Please wait a minute...
心理学报
  论文 本期目录 | 过刊浏览 | 高级检索 |
基于属性掌握概率的认知诊断计算机化自适应测验选题策略
罗照盛1;喻晓锋1,2;高椿雷1;李喻骏1;彭亚风1;王  睿1;王钰彤1
(1江西师范大学心理学院, 南昌 330022) (2亳州师范高等专科学校, 亳州 236800)
Item Selection Strategies Based on Attribute Mastery Probabilities in CD-CAT
LUO Zhaosheng1; YU Xiaofeng1,2; GAO Chunlei1; LI Yujun1; PENG Yafeng1; WANG Rui1; WANG Yutong1
  (1School of Psychology, Jiangxi Normal University, Nanchang 330022, China)
(2Computer Department, Bozhou Normal College, Bozhou 236800, China)
全文: PDF(445 KB)   评审附件 (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 

在认知诊断计算机化自适应测验(CD-CAT)中, 被试对每个属性的掌握概率更直接地反映了被试能力的当前估计值。因此, 基于被试的属性掌握概率来构建选题策略, 选择最能改变被试属性掌握概率的题目作为下一个测验项目, 这应该是一个值得尝试的方案。本文借鉴已有相关研究的数据生成模式进行探索, 模拟实验结果表明:假设属性间相互独立,在定长(长度为16)、变长(长度为16或后验属性掌握模式概率达到0.8)以及短测验(长度分别为4、6、8、10)的情况下, 基于属性掌握概率的选题策略PPWKL和PHKL有较好的分类准确率, 在题目曝光率, 题库使用均匀性等方面也有较好的表现; 与研究较多的PWKL、HKL等策略相比, 也略有优势; 当属性间存在不同程度的相关时, 在定长、变长以及较短的测验条件下, 基于PHKL和MI的测验对知识状态估计精度较好, 基于PPWKL和PHKL的测验综合表现占优。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
罗照盛
喻晓锋
高椿雷
李喻骏
彭亚风
王 睿
王钰彤
关键词 认知诊断计算机化自适应测验选题策略属性掌握概率属性掌握模式    
Abstract

Cognitive diagnostic computerized adaptive testing (CD-CAT) is a popular mode of online testing of cognitive diagnostic assessment (CDA). The key to a CD-CAT system is the item selection strategies. Someof the popular strategies are developed based on Kullback-Leibler information (KL), Shannon entropy (SHE) toselect items in CD-CAT. Typically, during CD-CAT, thesefamiliar methods would use a cutoff point to transform the attribute mastery probabilities' provisional value to binary values, but at the initial stage, the cutoff point method may lead to a larger deviation. A method that can take advantage of the probabilistic information with regard to attributes may offer a better alternative. This paper proposed two item selection strategies based on the provisional value of the attribute mastery probabilities, as follows: (1) the first strategy, which is called as PPWKL (Posterior Probability Weighted Kullback-Leibler), is based on the KL information, and it can lead to maximum difference of the sum of attribute mastery probabilities, and it is weighted bythe pattern’s posterior probability as well asthe difference of the attribute mastery probabilities between the and any possible latent state; (2) the PPWKL considers the fact that not all the patterns are equally likely, but overlooks the fact that the distances between different patterns and the current estimate are not all of equal importance. Therefore, the PPWKL can be weighed by the inverse of the distance between the and any possible latent state, which is called as PHKL (Posterior Hybrid Kullback- Leibler). Then, three simulation studies were carried out, one was the fixed length of CD-CAT, and the secondwas the variant length CD-CAT, and the last wasshort length CD-CAT.Variant item selection strategiesweretaken intoconsideration in these studies, including KL, SHE, PWKL, HKL, MI, PPWKL and PHWKL. The results were compared in terms of pattern or attribute classification correct rate, itemaverage exposure ratio, item maximum exposure ratio, item minimum exposure ratio, average test length, unused item number, number of items with exposure ratioover 20%, test overlap ratio.The simulation results indicate that: (1) the comprehensive performance of PPWKL and PHKLare better than other mentioned strategies in fixed and variant lengthCD-CAT; as to PHKL and MI, each has different strengths in short length CD-CAT; (2) PHKL and PPWKL can retain a good measurement accuracy, and also improve the utilization ratio of item pool.

Key wordstext CD-CAT    item selection strategies    attribute mastery probabilities    attribute mastery pattern
收稿日期: 2014-05-13      出版日期: 2015-05-25
基金资助:

国家自然科学基金(31160203, 31100756, 31360237)、国家社会科学基金(12BYY055)、教育部人文社会科学研究青年基金项目(13YJC880060)、安徽省高校省级优秀青年人才基金重点项目(2013SQRL127ZD)、安徽省自然科学研究项目(KJ2010B123,KJ2013B151, KJ2013B250)、高等学校博士学科点专项科研基金(20113604110001)、江西省研究生创新专项基金(YC2013-B024)、安徽省哲学社会科学规划项目(AHSKY2014D102)、安徽省高等教育振兴计划重大教学改革研究项目(2014ZDJY190)和资助。

通讯作者: 喻晓锋, E-mail: andyyuxf@163.com; 高椿雷, E-mail:gaochunlei51@qq.com   
引用本文:   
罗照盛;喻晓锋;高椿雷;李喻骏;彭亚风;王 睿;王钰彤. 基于属性掌握概率的认知诊断计算机化自适应测验选题策略[J]. 心理学报, 10.3724/SP.J.1041.2015.00679.
LUO Zhaosheng; YU Xiaofeng; GAO Chunlei; LI Yujun; PENG Yafeng;WANG Rui; WANG Yutong. Item Selection Strategies Based on Attribute Mastery Probabilities in CD-CAT. Acta Psychologica Sinica, 2015, 47(5): 679-688.
链接本文:  
http://journal.psych.ac.cn/xlxb/CN/10.3724/SP.J.1041.2015.00679      或      http://journal.psych.ac.cn/xlxb/CN/Y2015/V47/I5/679
[1] 郭磊; 郑蝉金; 边玉芳; 宋乃庆; 夏凌翔. 认知诊断计算机化自适应测验中新的选题策略:结合项目区分度指标[J]. 心理学报, 2016, 48(7): 903-914.
[2] 郭磊;郑蝉金;边玉芳. 变长CD-CAT中的曝光控制与终止规则[J]. 心理学报, 2015, 47(1): 129-140.
[3] 郭磊;王卓然;王丰;边玉芳. 结合a分层的兼具项目曝光和广义测验重叠率控制的选题策略[J]. 心理学报, 2014, 46(5): 702-713.
[4] 毛秀珍;辛涛. 认知诊断CAT中项目曝光控制方法的比较[J]. 心理学报, 2013, 45(6): 694-703.
[5] 罗芬,丁树良,王晓庆. 多级评分计算机化自适应测验动态综合选题策略[J]. , 2012, 44(3): 400-412.
[6] 陈平,辛涛. 认知诊断计算机化自适应测验中的项目增补[J]. , 2011, 43(07): 836-850.
[7] 程小扬,丁树良,严深海,朱隆尹. 引入曝光因子的计算机化自适应测验选题策略[J]. , 2011, 43(02): 203-212.
[8] 刘珍,丁树良,林海菁. 基于GPCM的计算机自适应测验选题策略比较[J]. , 2008, 40(05): 618-625.
[9] 林海菁,丁树良. 具有认知诊断功能的计算机化自适应测验的研究与实现[J]. , 2007, 39(04): 747-753.
[10] 戴海琦,陈德枝,丁树良,邓太萍. 多级评分题计算机自适应测验选题策略比较[J]. , 2006, 38(05): 778-783.
[11] 陈平,丁树良,林海菁,周婕. 等级反应模型下计算机化自适应测验选题策略[J]. , 2006, 38(03): 461-467.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《心理学报》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn