, and number of classes are varying. Thus, the primary purpose of this study was to examine how Entropy will perform with different sample sizes, latent class separations, number of indicators, and number of classes. By using Monte Carlo simulation techniques, we generated artificial data to fit true models and evaluated the performance of Entropy and entropy-based indexes (CLC, ICL_BIC, sample adjusted ICL_BIC) under different modeling conditions. The simulation was repeated 100 times for each condition of the 120 combinations: sample sizes (50, 100, 500, 1000, 3000), latent class separations (0.5, 1.2, 3), number of indicators (4, 8, 12, 20), and number of latent classes (3, 5). The continuous indicators of the latent class are not allowed to correlate. Different mean levels on the observed variables are calculated by Mahalanobis distance (MD). The simulations and analyses of the sample data were conducted using the Monte Carlo facilities of Mplus7.4. For 3 latent classes, Entropy values round 0.76 and above are related to at least 90% correct assignment, and Entropy values round 0.64 and below are related to at least 20% classification error rate. When the latent classes is 5, Entropy value around 0.84 and above are related to at least 90% correct assignment. The Entropy value decreases and the classification error rate increases as sample size increases. Entropy performs well under small sample sizes (50-100) and more indicators conditions. Entropy consistently performs better when latent class separation is large (MD=3), and the result is quite consistent across the sample size and number of latent classes. The tendency of CLC, ICL_BIC, and sample adjusted ICL_BIC were similar, which increases as sample size increases, and it also increases under large class separation but the differences of Entropy caused by class separation were more noticeable. This simulation indicates that the Entropy values are strongly correlated with the correct class membership assignment, but it varies according to number of latent classes, sample sizes, latent class separation and number of indicators. Hence, it is hard to determine cutoff values for Entropy, the indicator of class assignment.
Key wordslatent profile analysis    accuracy of class membership assignment    Entropy    latent class separation    Monte Carlo simulation
收稿日期: 2016-06-03      出版日期: 2017-09-25
ZTFLH:  B841  
基金资助: 国家自然科学基金(31400904); 广州大学“创新强校工程”青年创新人才类项目(2014WQNCX069); 广州大学青年拔尖人才培养项目(BJ201715)。
通讯作者: 王孟成, E-mail: wmcheng2006@126.com; 杨文登, E-mail: yangwendeng@163.com     E-mail: E-mail: wmcheng2006@126.com; E-mail: yangwendeng@163.com
引用本文:   
王孟成, 邓俏文, 毕向阳, 叶浩生, 杨文登.  分类精确性指数Entropy在潜剖面分析中的 表现:一项蒙特卡罗模拟研究[J]. 心理学报, 2017, 49(11): 1473-1482.
WANG Meng-Cheng, DENG Qiaowen, BI Xiangyang, YE Haosheng, YANG Wendeng.  Performance of the entropy as an index of classification accuracy in latent profile analysis: A Monte Carlo simulation study. Acta Psychologica Sinica, 2017, 49(11): 1473-1482.
链接本文:  
http://journal.psych.ac.cn/xlxb/CN/10.3724/SP.J.1041.2017.01473      或      http://journal.psych.ac.cn/xlxb/CN/Y2017/V49/I11/1473
[1] 王孟成;邓俏文. 缺失数据的结构方程建模:全息极大似然估计时辅助变量的作用[J]. 心理学报, 2016, 48(11): 1489-1498.
[2] 刘源; 骆方; 刘红云. 多阶段混合增长模型的影响因素:距离与形态[J]. 心理学报, 2014, 46(9): 1400-1412.
[3] 刘红云;骆方;张玉;张丹慧. 因变量为等级变量的中介效应分析[J]. 心理学报, 2013, 45(12): 1431-1442.
[4] 黎光明;张敏强. 校正的Bootstrap方法对概化理论方差分量及其变异量估计的改善[J]. 心理学报, 2013, 45(1): 114-124.
[5] 刘红云,张月,骆方,李美娟,李小山. 多水平随机中介效应估计及其比较[J]. 心理学报, 2011, 43(06): 696-709.
[6] 游晓锋,丁树良,刘红云. 计算机化自适应测验中原始题项目参数的估计[J]. 心理学报, 2010, 42(07): 813-820.
[7] 黎光明,张敏强. 基于概化理论的方差分量变异量估计[J]. 心理学报, 2009, 41(09): 889-901.
[8] 陈平,丁树良. 允许检查并修改答案的计算机化自适应测验[J]. 心理学报, 2008, 40(06): 737-747.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《心理学报》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn