Please wait a minute...
心理学报
  论文 本期目录 | 过刊浏览 | 高级检索 |
多维题组效应认知诊断模型
詹沛达1,2;李晓敏3;王文中3;边玉芳2;王立君1
(1浙江师范大学心理系, 金华 321004) (2北京师范大学认知神经科学与学习国家重点实验室, 北京 100875)(3香港教育学院评估研究中心, 香港)
The Multidimensional Testlet-Effect Cognitive Diagnostic Models
ZHAN Peida1,2; LI Xiaomin3; WANG Wen-Chung3; BIAN Yufang2; WANG Lijun1
(1 Department of Psychology, Zhejiang Normal University, Jinhua 321004, China) (2 National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China) (3 Assessment Research Center, The Hong Kong Institute of Education, Hong Kong, China)
全文: PDF(587 KB)   评审附件 (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 

当前认知诊断领域还缺少对包含题组的测验进行诊断分析的研究, 即已开发的认知诊断模型无法合理有效地处理含有题组效应的测验数据, 且已开发的题组反应模型也不具有对被试知识结构或认知过程进行诊断的功能。针对该问题, 本文尝试性地将多维题组效应向量参数引入线性Logistic模型中, 同时开发了属性间具有补偿作用的和属性间具有非补偿作用的多维题组效应认知诊断模型。模拟研究结果显示新模型合理有效, 与线性Logistic模型和DINA模型对比研究后表明:(1)作答数据含有题组效应时, 忽略题组效应会导致项目参数的偏差估计并降低对目标属性的判准率; (2)新模型更具普适性, 即便当作答数据不存在题组效应时, 采用新模型进行测验分析亦能得到很好的项目参数估计结果且不影响对目标属性的判准率。整体来看, 新模型既具有认知诊断功能又可有效处理题组效应。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
詹沛达
李晓敏
王文中
边玉芳
王立君
关键词 认知诊断题组项目反应理论多维题组效应Logistic题组框架DINA    
Abstract

Cognitive diagnosis, which is also referred as skill assessment or skill profiling, utilizes latent class models to provide fine-grained information about students’ strength and weakness in the learning process. The outcome of cognitive diagnostic models (CDMs) is a profile with binary element for each examinee to indicate the mastery/nonmastery status of every attribute/skill. Therefore, one major advantage of CDMs is the capacity to provide additional information about the instructional needs of students. In the past decades, extensive research has been conducted in the area of cognitive diagnosis and many statistical models based on a probabilistic approach have been proposed. Examples of CDMs include the deterministic inputs, noisy and gate (DINA) model (Junker & Sijtsma, 2001), the deterministic input, noisy or gate (DINO) model (Templin & Henson, 2006), and the linear Logistic model (LLM) (Maris, 1999). In educational measurement, one of the most commonly used formats is the testlet design, which is a cluster of items that share a common stimulus (e.g., a reading comprehension passage or a figure). Under the framework of item response theory (IRT), various testlet response models (TRM) have been proposed, such as the Rasch testlet model (Wang & Wilson, 2005) and the multidimensional testlet-effect Rasch model (MTERM) (Zhan, Wang, Wang, & Li, 2014). However, limited efforts have been contributed to the development of testlet models for CDMs. A question then naturally arises is the searching for a way to account for testlet effect under CDMs. To address this issue, this study proposed two testlet-CDMs. One followed the compensatory approach and the other followed the noncompensatory approach: (1) the compensatory multidimensional testlet-effect CDM (C-MTECDM) was based on the combination of LLM and MTERM, while (2) the noncompensatory multidimensional testlet-effect CDM (N-MTECDM) was based on the combination of (logit)DINA model and MTERM, respectively. Model parameters can be estimated by the Bayesian methods with Markov chain Monte Carlo (MCMC) algorithms, which have been implemented with the freeware WinBUGS. In study 1, a series of simulations were conducted to evaluate parameter recovery of two new models, and results showed that the model parameters could be recovered fairly well under all simulated conditions. In study 2, the two new models were compared with the LLM and the (logit)DINA model, respectively. Results showed that ignoring testlet effect would result in biased item parameter estimations and worse person classification rates. Additionally, fitting a more complicated model (i.e., MTECDM) to data with a simpler structure did litter harm on parameter recovery. In conclusion, the new models is feasible and flexible.

Key wordscognitive diagnosis    testlet    item response theory    multidimensional testlet-effect    Logistic testlet framework    DINA
收稿日期: 2014-05-04      出版日期: 2015-05-25
通讯作者: 边玉芳, E-mail: bianyufang66@126.com; 王立君, E-mail: frankwlj@163.com   
引用本文:   
詹沛达;李晓敏;王文中;边玉芳;王立君. 多维题组效应认知诊断模型[J]. 心理学报, 10.3724/SP.J.1041.2015.00689.
ZHAN Peida; LI Xiaomin; WANG Wen-Chung; BIAN Yufang; WANG Lijun. The Multidimensional Testlet-Effect Cognitive Diagnostic Models. Acta Psychologica Sinica, 2015, 47(5): 689-701.
链接本文:  
http://journal.psych.ac.cn/xlxb/CN/10.3724/SP.J.1041.2015.00689      或      http://journal.psych.ac.cn/xlxb/CN/Y2015/V47/I5/689
[1] 陈平. 两种新的计算机化自适应测验在线标定方法[J]. 心理学报, 2016, 48(9): 1184-1198.
[2] 孟祥斌;陶剑;陈莎莉. 四参数Logistic模型潜在特质参数的 Warm加权极大似然估计[J]. 心理学报, 2016, 48(8): 1047-1056.
[3] 高椿雷;罗照盛;喻晓锋; 彭亚风;郑蝉金. CD-MST初始阶段模块组建方法比较[J]. 心理学报, 2016, 48(8): 1037-1046.
[4] 郭磊; 郑蝉金; 边玉芳; 宋乃庆; 夏凌翔. 认知诊断计算机化自适应测验中新的选题策略:结合项目区分度指标[J]. 心理学报, 2016, 48(7): 903-914.
[5] 刘彦楼;辛涛;李令青;田伟;刘笑笑. 改进的认知诊断模型项目功能差异检验方法 ——基于观察信息矩阵的Wald统计量[J]. 心理学报, 2016, 48(5): 588-598.
[6] 詹沛达;边玉芳;王立君. 重参数化的多分属性诊断分类模型及其判准率影响因素[J]. 心理学报, 2016, 48(3): 318-330.
[7] 汪文义; 宋丽红;丁树良. 复杂决策规则下MIRT的分类准确性和分类一致性[J]. 心理学报, 2016, 48(12): 1612-1624.
[8] 彭亚风;罗照盛;喻晓锋;高椿雷;李喻骏. 认知诊断评价中测验结构的优化设计[J]. 心理学报, 2016, 48(12): 1600-1611.
[9] 詹沛达;陈平;边玉芳. 使用验证性补偿多维IRT模型进行认知诊断评估[J]. 心理学报, 2016, 48(10): 1347-1356.
[10] 蔡艳;苗莹;涂冬波. 多级评分的认知诊断计算机化适应测验[J]. 心理学报, 2016, 48(10): 1338-1346.
[11] 康春花;任平;曾平飞. 非参数认知诊断方法:多级评分的聚类分析[J]. 心理学报, 2015, 47(8): 1077-1088.
[12] 罗照盛;喻晓锋;高椿雷;李喻骏;彭亚风;王 睿;王钰彤. 基于属性掌握概率的认知诊断计算机化自适应测验选题策略[J]. 心理学报, 2015, 47(5): 679-688.
[13] 喻晓锋;罗照盛;高椿雷;李喻骏;王 睿;王钰彤. 使用似然比D2统计量的题目属性定义方法[J]. 心理学报, 2015, 47(3): 417-426.
[14] 喻晓锋;罗照盛;秦春影;高椿雷;李喻骏. 基于作答数据的模型参数和Q矩阵联合估计[J]. 心理学报, 2015, 47(2): 273-282.
[15] 汪文义;丁树良;宋丽红. 认知诊断中基于条件期望的距离判别方法[J]. 心理学报, 2015, 47(12): 1499-1510.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《心理学报》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn