ISSN 1671-3710
CN 11-4766/R
主办:中国科学院心理研究所
出版:科学出版社

心理科学进展, 2018, 26(11): 1976-1991 doi: 10.3724/SP.J.1042.2018.01976

研究前沿

额叶区域的经颅直流电刺激对抑制控制的影响

周晶, 宣宾,

安徽师范大学教育科学学院, 芜湖 241000

Effects of transcranial direct current stimulation (tDCS) on the frontal lobe region on inhibitory control

ZHOU Jing, XUAN Bin,

College of Educational Science, Anhui Normal University, Wuhu 241000, China

通讯作者: 宣宾 E-mail:xuanbin@mail.ahnu.edu.cn

收稿日期: 2018-01-17   网络出版日期: 2018-11-15

基金资助: * 国家社会科学基金项目(18BYY090)

Received: 2018-01-17   Online: 2018-11-15

摘要

抑制控制是执行功能的重要组成部分之一, 研究表明抑制控制与额叶区域的活动有关。经颅直流电刺激(Transcranial Direct Current Stimulation, tDCS)是一种非侵入性的脑刺激技术, 可以调节脑区的激活程度。研究表明tDCS刺激额叶的部分区域可以有效干预参与者的抑制控制水平, 而这一干预作用会受到刺激位置、刺激类型以及实验任务等条件变化的影响。目前tDCS已应用于不同人群的抑制控制研究, 并能与其他研究技术较好的结合。

关键词: 抑制控制; 反应抑制; tDCS; 额下回; 背外侧前额叶; 前辅助运动区

Abstract

Inhibitory control is an important part of executive function. Studies have showed that inhibitory control is in connection with activities in the frontal lobe region. Transcranial direct current stimulation (tDCS) is a kind of non-invasive brain stimulation that can regulate activation intensity of the brain region. Studies have shown that tDCS on partial region of the frontal lobe can effectively interfere with the level of inhibitory control of the participants, and this intervention can be affected by changes in such conditions as location and type of the stimulation, and experimental tasks. At present, tDCS has been applied to the studies on inhibitory control of different populations, and can be better combined with other research techniques.

Keywords: inhibitory control; response inhibition; tDCS; IFG; dlPFC; pre-SMA

PDF (3317KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

周晶, 宣宾. 额叶区域的经颅直流电刺激对抑制控制的影响. 心理科学进展, 2018, 26(11): 1976-1991 doi:10.3724/SP.J.1042.2018.01976

ZHOU Jing, XUAN Bin. Effects of transcranial direct current stimulation (tDCS) on the frontal lobe region on inhibitory control. Advances in Psychological Science, 2018, 26(11): 1976-1991 doi:10.3724/SP.J.1042.2018.01976

1 引言

我们常常会经历这些情景:在嘈杂的街道上, 我们可以和朋友交谈自如; 或是在察觉到危险的时候猛然刹住脚步。这些现象都与抑制控制密切相关。抑制控制是指个体根据行为目标, 对无关信息、优势反应和不适当的行为进行抑制的过程, 是一种能够减少或阻止神经、心理或行为活动的机制(Aron, Robbins, & Poldrack, 2004; Logan, Schachar, & Tannock, 1997)。它是人类认知过程中最为重要的部分之一, 因此, 探究抑制控制的机制一直以来都是研究者们积极关注的问题。

大量研究表明抑制控制与大脑皮质的额下回(inferior frontal gyrus, IFG)区域有关。一般认为, 反应抑制和干扰控制等功能非常依赖于右侧IFG的完整功能(Aron, Fletcher, Bullmore, Sahakian, & Robbins, 2003; Zhu, Zacks, & Slade, 2010)。对于脑损伤病人的研究也充分支持了IFG对抑制控制的重要作用。Roberts和Wallis (2000)在对脑损伤病人的研究中发现右侧IFG的损伤导致了抑制控制能力的受损; Aron等(2003)在一项研究中对比了右侧IFG损伤病人与健康参与者抑制控制任务的行为表现, 也得到了同样的结果。

但IFG在抑制控制的作用往往需要其他脑区的协同参与。白质束成像(Tractography)研究发现pre-SMA与IFG存在白质纤维束的连接, 一些研究也发现了抑制控制任务中IFG与前辅助运动区(pre-supplementary motor area, pre-SMA)的共同活动(Aron, Behrens, Smith, Frank, & Poldrack, 2007; Li et al., 2008)。Floden和Stuss (2006)首次发现额中上区尤其是pre-SMA的损伤会导致反应抑制能力的受损。而另一项研究发现无论启动刺激和靶刺激是否相关, pre-SMA损伤患者均表现出加速反应, 这说明pre-SMA抑制了对环境刺激的自动反应(Sumner et al., 2007)。

背外侧前额叶(dorsolateral prefrontal cortex, dlPFC)也对抑制控制有着重要影响。研究者们通常认为dlPFC的功能在于选择恰当的反应而抑制不恰当的反应, 并且与脑干、基底神经节等区域(即冲动系统)协同控制冲动性行为(Bechara, 2005; Wood & Grafman, 2003)。而一些脑损伤研究显示, dlPFC受损的患者在完成抑制控制任务时, 行为表现低于常人, 这也说明了dlPFC与抑制控制有关(Floden & Stuss, 2006; Shimamura, Jurica, Mangels, Gershberg, & Knight, 1995)。此外许多研究也证实了dlPFC在反应抑制和自我控制方面的重要作用(Friese, Binder, Luechinger, Boesiger, & Rasch, 2013; Knoch, Pascual-Leone, Meyer, Treyer, & Fehr, 2006)。

神经影像学研究表明成功的抑制控制与多个脑区的共同作用有关, 包括了pre-SMA、rIFG、dlPFC、丘脑底核(STN)等区域, 并由此提出一个抑制控制的功能网络模型, 即额叶-基底神经节模型(Aron & Poldrack, 2006; Li, Huang, Constable, & Sinha, 2006; Li et al., 2008)。额叶-基底神经节模型(fronto-basal ganglia model)是一个被普遍接受的抑制控制模型, 根据这一模型, 抑制控制过程包括进行过程(Go Process)和停止过程(Stopping Process)。进行过程由前运动皮质(premotor cortex)产生, 激活纹状体(Str)并抑制苍白球(GPi), 解除丘脑的抑制并激活运动皮层; 停止过程是由IFG产生, 并导致STN的激活, 增加苍白球的广泛激活, 并抑制丘脑皮质输出, 从而减少运动皮层的激活(见图1, Aron,2007; Aron, Durston, et al., 2007)。IFG、pre-SMA、dlPFC等区域在抑制控制网络中都承担了非常重要的功能(Aron & Poldrack, 2006; Chikazoe et al., 2009; Zandbelt, Bloemendaal, Hoogendam, & Vink, 2013)。由于这些脑区在抑制控制中的重要功能, 在脑刺激研究中, 这些区域往往被选取作为研究抑制控制的刺激靶点(见 图2)。

图1

图1   额叶-基底神经节模型(引自Aron, 2007)


图2

图2   抑制控制相关的额叶刺激区


2 抑制控制的tDCS研究

随着技术的不断进步, 研究者对抑制控制的研究更加直接和深入。其中利用经颅直流电刺激技术(Transcranial Direct Current Stimulation, tDCS)研究抑制控制的机制就是被广泛应用的方法之一。tDCS是一种非侵入性的脑刺激技术, 由于tDCS技术可以直接刺激需要探查的脑区, 对抑制控制神经机制的研究变得更加直观和精准。tDCS的非侵入性, 低成本, 易用性和对皮质兴奋性的强大影响等特征使得该技术在认知神经科学和临床中得到了广泛的应用和深入的研究(Priori, Hallett, & Rothwell, 2009)。其主要作用机制是通过使用弱直流电刺激目标神经元, 对神经元的膜电位进行阈下调节, 由此诱发皮层兴奋性和活性的改变(Woods et al., 2016)。这意味着研究者可以将tDCS技术以非侵入性的方式对受试者脑区兴奋性产生临时、可逆的变化, 从而能够对大脑如何工作进行实验调查(Zmigrod, Colzato, & Hommel, 2014)。神经影像学研究可以提供抑制控制过程所需要的脑区及脑网络的证据, 但无法建立某个区域对抑制控制起到关键作用的因果联系(Juan & Muggleton, 2012)。而tDCS可以探查某一区域是否是完成抑制控制任务所必须的关键区域。tDCS通过刺激大脑皮层的相应区域, 增强或降低该脑区的皮层兴奋性, 从而可以探测该脑区与额叶-基底神经节模型的交互作用。比如使用阳极tDCS刺激右侧IFG, 将会提高右侧IFG的皮层兴奋性, 并提高STN的激活水平, 从而兴奋苍白球, 并丘脑皮质输出得到抑制, 最终提高抑制控制的水平(Chambers, Garavan, & Bellgrove, 2009)。近10年来, 利用tDCS技术探索抑制控制神经机制的研究逐渐增多, 提供了更多有因果关系的证据。

在实验研究中, 探究抑制控制的tDCS研究主要使用Stop Signal任务(SST)和Go/No-Go任务(GNG)两种实验范式。在Stop Signal任务中, 参与者被要求在接收到停止信号后立即停止正在准备进行的反应, 其内在的抑制过程是反应性抑制(reactive inhibition), 即一种外部驱动的中止正在进行的反应的抑制过程; 而在Go/No-Go任务中, 参与者被要求在特定的条件下不进行反应, 因此其抑制过程是主动性抑制(proactive inhibition), 即一种内部驱动的避免做出某种反应的抑制过程(Cunillera, Fuentemilla, Brignani, Cucurell, & Miniussi, 2014; 吴慧中, 王明怡, 2015)。

2.1 额下回区域的tDCS研究

在针对抑制控制的tDCS研究中, IFG, 特别是右侧IFG, 是研究者们最关注的脑区之一。首先引起研究者关注的是IFG在抑制控制中的偏侧性。神经影像学的证据显示, 参与者在成功完成抑制控制任务时, 其右侧IFG激活水平提高(Rubia, Smith, Brammer, & Taylor, 2003; van Campen, Kunert, van den Wildenberg, & Ridderinkhof, 2018)。Aron, Behrens等人(2007)进一步发现, 在抑制控制任务中反应更快的个体右侧IFG的激活水平更高。在tDCS研究中, 大量证据显示阳极刺激右侧IFG影响了参与者在Stop Signal任务中的行为表现, 这说明右侧IFG参与了反应抑制过程, 但阴极刺激右侧IFG对Stop Signal任务没有影响。Jacobson, Javitt和Lavidor (2011)在一项研究中对参与者的右侧IFG施加直流电刺激并要求参与者在刺激后完成Stop Signal任务, 实验结果显示, 对右IFG施加阳极刺激会显著降低停止信号反应时(Stop Signal Response Time, SSRT)。而这一指标的降低意味着反应抑制水平的上升(Li et al., 2008)。相对的, 对右IFG施加阴极刺激则未出现显著的变化。之后的一些采用Stop Signal任务的研究也得到了一致的结果(Cai et al., 2016; Hogeveen et al., 2016; Nobusako et al., 2017; Stramaccia et al., 2015)。

虽然右侧IFG在抑制控制中起到关键的作用, 但一些研究也提出左侧IFG可能同样影响抑制控制。Jacobson等人(2011)在研究中将阳极放置于右IFG并将阴极放置于左IFG, 虽然只发现了接近显著的结果, 但一个有趣的发现是, 单阳极刺激右侧IFG比阳极刺激右IFG、阴极刺激左IFG的双极刺激表现更短的SSRT, 而单阴极刺激右IFG比阴极刺激右IFG、阳极刺激左IFG的双极模式表现出更长的SSRT, 这可能说明在Stop Signal任务下, 对左侧IFG的刺激也同样影响了抑制控制。另一项研究使用优势抑制任务(Prepotent Inhibition task)研究了参与者的抑制控制能力(Leite et al., 2018)。在这项研究中, 参与者被要求根据前面的提示对屏幕上的箭头做出反应。当提示为绿色时, 用鼠标左键反应左向箭头、用右键反应右向箭头; 当提示为红色时, 则用右键反应左向箭头、用左键反应右向箭头。结果显示, 对右侧IFG的阳极刺激提升了任务的正确率, 而阳极刺激右侧IFG同时阴极刺激左侧IFG的双极刺激则没有效应。这一结果也支持了左侧IFG影响抑制控制的观点。更直接的证据来自于Nozari, Woodard和Thompson-Schill (2014)的研究。在该研究中, 参与者被要求在左侧IFG接受阴极刺激时或刺激结束后完成字母Flanker任务, 结果显示参与者的正确率和反应时均受到了不同程度的影响, 这证明了左侧IFG在干扰抑制中的作用。

此外, 研究者发现刺激右侧IFG在主动性抑制和反应性抑制中的效应存在差异。许多fMRI实验显示右侧IFG在Stop试次比在Go试次产生更大的激活, 由此研究者们认为右侧IFG主要涉及反应性抑制控制而非主动性抑制控制(Cai et al., 2016)。tDCS研究也表明, 刺激右侧IFG并不会影响Go/No-Go任务的行为表现, 这可能说明了右侧IFG与主动性抑制过程无关。Dambacher等人(2015)对IFG施加双极刺激, 并让参与者完成Go/No-Go任务。实验中, 研究者将参与者分为三组, 一组参与者将将阳极放置于右IFG并将阴极放置于左IFG, 另一组参与者将阳极放置于左IFG并将阴极放置于右IFG, 而控制组的参与者接收虚伪刺激。实验结果显示, 两种双侧刺激条件下的抑制控制水平与控制组相比均无显著差异。此外Campanella等人(2017)的研究也重复了这一结果。

但一些研究却得到了不同的结果。Cunillera等人(2014)将Stop-Signal任务与Go/No-Go任务结合在一起, 创造了新的GNG-SST任务, 该任务可以同时观察参与者的主动抑制和反应抑制情况。结果显示对右IFG的阳性刺激同时提高了参与者在Go/No-Go任务和Stop Signal任务中的行为表现, 这样的结果支持了右IFG同时参与了主动抑制和反应性抑制两种抑制控制的结论。同时该研究还提供了主动抑制与反应性抑制两种过程可以同时在脑中运作的证据。然而在此后的一项研究中, 却未能完全重复这样的结果(Cunillera, Brignani, Cucurell, Fuentemilla, & Miniussi, 2016)。该研究依据同样的实验设计, 其结果显示, 对右IFG的阳性刺激提高了参与者在Go/No-Go任务中的行为表现, 但对Stop Signal任务的行为表现没有影响。这样的差异可能是因为GNG-SST任务将Go/ No-Go任务与Stop Signal任务融合在一起, 不仅诱发了参与者的任务转换过程, 也使得参与者对任务的反应策略做出了调整。

认知训练与tDCS技术的结合也是研究者较为关心的问题。为了调查行为抑制训练与tDCS结合是否可以改善行为抑制能力, Ditye, Jacobson, Walsh和Lavidor (2012)调查了结合tDCS刺激的4天认知训练对右IFG对行为抑制的影响。结果表明, 训练有效地提高了抑制反应的能力, 而训练与tDCS的结合产生了比只进行训练更大的效果。这一发现提供了将tDCS与认知训练相结合以改善抑制控制能力的可行性, 并对相关疾病的治疗提供了新的理论支持。

一项以老年人群体为对象的研究探究了tDCS对老年人(年龄70.68±3.5)抑制控制能力的影响。实验要求参与者在接受右侧IFG的阳极直流电刺激之后完成Stop Signal任务和Go/No-Go任务。结果显示阳极tDCS在两种任务中都未能影响老年人的行为表现(Geusens & Swinnen, 2014)。这可能说明了老年人的抑制控制能力更难受到tDCS的调节。但这一结论缺少更直接的证据支持, 需要未来更多研究的进一步探索。

此外, 在对于IFG的tDCS研究中, 对两侧IFG的定位有着不同的解释。其中最主要的两组定位点, 根据国际10-20系统分别为“T3-Fz连接线与F7-Cz连接线的交点/T4-Fz连接线与F8-Cz连接线的交点”和“F7/F8”。从已有的研究来看, 对这两组定位点的刺激都会影响到抑制控制水平, 而且目前尚没有研究对这两种定位方法做出对比。

2.2 前辅助运动区的tDCS研究

Pre-SMA是另一处与抑制控制密切相关的脑区。研究发现, pre-SMA激活水平的增强与调整反应策略以平衡任务冲突有关(Nachev, Wydell, O’Neill, Husain, & Kennard, 2007; Obeso et al., 2011)。tDCS的研究显示, 向pre-SMA区域施加tDCS刺激会影响参与者的抑制控制。目前几乎所有的刺激pre-SMA的抑制控制研究都采用了Stop Signal任务, 并得到了较为一致的结果, 即使用阳极刺激pre-SMA能够提升参与者的行为表现。

Hsu等人(2011)利用可以直接提升或抑制Pre-SMA激活水平的tDCS技术进行抑制控制任务的研究。结果显示, 对Pre-SMA的阴极刺激降低了任务表现, 这重复了此前TMS研究的结果, 而阳极刺激则观察到了显著的促进作用, 这意味着相关神经元的活性受到了tDCS的调节。这些发现还表明, Pre-SMA在抑制不必要的反应和促进任务所需的功能方面起着关键的作用。类似的结果出现在Kwon等人2013年的研究中。在这项研究中, 参与者被要求在tDCS刺激pre-SMA之前、刺激时和刺激后分别完成一组Stop Signal任务。结果表明相较于刺激前, 刺激时和刺激后完成Stop Signal任务显著缩短了停止信号反应时SSRT (Kwon & Kwon, 2013a)。这支持了pre-SMA在抑制控制中的重要作用, 同时也探究了tDCS刺激与任务的时间关系对刺激效应的影响。Kwon等人同年的另一项研究同样发现对Pre-SMA施加阳极tDCS刺激导致了停止进程耗时的显著缩 短。此项研究发现, 对初级感觉运动皮层(primary sensorimotor cortex, M1)施加阳极刺激, 对个体的反应抑制功能并没有显著的改变(Kwon & Kwon, 2013b)。

Liang等人(2014)的研究重复了上述结果, 并探测了tDCS对脑电信号的多尺度熵(multiscale entropy, MSE)的影响。MSE是一种测量脑电信号复杂程度的指标, MSE越大意味着脑电信号越复杂、信息越丰富(Peng, Costa, & Goldberger, 2009)。对Pre-SMA的阳极tDCS提升了Go试次的行为水平同时也提升了额叶区域的MSE, 而对Stop试次的MSE无影响。这可能意味着额叶区域中更多信息丰富的脑活动是导致抑制控制中更好表现的因素之一。研究结果支持了Pre-SMA在抑制控制中的关键性作用。一项结合tDCS和fMRI技术的研究显示, 对pre-SMA施加阳极刺激在缩短了SSRT的同时, 导致了pre-SMA与腹内侧前额叶皮层(vmPFC)血氧水平的显著增加, 这说明tDCS增强了pre-SMA和vmPFC的功能连接。

2.3 背外侧前额叶的tDCS研究

dlPFC也是研究者们关心的脑区之一。fMRI研究发现左侧dlPFC在任务转换版本的Stroop任务中, 会在与抑制相关的任务产生更高水平的激活(MacDonald, Cohen, Stenger, & Carter, 2000); 而右侧dlPFC在No-Go试次中较Go试次有更显著的激活, 说明dlPFC对反应抑制有十分重要的作用(Asahi, Okamoto, Okada, Yamawaki, & Yokota, 2004)。Bush和Shin (2006)发现在抑制控制任务中, 95%的参与者会产生dlPFC的激活。

在tDCS研究中, 偏侧化问题一直受到研究者们的关注。许多研究选取左侧dlPFC作为tDCS的刺激点来研究抑制控制。研究表明向左侧dlPFC施加单极tDCS刺激会显著影响Go/No-Go任务的行为表现。Soltaninejad, Nejati和Ekhtiari (2015)研究了向左dlPFC施加tDCS对ADHD成年患者抑制控制的影响。该研究的结果显示, 与虚伪刺激条件相比, 对左dlPFC施加阳极刺激导致Go/ No-Go任务中Go试次的正确率显著提高, 而对左dlPFC施加阴极刺激导致No-Go试次的正确率显著提高。这说明对左dlPFC的单极刺激均对抑制控制产生了影响。Nieratschker, Kiefer, Giel, Krüger和Plewnia (2015)使用Go/No-Go任务的变式, 也发现了对左侧dlPFC施加阴极刺激会损伤抑制控制能力。另一项研究中, 参与者被要求完成一项Flanker与Go/No-Go任务相结合的任务, 结果发现对参与者的左dlPFC施加阳极刺激提升了在该任务中的行为表现。此外, 该研究还比较了1 mA、1.5 mA、2 mA三种不同电流强度对抑制控制的影响, 结果表明不同强度的tDCS产生了相似的结果, 不存在显著差异(Karuza et al., 2016)。

但另一些研究显示用双极tDCS刺激两侧dlPFC则不会影响Go/No-Go任务的行为表现。Lapenta, Sierve, de Macedo, Fregni和Boggio (2014)在一项研究中对参与者的dlPFC施加双极tDCS刺激, 即对右dlPFC施加阳极刺激并对左dlPFC施加阴极刺激, 并要求参与者在刺激结束后完成Go/No-Go任务。行为学的结果发现刺激组的行为表现与伪刺激组并没有显著差异。Cosmo等人(2015)针对ADHD患者进行了双极tDCS刺激dlPFC的研究, 结果同样显示刺激组与伪刺激组在Go/No-Go任务的行为成绩上没有差异。这样重复的结果可能说明了右侧dlPFC同样对抑制控制产生影响。这一猜想也得到Beeli等人研究的支持。这项研究中, 参与者在右侧dlPFC接受了tDCS刺激之后完成Go/No-Go任务, 而接收阴极刺激的参与者显示出虚假预警率的显著升高, 这说明对于右侧dlPFC的阴极刺激也能够损伤抑制控制(Beeli, Casutt, Baumgartner, & Jäncke, 2008)。

除此之外, tDCS的研究结果显示了dlPFC在主动抑制和反应抑制中的差异。刺激dlPFC在Go/No-Go任务中表现出的显著效应说明了dlPFC在主动抑制过程中的重要作用, 但同样位置的刺激并不会影响Stop Signal任务的表现。Stramaccia等人(2015)对比了右侧IFG和右侧dlPFC在分别接收tDCS刺激之后参与者在Stop Signal任务中的表现, 发现对右侧IFG的阳极刺激显著降低了SSRT, 对右侧dlPFC的刺激没有产生行为水平的显著效应。这支持了右侧IFG参与反应抑制的结论, 同时可能说明了dlPFC并不参与反应抑制过程。综上所述我们发现, IFG可能对反应抑制起到关键性的作用却不涉及主动抑制, 相反, dlPFC则可能涉及主动抑制而与反应抑制无关。此外, 在其他涉及抑制控制的任务中(如Stroop任务、多源干扰任务MSIT等), 使用tDCS刺激dlPFC也对参与者的行为表现造成了影响(Brunyé, Cantelon, Holmes, Taylor, & Mahoney, 2014; Loftus, Yalcin, Baughman, Vanman, & Hagger, 2015; Oldrati, Patricelli, Colombo, & Antonietti, 2016)。

3 额叶区域tDCS对神经疾病患者抑制控制的影响

3.1 tDCS影响ADHD患者的抑制控制

许多神经疾病往往会表现出抑制控制的受损, 如注意力缺陷多动障碍(attention deficit hyperactivity disorder, ADHD)、抑郁症(Major depressive disorder, MDD)、抽动秽语综合征(Tourette syndrome, TS)、自闭谱系障碍(autism spectrum disorder, ASD)等(Agam, Joseph, Barton, & Manoach, 2010; Ganos et al., 2014; Kalu, Sexton, Loo, & Ebmeier, 2012; Palm et al., 2016; Yasumura et al., 2014)。研究表明, 抑制控制的损伤是ADHD患者最常见的执行功能受损之一(Barkley, 1997; Shimoni, Engel-Yeger, & Tirosh, 2012)。ADHD是一种儿童期发作的神经性疾病, 其特征是注意力水平低下, 冲动性高和多动倾向。神经影像学研究显示, ADHD患者的大脑前额叶区域活性降低, 这可能说明了其抑制控制能力受到损伤(Cubillo et al., 2014)。在许多ADHD儿童的研究中都观察到抑制缺陷(Barkley, 1997; Yasumura et al., 2014), 并且这种症状可能会持续到成年期(Mannuzza, Klein, & Moulton, 2003)。一项研究发现, ADHD患者在Stroop任务中较健康参与者有更明显的颜色干扰效应(Yasumura et al., 2014)。此外, 与健康对照组相比, ADHD患者组在Flanker任务中显示更高的错误率和更慢的反应时间(Mullane, Corkum, Klein, & Mclaughlin, 2009)。

利用tDCS技术研究ADHD患者的抑制控制功能能够进一步探究ADHD的病理机制, 也为ADHD的干预和治疗提供一些可能的方案(Vicario & Nitsche, 2013)。Breitling等人(2016)的一项研究证明了tDCS刺激右侧IFG会影响ADHD患者的抑制控制能力。研究中, 患有ADHD的青少年参与者和健康的青少年参与者分别接受了tDCS的阳极、阴极和伪刺激, 并完成Flanker任务。结果显示接收阳极刺激的ADHD患者相比于接收伪刺激的患者组有显著更低的错误率和反应时。此外, 阳极ADHD组在任务中的行为表现与健康对照组无差异, 而假性ADHD组的表现则比健康对照组更差。这说明了阳极tDCS刺激右IFG显著提升了ADHD患者的干扰抑制水平。

tDCS刺激左侧dlPFC也会对ADHD患者的抑制控制调节产生影响。一项研究中, 患有ADHD的高中生被要求在左侧dlPFC接受tDCS刺激之后完成Go/No-Go任务, 结果显示对于左侧dlPFC的阳极刺激在Go/No-Go任务的“Go阶段”中提高了正确率; 而在左侧dlPFC上的阴极刺激则增加了Go/No-Go任务的“No-Go阶段”正确抑制的比例。这一结果说明了刺激ADHD患者的左侧dlPFC对其抑制控制的影响(Soltaninejad et al., 2015)。而Nejati, Salehinejad, Nitsche, Najian和Javadi (2017)的另一项研究使用tDCS刺激ADHD儿童的左dlPFC, 发现阳极刺激显著影响了ADHD儿童的Stroop任务表现, 说明其干扰抑制受到调节; 而阴极刺激则影响了Go/No-Go任务的表现, 说明反应抑制能力受到tDCS的影响。Bandeira等人(2016)的研究中, 参与者包括9名患有ADHD的儿童。患者需要完成5次tDCS并在期间进行卡牌匹配训练。每次tDCS时长5分钟, 阳极放置于左侧DLPFC阳极, 阴极放置于右眶上。患者分别在刺激前后完成抑制控制任务, 结果显示出tDCS刺激后选择性注意力的提高和抑制控制任务中错误的减少。

一些使用tDCS对ADHD患者进行脑刺激的研究并没有得出有效的结果(Cosmo et al., 2015; Soltaninejad et al., 2015)。目前针对ADHD患者的tDCS研究依然很少, tDCS对ADHD患者的抑制控制是否存在稳定的影响需要未来更多的高质量研究来探索。

3.2 tDCS在其他神经疾病的应用

tDCS技术在MDD、TS和ASD等其他神经疾病的研究领域也得到了应用。由于tDCS相较于其他非侵入性脑刺激技术的便捷性、普适性和安全性等特点, 其对各类神经疾病的治疗作用收到了广泛的关注。

抑郁症被认为与抑制控制的紊乱有关(Langenecker et al., 2005)。许多研究显示抑郁症患者相比于健康被试在任务中显示出抑制控制损伤(Langenecker et al., 2007; B. W. Zhang, Xu, & Chang, 2016)。抑郁症作为异质性的病症, 其不同亚型对抑制控制的影响也存在很大差异(Mayberg, 2007; Quinn, Harris, & Kemp, 2012)。目前应用于抑郁症治疗的结果表明, tDCS可以通过阳极刺激增强左侧DLPFC的神经激活或通过阴极刺激降低右侧DLPFC的神经活动以改善抑郁症状(Brunoni, Ferrucci, Fregni, Boggio, & Priori, 2012)。元分析显示, tDCS在治疗抑郁症方面能够产生有效的且具有临床意义的作用(Brunoni et al., 2016; Kalu et al., 2012)。

TS是儿童时期常见的神经障碍之一。元分析显示, TS作为一种涉及运动和语音抽动的神经精神障碍, 其患者抑制控制缺陷的发生率要高于健康人群, 而TS与ADHD的共病患者则比单纯的TS患者更难完成抑制控制(Morand-Beaulieu et al., 2017)。研究表明TS对抑制控制的影响存在任务

间的差异, 如在SST任务中, 有研究显示TS患者与健康对照组表现不存在差异(Ganos et al., 2014)。Eapen等人(2017)的研究报告了tDCS对TS患者抑制控制的影响及治疗作用。研究中, 两名成年男性TS患者接受了6周tDCS治疗和3周tDCS伪刺激并通过Go/No-Go任务对抑制控制能力进行检验。治疗阶段, 每周三次对患者SMA前部区域施加20分钟tDCS阴极刺激。3周治疗和6周治疗后两名患者No-Go阶段错误率均较治疗前显著下降, 但在继续接受3周伪刺激后错误率回升到了治疗前的水平。

ASD是一种从儿童时期开始的神经发育障碍, 其特征包括社会交往和行为领域的障碍(Muszkat, Polanczyk, Dias, & Brunoni, 2016)。一些研究关注了ASD患者是否存在抑制控制方面的缺陷。研究发现, 在反向眼跳任务等一些抑制控制任务中ASD患者的ACC、PFC及后顶叶区域的唤醒水平和功能性连接水平低于控制组(Agam et al., 2010; Thakkar et al., 2008)。研究显示, 不同任务中ASD患者并不能稳定的表现出抑制控制的损伤, 表明这种缺陷可能存在任务间的差异(Christ, Holt, White, & Green, 2007; Padmanabhan et al., 2015; Schmitt, White, Cook, Sweeney, & Mosconi, 2018)。tDCS对ASD患者有较稳定的治疗作用。为了提高患儿的语言习得能力, Schneider和Hopp (2011)对ASD儿童进行了一项tDCS研究。在这项研究中, 研究者选择了年龄范围16~21岁的10位ASD患者。阳极tDCS刺激布洛卡区后, 平均词汇得分显著高于刺激前得分。此外一些研究发现, 通过在左侧dlPFC施加阳极刺激可以显著改善ASD患儿的症状(Amatachaya et al., 2014; Amatachaya et al., 2015; Costanzo et al., 2015; Hameed et al., 2017)。

这些研究显示了tDCS对神经疾病的治疗效果。但由于研究数量较少, tDCS的治疗效果受刺激靶点、任务类型和疾病类型等因素的影响, 因此尚不能得出稳定的结论。此外, 虽然MDD、TS和ASD等神经疾病均被发现伴随着不同程度的抑制控制损伤, 但目前的研究主要关注tDCS对于这些疾病的治疗效果, 尚无使用tDCS对上述疾病患者抑制控制进行调节的研究。未来可以利用tDCS技术对神经疾病与抑制控制损伤的深层次的关系进行更深入的探究。

4 tDCS与其他技术的结合在抑制控制领域的应用

tDCS与其他技术的整合为研究不同认知领域的神经机制提供了许多新的途径。比如tDCS所诱发的大脑皮层的生理性变化可以通过功能性近红外光谱技术(functional Near-Infrared Spectroscopy, fNIRS)、功能性磁共振成像技术(functional magnetic resonance imaging, fMRI)、脑电技术(Electroencephalogram, EEG)等进行监测(Nitsche & Paulus, 2011); 此外, fMRI与tDCS技术的结合可以为tDCS刺激提供精确的定位, 也可以探索tDCS对特定脑区血氧水平的调节(Woods et al., 2014)。

4.1 tDCS-EEG技术的结合在抑制控制领域的 应用

在抑制控制的研究方面, 一些研究将EEG技术与tDCS技术结合在一起。将EEG与tDCS相结合的明显作用在于, EEG能够测量大脑皮层的脑电活性水平, 直接反映神经元的电子状态。此外, 脑电图优异的时间分辨率提供了识别特定脑区对tDCS的反应以及它们在整个刺激过程中电位的变化, 阐明了随时间变化的一个区域内或跨网络的处理过程(Miniussi, Brignani, & Pellicciari, 2012; Woods et al., 2016)。

此前的研究已经发现一些ERP成分与抑制控制有关。在Go/No-Go任务中, 前额区域的N2成分和P3成分在NoGo条件下的波幅显著大于Go条件的波幅(Falkenstein, Hoormann, & Hohnsbein, 2002)。在早期的研究中, No-Go条件下的N2成分被认为与反应抑制有关, 但在近年的研究中, N2的功能被重新定位, 被认为是认知控制和冲突监测的指示(Donkers & van Boxtel, 2004; Huster, Enriquez-Geppert, Lavallee, Falkenstein, & Herrmann, 2013; Zhang & Lu, 2012)。No-Go条件的P3成分, 通常称为抑制性P3, 在近年的研究中通常被认为指示了运动和认知的抑制功能(Smith, Jamadar, Provost, & Michie, 2013; Smith, Johnstone, & Barry, 2008)。有研究显示, No-Go条件下, 成功抑制的试次比抑制失败的试次显示出更高的P3波幅(Dimoska, Johnstone, Barry, & Clarke, 2003; Greenhouse & Wessel, 2013; Wessel & Aron, 2015)。在tDCS研究中, 研究者往往关注的是N2或P3成分在No-Go条件与Go条件下的差异波受tDCS的影响。差异波的计算方法为NoGo条件的振幅与Go条件下振幅之差, N2和P3的差异波分别记作N2d和P3d (Campanella et al., 2017)。

Cunillera等人(2016)的研究中, 研究者结合了Stop Signal任务和Go/No-Go任务以探究IFG在反应抑制中的作用, 同时将tDCS应用于右侧IFG并记录EEG图像。研究发现对IFG的tDCS刺激影响了主动抑制, 而在主动抑制和反应抑制两种条件下, tDCS均对抑制性P3产生了相似的调节作用。另一项研究中也得到了一致的结果。参与者在tDCS刺激右侧IFG前后分别完成一次Go/ No-Go任务并记录EEG, 结果显示在tDCS刺激之后的Go/No-Go任务中, P3d的波幅显著低于tDCS之前, 并且这种效应是特定存在于接受tDCS刺激的参与者中(Campanella et al., 2017)。这一结果说明对IFG的tDCS刺激是通过减少正确反应抑制所需要的神经活性来增强反应抑制水平的。

EEG的频域分析也是值得关注的问题之一。有证据显示θ波与行为抑制有关, 一项研究发现抑制反应的高比例导致了θ波段的低功率(Lansbergen, Schutter, & Kenemans, 2007)。在Jacobson, Ezra, Berger和Lavidor (2012)的一项研究中, 参与者在接受对右侧IFG的15分钟阳极tDCS刺激后记录了15分钟静息态EEG, 结果显示在参与者的右侧IFG区域观察到了θ波功率的显著降低。这说明了tDCS刺激在非任务条件下对抑制控制产生影响并可以通过EEG的分析观测到。

4.2 tDCS-fMRI技术的结合

研究表明, tDCS能够在刺激期间及刺激后普遍的在脑网络中导致功能性连接的变化(Peña- Gómez et al., 2012; Sehm et al., 2012), 然而到目前为止, 人们对于大规模脑网络的tDCS作用的神经基础仍知之甚少。这个问题可以通过将tDCS与功能性脑成像技术相结合来解决。作为最广泛使用于调查认知和运动功能神经机制的脑成像技术, fMRI与tDCS技术的结合可以为调查tDCS效应的神经机制提供更高的大脑空间分辨率。tDCS与fMRI的结合可用于在全脑水平分析tDCS效应的神经机制(Sehm, Kipping, Schäfer, Villringer, & Ragert, 2013)。刺激期间和刺激后的fMRI可以提供区域性脑激活的信息, 并可以与行为结果相关联。而在静息态fMRI期间施加tDCS刺激则可以识别全脑功能性连接的变化(Meinzer et al., 2014)。

tDCS-fMRI结合技术目前在抑制控制的研究中已有应用。Yu, Tseng, Hung, Wu和Juan (2015)的一项研究通过结合阳极tDCS和fMRI探究了pre-SMA在反应抑制中的作用。这项研究显示, 阳极tDCS刺激pre-SMA显著改善了参与者的停止速度; fMRI成像显示pre-SMA区域在刺激后的停止过程中有更高的激活水平, 而通常不参与反应抑制过程的腹内侧前额叶皮层(ventromedial prefrontal cortex, vmPFC)在刺激后的有效停止中表现出更高的血氧水平, 且pre-SMA与vmPFC之间的功能性连接增强。这些结果说明刺激pre-SMA导致的暂时性行为水平改善可能与pre-SMA与vmPFC的功能性连接增强有关。

然而tDCS-fMRI结合技术目前仍存在不足之处。Antal等人(2014)的研究显示, tDCS刺激会干扰同步fMRI的回波平面成像(echo-planar imaging, EPI), 因此tDCS的fMRI实验必须考虑到这种潜在的电流混淆干扰。如何对fMRI成像中的电流干扰伪迹进行校正, 是一个尚未得到解决的问题。

4.3 tDCS-fNIRS技术的结合

tDCS如何造成皮层活性的变化并非一个直观的过程。皮层活性变化的一个可能的观测指标是随后的血液区域流动(regional cerebral blood flow, rCBF)及代谢作用的变化, 这些变化可以使用fNIRS进行有效监测, 它可以提供皮质组织区域血液氧合状态的无创和便携的测量(Merzagora et al., 2010)。也就是说, 通过对rCBF的观测, 可以对tDCS的刺激后效进行测量。fNIRS是一种非侵入性, 可重复的方法, 可以对组织中血红蛋白的氧化状态进行区域评估(Paulus, 2004)。fNIRS通过观察近红外光的吸收来测量大脑中氧合血红蛋白(HbO2)和脱氧血红蛋白(HHb)的浓度。由于HbO2和HHb在可见光和近红外波长范围内具有不同的吸收光谱, 所以可以使用光谱技术来提供血液氧合指数以及氧气输送;因此, 通过近红外光谱测量的HbO2和HHb浓度的变化可被认为是rCBF变化的良好指标(Herrmann et al., 2017)。 fNIRS与fMRI技术一样, 可以检测血氧水平的变化。然而, tDCS的电流流动会在同时fMRI成像中产生混淆(Antal et al., 2014)。而作为光学成像技术, fNIRS是一种独立于电刺激的神经成像工具, 因此提供了一种更准确的技术支持(McKendrick, Parasuraman, & Ayaz, 2015)。

一些证据显示了fNIRS与tDCS相结合的可行性。Merzagora等人(2010)在研究中使用fNIRS的前额叶传感器测量刺激前后tDCS的前额叶皮层效应。 结果表明, fNIRS成功捕获了tDCS刺激引起的激活变化, 弱阳极tDCS在局部脑组织中产生局部HbO2浓度的增加。同时该研究发现, 更长的刺激时间会对血液动力学响应产生更长的影响。Jones, Gozenman和Berryhill (2015)使用fNIRS技术测量工作记忆容量不同的参与者接受tDCS的差异, 结果显示工作记忆容量高的参与者在tDCS之后的任务中表现出很小的变化, 而低工作记忆容量的参与者显示tDCS后氧合血红蛋白水平显着增加。虽然目前在抑制控制的研究领域尚无此类研究, 但这些研究结果证实了将fNIRS与tDCS相结合的技术应用于认知领域的可行性, 并在未来可以应用到对抑制控制的研究中, 以深入了解其潜在的神经变化。

5 总结与展望

近10年来tDCS技术在认知领域得到了广泛应用。已有的研究通过使用tDCS刺激参与者的IFG、dlPFC和pre-SMA等区域, 探究了这些区域在抑制控制过程中所起到的作用。研究发现, tDCS对右侧IFG区域兴奋性的调节会影响Stop Signal任务中的行为表现而不会影响Go/No-Go任务的行为表现, 这说明右侧IFG在Stop Signal任务所引起的反应抑制过程中起到非常重要的作用。而使用tDCS调节左侧dlPFC的活性会影响Go/No-Go任务的表现但对Stop Signal任务没有影响, 显示了左侧dlPFC在主动抑制过程中的关键作用。一些研究发现tDCS对pre-SMA的调节可以稳定的影响Stop Signal任务中反应抑制的表现, 但尚没有研究证明pre-SMA对主动抑制的影响。这一结论为“额叶-基底神经节模型”理论提供了脑刺激研究的证据。有研究通过实验间接证 明了左侧IFG和右侧dlPFC也对抑制控制产生作用, 但这一结论需要未来研究中更多直接证据的支持。

tDCS技术由于其可以调节大脑皮层活性的特点, 可以让特定的脑区暂时性失活, 这对于神经性疾病发病机制的研究有着极其重要的作用。在针对ADHD患者的研究中, 使用tDCS对患者的右侧IFG和左侧dlPFC进行调节, 均观察到了抑制控制能力的提升。利用tDCS技术研究抑制控制的脑神经机制在近10年十分活跃, 已经产生了大量有意义的研究成果, 但在这一领域仍有许多值得探究的研究方向。

5.1 tDCS刺激区域的精细化

随着技术的不断革新, tDCS的研究将不可避免的产生高精度和高清晰的趋势。高精度的刺激有助与对脑区进行更精细化的功能定位, 如dlPFC区域包括了布罗德曼区(Brodmann's area, BA)的9区和46区, 目前的研究通常只探究了dlPFC在抑制控制中的作用, 而更高精度的刺激使我们有可能探究BA9区和BA46区在抑制控制中分别扮演的角色(Bari & Robbins, 2013)。为了改善tDCS的空间聚焦水平, 研究人员开发了高清晰度的tDCS (HD-tDCS)系统。高清tDCS的电极通常通过一个4-1组合的电极组进行刺激, 包括一个放置在目标区域的刺激电极和四个围绕在刺激电极周围的返回电极。每个返回电极接收25%的回流电流(郭恒, 何莉, 周仁来, 2016)。已有的研究表明, HD- tDCS的聚焦能力远远优于传统tDCS。而在对行为表现的影响力方面, Hogeveen等人(2016)的研究也充分证明了HD-tDCS与常规tDCS具有同样的效力。由于HD-tDCS相对与常规tDCS的高空间分辨率, 未来这项技术可能会被广泛地运用于对神经机制更精细化的探索。

5.2 刺激模式对抑制控制的不同成分的影响

综合上述研究, 我们不难发现, 在众多运用tDCS技术探索抑制控制的神经机制的研究中, 由于不同的任务和不同的刺激位置等因素, 得到的结果往往有所差别。因此在未来的研究中, 探索这些差异的统一理论框架将是非常有价值的工作。在以往的研究中, 通常的假设是tDCS的阳极刺激能够促进脑区的激活, 而阴极刺激抑制脑区的激活。但在抑制控制的研究中, 大多数情况并非如此。当tDCS刺激IFG时, 阳极刺激会导致Stop Signal任务的行为表现上升, 而阴极刺激对此没有影响(Cai et al., 2016; Castro-Meneses, Johnson, & Sowman, 2016; Ditye et al., 2012; Hogeveen et al., 2016; Jacobson et al., 2011; Stramaccia et al., 2015)。而同样刺激IFG, 当参与者完成Go/No-Go任务时, 则不会产生任何行为表现的变化(Campanella et al., 2017; Dambacher et al., 2015; Geusens & Swinnen, 2014)。不同的实验任务对抑制控制过程的诱发存在什么样的差异, 以及阴极tDCS刺激在对抑制控制的调节中扮演什么样的角色, 这些都是尚不明确, 并且也是在今后的研究中值得深入探讨的问题。

5.3 针对神经性病症患者的研究

研究显示, ADHD、帕金森症(Parkinson's disease, PD)、阿尔兹海默症(Alazheimer's disease, AD)等神经性疾病患者都存在认知功能的损伤。tDCS作为一种非侵入性脑刺激技术, 已经被证实在不同的精神和神经疾病中诱发了症状的改善(Breitling et al., 2016)。一些研究认为, tDCS可能成为一种治疗神经疾病的非药物的方法。除了治疗功能之外, 由于tDCS可以针对特定脑区进行暂时性激活或失活, 其对许多神经病症病理机制的研究也起到了重要的作用。目前已有研究发现了tDCS刺激IFG、dlPFC等区域对ADHD患者抑制控制的调节作用, 这些脑区的刺激对其他病症是否有改善作用, 这种作用是否是持续性的, 仍有待进一步探索。

5.4 tDCS对不同年龄段人群抑制控制的影响

认知能力是一种随年龄变化的能力。抑制控制也是如此, 其与年龄之间的关系被发现是一种U形曲线(van de Laar, van den Wildenberg, van Boxtel, Huizenga, & van der Molen, 2012)。这意味着抑制不恰当反应的速度从童年到成年逐渐提高, 之后随着年龄的增长逐渐减少。发展性研究发现, 抑制控制能力在12岁以后仍在继续发展, 并在成年后达到顶峰。而在老年人中, 任务执行过程中抑制过程被延缓(van de Laar et al., 2012)。与成年人相比, 儿童的抑制表现更为多变。另外, 老年人在任务中的反应时比年轻人慢, 变化也更极端(Mcauley, Yap, Christ, & White, 2006; 彭苏浩, 汤倩, 宣宾, 2014)。目前, 应用tDCS技术研究抑制控制主要针对年轻成年人群体, 较少有针对儿童和老年人的相关研究。tDCS对儿童的抑制控制发展是否存在影响, tDCS是否会延缓老年人抑制控制的老化, 这些都仍是我们尚未探索的领域。

5.5 tDCS结合抑制控制训练的影响

目前, 只有为数不多的研究探索抑制控制的训练效应。Logan和Burkell (1986)使用Stop Signal任务训练参与者6天, 发现Stop Signal任务在训练中的行为表现相对稳定。而Ditye等人(2012)的研究通过对参与者进行4天训练发现训练有效地提高了Stop Signal任务的行为表现, 而tDCS的加入则扩大了训练的效果。抑制控制任务的训练效应是存在于单一任务中还是在不同任务间存在泛化效应, tDCS对训练效应的影响是否是持久稳定的, 这些问题尚没有得到充分的研究。

参考文献

郭恒, 何莉, 周仁来 . ( 2016).

经颅直流电刺激提高记忆功能

心理科学进展, 24( 3), 356-366

[本文引用: 1]

彭苏浩, 汤倩, 宣宾 . ( 2014).

基因-大脑-行为框架下的抑制控制与老化

心理科学进展, 22( 8), 1236-1245

[本文引用: 1]

吴慧中, 王明怡 . ( 2015).

抑制控制内部结构间的关联——基于认知神经学的视角

中国临床心理学杂志, 3( 6), 991-995

[本文引用: 1]

Agam, Y., Joseph, R. M., Barton, J. J. S., & Manoach, D. S. ( 2010).

Reduced cognitive control of response inhibition by the anterior cingulate cortex in autism spectrum disorders

NeuroImage, 52( 1), 336-347

DOI:10.1016/j.neuroimage.2010.04.010      URL     [本文引用: 2]

Amatachaya, A., Auvichayapat, N., Patjanasoontorn, N., Suphakunpinyo, C., Ngernyam, N., Aree-uea, B., ... Auvichayapat, P. ( 2014).

Effect of anodal transcranial direct current stimulation on autism: A randomized double-blind crossover trial

Behavioural Neurology, 2014( 2), 173073

[本文引用: 1]

Amatachaya, A., Jensen, M. P., Patjanasoontorn, N., Auvichayapat, N., Suphakunpinyo, C., Janjarasjitt, S., ... Auvichayapat, P. ( 2015).

The short-term effects of transcranial direct current stimulation on electroencephalography in children with autism: A randomized crossover controlled trial

Behavioural Neurology, 2015, 928631

[本文引用: 1]

Antal, A., Bikson, M., Datta, A., Lafon, B., Dechent, P., Parra, L. C., & Paulus, W. ( 2014).

Imaging artifacts induced by electrical stimulation during conventional fMRI of the brain

NeuroImage, 85 Pt 3, 1040-1047

[本文引用: 2]

Aron, A.R. ( 2007).

The neural basis of inhibition in cognitive control

The Neuroscientist, 13( 3), 214-228

DOI:10.1177/1073858407299288      URL     [本文引用: 1]

Aron, A. R., Behrens, T. E., Smith, S., Frank, M. J., & Poldrack, R. A. ( 2007).

Triangulating a cognitive control network using diffusion-weighted magnetic resonance imaging (MRI) and functional MRI

Journal of Neuroscience, 27( 14), 3743-3752

DOI:10.1523/JNEUROSCI.0519-07.2007      URL     [本文引用: 2]

Aron, A. R., Durston, S., Eagle, D. M., Logan, G. D., Stinear, C. M., & Stuphorn, V. ( 2007).

Converging evidence for a fronto-basal-ganglia network for inhibitory control of action and cognition

Journal of Neuroscience, 27( 44), 11860-11864

DOI:10.1523/JNEUROSCI.3644-07.2007      URL     [本文引用: 1]

Aron, A. R., Fletcher, P. C., Bullmore, E. T., Sahakian, B. J., & Robbins, T. W. ( 2003).

Erratum: Stop-signal inhibition disrupted by damage to right inferior frontal gyrus in humans

Nature Neuroscience, 6, 115-116

DOI:10.1038/nn1003      URL     [本文引用: 2]

Aron, A.R., & Poldrack, R.A . ( 2006).

Cortical and subcortical contributions to stop signal response inhibition: Role of the subthalamic nucleus

Journal of Neuroscience, 26( 9), 2424-2433

DOI:10.1523/JNEUROSCI.4682-05.2006      URL     [本文引用: 2]

Aron, A. R., Robbins, T. W., & Poldrack, R. A. ( 2004).

Inhibition and the right inferior frontal cortex

Trends in Cognitive Sciences, 8( 4), 170-177

DOI:10.1016/j.tics.2004.02.010      URL     [本文引用: 1]

Asahi, S., Okamoto, Y., Okada, G., Yamawaki, S., & Yokota, N. ( 2004).

Negative correlation between right prefrontal activity during response inhibition and impulsiveness: A fMRI study

European Archives of Psychiatry and Clinical Neuroscience, 254( 4), 245-251

[本文引用: 1]

Bandeira, I. D., Guimaraes, R. S. Q., Jagersbacher, J. G., Barretto, T. L., de Jesus-Silva, J. R., Santos, S. N., … Lucena, R. ( 2016).

Transcranial direct current stimulation in children and adolescents with attention-deficit/ hyperactivity disorder (ADHD): A pilot study

Journal of Child Neurology, 31( 7), 918-924

DOI:10.1177/0883073816630083      URL     [本文引用: 1]

Bari, A., & Robbins, T.W. ( 2013).

Inhibition and impulsivity: Behavioral and neural basis of response control

Progress in Neurobiology, 108, 44-79

DOI:10.1016/j.pneurobio.2013.06.005      URL     [本文引用: 1]

Barkley, R.A. ( 1997).

Behavioral inhibition, sustained attention, and executive functions: Constructing a unifying theory of ADHD

Psychological Bulletin, 121( 1), 65-94

DOI:10.1037/0033-2909.121.1.65      URL     [本文引用: 2]

Bechara, A.( 2005).

Decision making, impulse control and loss of willpower to resist drugs: A neurocognitive perspective

Nature Neuroscience, 8( 11), 1458-1463

DOI:10.1038/nn1584      URL     [本文引用: 1]

Beeli, G., Casutt, G., Baumgartner, T., & Jäncke, L. ( 2008).

Modulating presence and impulsiveness by external stimulation of the brain

Behavioral and Brain Functions, 4( 33), 1-7

DOI:10.1186/1744-9081-4-1      URL     [本文引用: 1]

Breitling, C., Zaehle, T., Dannhauer, M., Bonath, B., Tegelbeckers, J., Flechtner, H. H., & Krauel, K. ( 2016).

Improving interference control in ADHD patients with transcranial direct current stimulation (tDCS)

Frontiers in Cellular Neuroscience, 10, 72

[本文引用: 2]

Brunoni, A. R., Ferrucci, R., Fregni, F., Boggio, P. S., & Priori, A.( 2012).

Transcranial direct current stimulation for the treatment of major depressive disorder: A summary of preclinical, clinical and translational findings

Progress in Neuro-psychopharmacology and Biological Psychiatry, 39( 1), 9-16

DOI:10.1097/01.PSYPHR.0000441028.74299.63      URL     [本文引用: 1]

An abstract is unavailable.

Brunoni, A. R., Moffa, A. H., Fregni, F., Palm, U., Padberg, F., Blumberger, D. M., ... Loo, C. K. ( 2016).

Transcranial direct current stimulation for acute major depressive episodes: Meta-analysis of individual patient data

British Journal of Psychiatry the Journal of Mental Science, 208( 6), 522-531

DOI:10.1192/bjp.bp.115.164715      URL     [本文引用: 1]

Brunyé, T. T., Cantelon, J., Holmes, A., Taylor, H. A., & Mahoney, C. R. ( 2014).

Mitigating cutaneous sensation differences during tDCS: Comparing sham versus low intensity control conditions

Brain Stimulation, 7( 6), 832-835

DOI:10.1016/j.brs.2014.09.015      URL     [本文引用: 1]

Bush, G., & Shin, L.M. ( 2006).

The Multi-Source Interference Task: An fMRI task that reliably activates the cingulo-frontal-parietal cognitive/attention network

Nature Protocols, 1( 1), 308-313

DOI:10.1038/nprot.2006.48      URL     [本文引用: 1]

Cai, Y., Li, S., Liu, J., Li, D., Feng, Z., Wang, Q., ... Xue, G. ( 2016).

The role of the frontal and parietal cortex in proactive and reactive inhibitory control: A transcranial direct current stimulation study

Journal of Cognitive Neuroscience, 28( 1), 177-186

DOI:10.1162/jocn_a_00888      URL     [本文引用: 3]

Campanella, S., Schroder, E., Monnart, A., Vanderhasselt, M. A., Duprat, R., Rabijns, M., ... Rabijns, C. ( 2017).

Transcranial direct current stimulation over the right frontal inferior cortex decreases neural activity needed to achieve inhibition: A double-blind ERP study in a male population

Clinical EEG and Neuroscience, 48( 3), 176-188

DOI:10.1177/1550059416645977      URL     [本文引用: 4]

Castro-Meneses, L. J., Johnson, B. W., & Sowman, P. F. ( 2016).

Vocal response inhibition is enhanced by anodal tDCS over the right prefrontal cortex

Experimental Brain Research, 234( 1), 185-195

DOI:10.1007/s00221-015-4452-0      URL     [本文引用: 1]

Chambers, C. D., Garavan, H., & Bellgrove, M. A. ( 2009).

Insights into the neural basis of response inhibition from cognitive and clinical neuroscience

Neuroscience & Biobehavioral Reviews, 33( 5), 631-646

[本文引用: 1]

Chikazoe, J., Jimura, K., Hirose, S., Yamashita, K., Miyashita, Y., & Konishi, S. ( 2009).

Preparation to inhibit a response complements response inhibition during performance of a stop-signal task

The Journal of Neuroscience, 29( 50), 15870-15877

DOI:10.1523/JNEUROSCI.3645-09.2009      URL     [本文引用: 1]

Christ, S. E., Holt, D. D., White, D. A., & Green, L. ( 2007).

Inhibitory control in children with autism spectrum disorder

Journal of Autism and Developmental Disorders, 37( 6), 1155-1165

DOI:10.1007/s10803-006-0259-y      URL     PMID:17066307      [本文引用: 1]

Impairments in executive abilities such as cognitive flexibility have been identified in individuals with autism spectrum disorder (ASD). It remains unclear, however, whether such individuals also experience impairments in another executive ability: inhibitory control. In the present study, we administered three inhibitory tasks to 18 children with ASD, 23 siblings of children with ASD, and 25 typically developing children. After controlling for individual differences in age, overall IQ, and processing speed, children with ASD demonstrated impaired performance on two of the three inhibitory tasks. Results suggest that children with ASD experience circumscribed deficits in some but not all aspects of inhibitory control. More generally, the findings underscore the importance of using multiple measures to assess a putative single cognitive ability.

Cosmo, C., Baptista, A. F., de Araújo, A. N., do Rosário, R. S., Miranda, J. G. V., Montoya, P., ... de Sena, E. P.( 2015).

A randomized, double-blind, sham-controlled trial of transcranial direct current stimulation in attention- deficit/hyperactivity disorder

PloS One, 10( 8), e0135371

DOI:10.1371/journal.pone.0135371      URL     [本文引用: 2]

Costanzo, F., Menghini, D., Casula, L., Amendola, A., Mazzone, L., Valeri, G., ... Vicari, S. ( 2015).

Transcranial direct current stimulation treatment in an adolescent with autism and drug-resistant catatonia

Brain Stimulation, 8( 6), 1233-1235

DOI:10.1016/j.brs.2015.08.009      URL     [本文引用: 1]

Cubillo, A., Smith, A. B., Barrett, N., Giampietro, V., Brammer, M. J., Simmons, A., & Rubia, K. ( 2014).

Shared and drug-specific effects of atomoxetine and methylphenidate on inhibitory brain dysfunction in medication-naive ADHD boys

Cerebral Cortex, 24( 1), 174-185

DOI:10.1093/cercor/bhs296      URL     [本文引用: 1]

Cunillera, T., Brignani, D., Cucurell, D., Fuentemilla, L., & Miniussi, C. ( 2016).

The right inferior frontal cortex in response inhibition: A tDCS-ERP co-registration study

NeuroImage, 140, 66-75

DOI:10.1016/j.neuroimage.2015.11.044      URL     PMID:26619787      [本文引用: 2]

61The right inferior frontal cortex (IFC) in proactive and reactive inhibition.61Bilateral transcranial Direct Current Stimulation (tDCS) on the IFC.61tDCS was applied with electroencephalography (EEG) acquisition.61tDCS on the IFC significantly increased proactive inhibition.61The inhibitory-P3 component was similar modulated in Stop and NoGo trials.

Cunillera, T., Fuentemilla, L., Brignani, D., Cucurell, D., & Miniussi, C. ( 2014).

A simultaneous modulation of reactive and proactive inhibition processes by anodal tDCS on the right inferior frontal cortex

PloS One, 9( 11), e113537

DOI:10.1371/journal.pone.0113537      URL     [本文引用: 2]

Dambacher, F., Schuhmann, T., Lobbestael, J., Arntz, A., Brugman, S., & Sack, A. T. ( 2015).

No effects of bilateral tDCS over inferior frontal gyrus on response inhibition and aggression

PloS One, 10( 7), e0132170

DOI:10.1371/journal.pone.0132170      URL     [本文引用: 2]

Dimoska, A., Johnstone, S. J., Barry, R. J., & Clarke, A. R. ( 2003).

Inhibitory motor control in children with attention- deficit/hyperactivity disorder: Event-related potentials in the stop-signal paradigm

Biological Psychiatry, 54( 12), 1345-1354

DOI:10.1016/S0006-3223(03)00703-0      URL     [本文引用: 1]

Ditye, T., Jacobson, L., Walsh, V., & Lavidor, M. ( 2012).

Modulating behavioral inhibition by tDCS combined with cognitive training

Experimental brain research, 219( 3), 363-368

DOI:10.1007/s00221-012-3098-4      URL     PMID:22532165      [本文引用: 3]

AbstractCognitive training is an effective tool to improve a variety of cognitive functions, and a small number of studies have now shown that brain stimulation accompanying these training protocols can enhance their effects. In the domain of behavioral inhibition, little is known about how training can affect this skill. As for transcranial direct current stimulation (tDCS), it was previously found that stimulation over the right inferior frontal gyrus (rIFG) facilitates behavioral inhibition performance and modulates its electrophysiological correlates. This study aimed to investigate this behavioral facilitation in the context of a learning paradigm by giving tDCS over rIFG repetitively over four consecutive days of training on a behavioral inhibition task (stop signal task (SST)). Twenty-two participants took part; ten participants were assigned to receive anodal tDCS (1.5 mA, 15 min), 12 were assigned to receive training but not active stimulation. There was a significant effect of training on learning and performance in the SST, and the integration of the training and rIFG鈥搕DCS produced a more linear learning slope. Better performance was also found in the active stimulation group. Our findings show that tDCS-combined cognitive training is an effective tool for improving the ability to inhibit responses. The current study could constitute a step toward the use of tDCS and cognitive training as a therapeutic tool for cognitive control impairments in conditions such as attention-deficit hyperactivity disorder (ADHD) or schizophrenia.

Donkers, F. C.L., & van Boxtel, G. J. M. ( 2004).

The N2 in go/no-go tasks reflects conflict monitoring not response inhibition

Brain and Cognition, 56( 2), 165-176

DOI:10.1016/j.bandc.2004.04.005      URL     PMID:15518933      [本文引用: 1]

The functional significance of the N2 in go/no-go tasks was investigated by comparing electrophysiological data obtained from two tasks: a go/no-go task involving both response inhibition as well as response conflict monitoring, and a go/GO task associated with conflict monitoring only. No response was required to no-go stimuli, and a response with maximal force to GO stimuli. The relative frequency of the go stimuli (80% vs. 50%) was varied. The N2 peaked on both no-go and GO trials, with larger amplitudes for both signals when presented in a context of frequent (80%) go signals. These results support the idea that the N2 reflects conflict monitoring not response inhibition.

Eapen, V., Baker, R., Walter, A., Raghupathy, V., Wehrman, J. J., & Sowman, P. F. ( 2017).

The role of transcranial direct current Stimulation (tDCS) in Tourette syndrome: A review and preliminary findings

Brain Sciences, 7( 12), 161

DOI:10.3390/brainsci7120161      URL     [本文引用: 1]

Falkenstein, M., Hoormann, J., & Hohnsbein, J. ( 2002).

Inhibition-related ERP components: Variation with modality, age, and time-on-task

Journal of Psychophysiology, 16( 3), 167-175

DOI:10.1027//0269-8803.16.3.167      URL     [本文引用: 1]

Floden, D., & Stuss, D.T. ( 2006).

Inhibitory control is slowed in patients with right superior medial frontal damage

Journal of Cognitive Neuroscience, 18( 11), 1843-1849

DOI:10.1162/jocn.2006.18.11.1843      URL     [本文引用: 2]

Friese, M., Binder, J., Luechinger, R., Boesiger, P., & Rasch, B. ( 2013).

Suppressing emotions impairs subsequent stroop performance and reduces prefrontal brain activation

PloS One, 8( 4), e60385

DOI:10.1371/journal.pone.0060385      URL     [本文引用: 1]

Ganos, C., Kuhn, S., Kahl, U., Schunke, O., Feldheim, J., Gerloff, C., ... Münchau, A. ( 2014).

Action inhibition in Tourette syndrome

Movement Disorders, 29( 12), 1532-1538

DOI:10.1002/mds.25944      URL     PMID:24995958      [本文引用: 2]

Abstract Tourette syndrome is a neuropsychiatric disorder characterized by tics. Tic generation is often linked to dysfunction of inhibitory brain networks. Some previous behavioral studies found deficiencies in inhibitory motor control in Tourette syndrome, but others suggested normal or even better-than-normal performance. Furthermore, neural correlates of action inhibition in these patients are poorly understood. We performed event-related functional magnetic resonance imaging during a stop-signal reaction-time task in 14 uncomplicated adult Tourette patients and 15 healthy controls. In patients, we correlated activations in stop-signal reaction-time task with their individual motor tic frequency. Task performance was similar in both groups. Activation of dorsal premotor cortex was stronger in the StopSuccess than in the Go condition in healthy controls. This pattern was reversed in Tourette patients. A significant positive correlation was present between motor tic frequency and activations in the supplementary motor area during StopSuccess versus Go in patients. Inhibitory brain networks differ between healthy controls and Tourette patients. In the latter the supplementary motor area is probably a key relay of inhibitory processes mediating both suppression of tics and inhibition of voluntary action. 2014 International Parkinson and Movement Disorder Society

Geusens, B., & Swinnen, N.( 2014.

The effect of tDCS on inhibitory control in healthy older adults (Unpublished Master theses)

Universiteit Hasselt Retrieved June 12, 2008, from

URL     [本文引用: 2]

Greenhouse, I., & Wessel, J.R. ( 2013).

EEG signatures associated with stopping are sensitive to preparation

Psychophysiology, 50( 9), 900-908

DOI:10.1111/psyp.12070      URL     PMID:23763667      [本文引用: 1]

Preparing to stop may 090008prime090009 the neural mechanism for stopping and alter brain activity at the time of stopping. Much electroencephalography (EEG) research has studied the N2/P3 complex over frontocentral electrodes during outright stopping. Here, we used differential reward of the stop and go processes in a stop signal task to study the sensitivity of these EEG components to preparation. We found that (a) stopping was faster when it was rewarded; (b) the P3 amplitude was larger for successful versus failed stopping, and this difference was greater when stopping was rewarded over going; (c) the N2 component was observed only on failed stop trials; and (d) there was greater EEG coherence between frontocentral and occipitoparietal electrodes at 12090009Hz during the initiation of a go response when stopping was rewarded over going. We propose that frontocentral cortical mechanisms active before and at the time of stopping are sensitive to preparation.

Hameed, M. Q., Dhamne, S. C., Gersner, R., Kaye, H. L., Oberman, L. M., Pascual-Leone, A., & Rotenberg, A. ( 2017).

Transcranial magnetic and direct current stimulation in children

Current Neurology and Neuroscience Reports, 17( 2), 11-25

DOI:10.1007/s11910-017-0719-0      URL     [本文引用: 1]

Herrmann, M. J., Horst, A. K., Löble, S., Moll, M. T., Katzorke, A., & Polak, T. ( 2017).

Relevance of dorsolateral and frontotemporal cortex on the phonemic verbal fluency - A fNIRS-study

Neuroscience, 367, 169-177

DOI:10.1016/j.neuroscience.2017.10.028      URL     [本文引用: 1]

Hogeveen, J., Grafman, J., Aboseria, M., David, A., Bikson, M., & Hauner, K. K. ( 2016).

Effects of high-definition and conventional tDCS on response inhibition

Brain Stimulation, 9( 5), 720-729

DOI:10.1016/j.brs.2016.04.015      URL     [本文引用: 3]

Hsu, T. Y., Tseng, L. Y., Yu, J. X., Kuo, W. J., Hung, D. L., Tzeng, O. J., ... Juan, C. H. ( 2011).

Modulating inhibitory control with direct current stimulation of the superior medial frontal cortex

NeuroImage, 56( 4), 2249-2257

DOI:10.1016/j.neuroimage.2011.03.059      URL     [本文引用: 1]

Huster, R. J., Enriquez-Geppert, S., Lavallee, C. F., Falkenstein, M., & Herrmann, C. S. ( 2013).

Electroencephalography of response inhibition tasks: Functional networks and cognitive contributions

International Journal of Psychophysiology, 87( 3), 217-233

DOI:10.1016/j.ijpsycho.2012.08.001      URL     [本文引用: 1]

Jacobson, L., Ezra, A., Berger, U., & Lavidor, M. ( 2012).

Modulating oscillatory brain activity correlates of behavioral inhibition using transcranial direct current stimulation

Clinical Neurophysiology, 123( 5), 979-984

DOI:10.1016/j.clinph.2011.09.016      URL     [本文引用: 1]

Jacobson, L., Javitt, D. C., & Lavidor, M. ( 2011).

Activation of inhibition: Diminishing impulsive behavior by direct current stimulation over the inferior frontal gyrus

Journal of Cognitive Neuroscience, 23( 11), 3380-3387

DOI:10.1162/jocn_a_00020      URL     [本文引用: 3]

Jones, K. T., Gozenman, F., & Berryhill, M. E. ( 2015).

The strategy and motivational influences on the beneficial effect of neurostimulation: A tDCS and fNIRS study

NeuroImage, 105, 238-247

DOI:10.1016/j.neuroimage.2014.11.012      URL     [本文引用: 1]

Juan, C.H., & Muggleton, N.G . ( 2012).

Brain stimulation and inhibitory control

Brain Stimulation, 5( 2), 63-69

DOI:10.1016/j.brs.2012.03.012      URL     [本文引用: 1]

Kalu, U. G., Sexton, C. E., Loo, C. K., & Ebmeier, K. P. ( 2012).

Transcranial direct current stimulation in the treatment of major depression: A meta-analysis

Psychological Medicine, 42( 9), 1791-1800

DOI:10.1017/S0033291711003059      URL     [本文引用: 2]

Karuza, E. A., Balewski, Z. Z., Hamilton, R. H., Medaglia, J. D., Tardiff, N., & Thompson-Schill, S. L. ( 2016).

Mapping the parameter space of tDCS and cognitive control via manipulation of current polarity and intensity

Frontiers in Human Neuroscience, 10, 665

[本文引用: 1]

Knoch, D., Pascual-Leone, A., Meyer, K., Treyer, V., & Fehr, E. ( 2006).

Diminishing reciprocal fairness by disrupting the right prefrontal cortex

Science, 314( 5800), 829-832

DOI:10.1126/science.1129156      URL     PMID:17023614      [本文引用: 1]

Humans restrain self-interest with moral and social values. They are the only species known to exhibit reciprocal fairness, which implies the punishment of other individuals' unfair behaviors, even if it hurts the punisher's economic self-interest. Reciprocal fairness has been demonstrated in the Ultimatum Game, where players often reject their bargaining partner's unfair offers. Despite progress in recent years, however, little is known about how the human brain limits the impact of selfish motives and implements fair behavior. Here we show that disruption of the right, but not the left, dorsolateral prefrontal cortex (DLPFC) by low-frequency repetitive transcranial magnetic stimulation substantially reduces subjects' willingness to reject their partners' intentionally unfair offers, which suggests that subjects are less able to resist the economic temptation to accept these offers. Importantly, however, subjects still judge such offers as very unfair, which indicates that the right DLPFC plays a key role in the implementation of fairness-related behaviors.

Kwon, Y.H., & Kwon, J.W . ( 2013a).

Is transcranial direct current stimulation a potential method for improving response inhibition?

Neural Regenration Research, 8( 11), 1048-1054

[本文引用: 1]

Kwon, Y.H., & Kwon, J.W . ( 2013b).

Response inhibition induced in the stop-signal task by transcranial direct current stimulation of the pre-supplementary motor area and primary sensoriomotor cortex

Journal of Physical Therapy Science 25( 9), 1083-1086

[本文引用: 1]

van de Laar, M. C.,van den Wildenberg, W. P. M.,van Boxtel, G. J. M.,Huizenga, H. M., & van der Molen, M. W。( 2012).

Lifespan changes in motor activation and inhibition during choice reactions: A Laplacian ERP study

Biological Psychology, 89( 2), 323-334

DOI:10.1016/j.biopsycho.2011.11.005      URL     [本文引用: 2]

Langenecker, S. A., Bieliauskas, L. A., Rapport, L. J., Zubieta, J. K., Wilde, E. A., & Berent, S. ( 2005).

Face emotion perception and executive functioning deficits in depression

Journal of Clinical and Experimental Neuropsychology, 27( 3), 320-333

DOI:10.1080/13803390490490515720      URL     [本文引用: 1]

Langenecker, S. A., Kennedy, S. E., Guidotti, L. M., Briceno, E. M., Own, L. S., Hooven, T., ... Zubieta, J. K. ( 2007).

Frontal and limbic activation during inhibitory control predicts treatment response in major depressive disorder

Biological Psychiatry, 62( 11), 1272-1280

DOI:10.1016/j.biopsych.2007.02.019      URL     [本文引用: 1]

Lansbergen, M. M., Schutter, D. J. L. G., & Kenemans, J. L. ( 2007).

Subjective impulsivity and baseline EEG in relation to stopping performance

Brain Research, 1148( 1), 161-169

DOI:10.1016/j.brainres.2007.02.034      URL     PMID:17362884      [本文引用: 1]

Impulsivity is a personality trait within the normal population, but also a feature of many psychiatric disorders that have been associated with poor inhibitory control. The aim of the present study was to examine the relation between subjective impulsivity, theta/beta EEG ratio, and inhibitory control in healthy individuals. In 15 high and 14 low impulsive healthy volunteers (as assessed by the I 7 questionnaire), resting state EEG was recorded during an eyes open condition to obtain estimates for theta and beta activity. Subsequently, a stop-signal task was presented where participants responded to go-signals and had to stop their initiated response to stop-signals. Stopping performance and EEG activity were compared between the impulsive groups as well as between high vs. low theta/beta ratio groups. Results showed that subjective impulsivity was not related to stopping behavior or to theta/beta ratio. In contrast to our expectations that individuals with high theta/beta ratios would show relatively long stopping reaction times, analyses revealed that the low theta/beta ratio group had longer stopping reaction times. Given that increased theta/beta ratio may reflect reduced cortical inhibition over subcortical drives, it is proposed that healthy individuals with relative high theta/beta ratios are more motivated to maximize inhibition-related performance.

Lapenta, O. M., Sierve, K. D., de Macedo, E. C., Fregni, F., & Boggio, P. S. ( 2014).

Transcranial direct current stimulation modulates ERP-indexed inhibitory control and reduces food consumption

Appetite, 83, 42-48

DOI:10.1016/j.appet.2014.08.005      URL     [本文引用: 1]

Leite, J., Gonçalves, O. F., Pereira, P., Khadka, N., Bikson, M., Fregni, F., & Carvalho, S. ( 2018).

The differential effects of unihemispheric and bihemispheric tDCS over the inferior frontal gyrus on proactive control

Neuroscience Research, 130, 39-46

DOI:10.1016/j.neures.2017.08.005      URL     [本文引用: 1]

Li, C. S. R., Huang, C., Constable, R. T., & Sinha, R. ( 2006).

Imaging response inhibition in a stop-signal task: Neural correlates independent of signal monitoring and post-response processing

Journal of Neuroscience, 26( 1), 186-192

DOI:10.1523/JNEUROSCI.3741-05.2006      URL     [本文引用: 1]

Li, C. S. R., Huang, C., Yan, P., Paliwal, P., Constable, R. T., & Sinha, R. ( 2008).

Neural correlates of post-error slowing during a stop signal task: A functional magnetic resonance imaging study

Journal of Cognitive Neuroscience, 20( 6), 1021-1029

DOI:10.1162/jocn.2008.20071      URL     [本文引用: 3]

Liang, W. K., Lo, M. T., Yang, A. C., Peng, C. K., Cheng, S. K., Tseng, P., & Juan, C.H. ( 2014).

Revealing the brain's adaptability and the transcranial direct current stimulation facilitating effect in inhibitory control by multiscale entropy

NeuroImage, 90, 218-234

DOI:10.1016/j.neuroimage.2013.12.048      URL     [本文引用: 1]

Loftus, A. M., Yalcin, O., Baughman, F. D., Vanman, E. J., & Hagger, M. S. ( 2015).

The impact of transcranial direct current stimulation on inhibitory control in young adults

Brain and Behavior, 5( 5), e00332

DOI:10.1002/brb3.332      URL     PMID:4389055      [本文引用: 1]

Abstract Background There is increasing evidence that the dorso-lateral prefrontal cortex (DLPFC), a brain region related to reward and motivational processes, is involved in effective response inhibition and that decreased activity in this region coincides with reduced inhibitory capacity. Using transcranial direct current stimulation (tDCS) to manipulate cortical activation, this study examined whether cross-hemispheric tDCS over the DLPFC affected performance on an inhibitory control task. Methods Neurologically intact participants performed a modified Stroop color-word matching task before and after completing one of two tDCS conditions; (1) anodal stimulation over the left DLPFC or (2) sham tDCS. Results There was a statistically significant effect of tDCS condition on Stroop reaction time (RT) pre-post tDCS change scores. Participants who received anodal stimulation over the left DLPFC demonstrated statistically significant faster RT change scores on the Stroop items compared to participants in the sham condition. Although errors on Stroop incongruent items decreased before and after receiving the tDCS treatment, there were no significant differences in errors on Stroop items between the anodal stimulation over left DLPFC and sham tDCS conditions. Anodal tDCS, which is known to elevate neural excitation, may have enhanced activation levels in the left DLPFC and minimized impairment of inhibitory control, resulting in better task performance. Conclusions Current findings provide preliminary evidence that increased excitation of the left DLPFC improves inhibitory control and are a step toward understanding the potential of tDCS for moderating deficits in inhibitory control.

Logan, G.D., & Burkell, J.( 1986).

Dependence and independence in responding to double stimulation: A comparison of stop, change, and dual-task paradigms

Journal of Experimental Psychology: Human Perception and Performance, 12( 4), 549-563

[本文引用: 1]

Logan, G. D., Schachar, R. J., & Tannock, R. ( 1997).

Impulsivity and inhibitory control

Psychological Science, 8( 1), 60-64

DOI:10.1111/j.1467-9280.1997.tb00545.x      URL     [本文引用: 1]

MacDonald, A. W., 3rd, Cohen, J. D., Stenger, V. A., & Carter, C. S. ( 2000).

Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control

Science, 288( 5472), 1835-1838

DOI:10.1126/science.288.5472.1835      URL     [本文引用: 1]

Mannuzza, S., Klein, R. G., & Moulton, J. L. ( 2003).

Persistence of Attention-Deficit/Hyperactivity Disorder into adulthood: What have we learned from the prospective follow-up studies?

Journal of Attention Disorders, 7( 2), 93-100

DOI:10.1177/108705470300700203      URL     [本文引用: 1]

Mayberg, H.S. ( 2007).

Defining the neural circuitry of depression: Toward a new nosology with therapeutic implications

Biological Psychiatry, 61( 6), 729-730

DOI:10.1016/j.biopsych.2007.01.013      URL     [本文引用: 1]

Mcauley, T., Yap, M., Christ, S. E., & White, D. A. ( 2006).

Revisiting inhibitory control across the life span: insights from the ex-Gaussian distribution

Developmental Neuropsychology, 29( 3), 447-458

DOI:10.1207/s15326942dn2903_4      URL     [本文引用: 1]

McKendrick, R., Parasuraman, R., & Ayaz, H. ( 2015).

Wearable functional near infrared spectroscopy (fNIRS) and transcranial direct current stimulation (tDCS): Expanding vistas for neurocognitive augmentation

Frontiers in Systems Neuroscience, 9, 27

[本文引用: 1]

Meinzer, M., Lindenberg, R., Darkow, R., Ulm, L., Copland, D., & Flöel, A. ( 2014).

Transcranial direct current stimulation and simultaneous functional magnetic resonance imaging

Journal of Visualized Experiments,( 86), e51730

[本文引用: 1]

Merzagora, A. C., Foffani, G., Panyavin, I., Mordillo-Mateos, L., Aguilar, J., Onaral, B., & Oliviero, O. ( 2010).

Prefrontal hemodynamic changes produced by anodal direct current stimulation

NeuroImage, 49( 3), 2304-2310

DOI:10.1016/j.neuroimage.2009.10.044      URL     [本文引用: 2]

Miniussi, C., Brignani, D., & Pellicciari, M. C. ( 2012).

Combining transcranial electrical stimulation with electroencephalography: A multimodal approach

Clinical EEG and Neuroscience, 43( 3), 184-191

DOI:10.1177/1550059412444976      URL     [本文引用: 1]

Morand-Beaulieu, S., Grot, S., Lavoie, J., Leclerc, J. B., Luck, D., & Lavoie, M. E. ( 2017).

The puzzling question of inhibitory control in Tourette syndrome: A meta-analysis

Neuroscience & Biobehavioral Reviews, 80, 240-262

DOI:10.1016/j.neubiorev.2017.05.006      URL     PMID:28502600      [本文引用: 1]

Our analyses revealed a small to medium effect in favor of inhibitory deficits in TS patients. This effect was larger in TS02+02ADHD patients, but pure TS patients also showed some inhibitory deficits. Therefore, deficits in inhibitory control seem to be an inherent component of TS, and are exacerbated when ADHD is concomitant.

Mullane, J. C., Corkum, P. V., Klein, R. M., & Mclaughlin, E. ( 2009).

Interference control in children with and without ADHD: A systematic review of Flanker and Simon task performance

Child Neuropsychology, 15( 4), 321-342

DOI:10.1080/09297040802348028      URL     [本文引用: 1]

Muszkat, D., Polanczyk, G. V., Dias, T. G., & Brunoni, A. R. ( 2016).

Transcranial direct current stimulation in child and adolescent psychiatry

Journal of Child and Adolescent Psychopharmacology, 26( 7), 590-597

DOI:10.1089/cap.2015.0172      URL     [本文引用: 1]

Nachev, P., Wydell, H., O’Neill, K., Husain, M., & Kennard, C. ( 2007).

The role of the pre-supplementary motor area in the control of action

NeuroImage, 36( Suppl. 2), T155-T163

DOI:10.1016/j.neuroimage.2007.03.034      URL     PMID:2648723      [本文引用: 1]

Although regions within the medial frontal cortex are known to be active during voluntary movements their precise role remains unclear. Here we combine functional imaging localisation with psychophysics to demonstrate a strikingly selective contralesional impairment in the ability to inhibit ongoing movement plans in a patient with a rare lesion involving the right pre-supplementary motor area (pre-SMA), but sparing the supplementary motor area (SMA). We find no corresponding delay in simple reaction times, and show that the inhibitory deficit is sensitive to the presence of competition between responses. The findings demonstrate that the pre-SMA plays a critical role in exerting control over voluntary actions in situations of response conflict. We discuss these findings in the context of a unified framework of pre-SMA function, and explore the degree to which extant data on this region can be explained by this function alone.

Nejati, V., Salehinejad, M. A., Nitsche, M. A., Najian, A., & Javadi, A. H. ( 2017).

Transcranial direct current stimulation improves executive dysfunctions in ADHD: Implications for inhibitory control, interference control, working memory, and cognitive flexibility

Journal of Attention Disorders ( #4), 1087054717730611

[本文引用: 1]

Nieratschker, V., Kiefer, C., Giel, K., Krüger, R., & Plewnia, C. ( 2015).

The COMT Val/Met polymorphism modulates effects of tDCS on response inhibition

Brain Stimulation, 8( 2), 283-288

DOI:10.1016/j.brs.2014.11.009      URL     PMID:25496958      [本文引用: 1]

61Cathodal, inhibitory tDCS to the left prefrontal cortex impairs response inhibition.61This effect was found in COMT Val–Val homozygous but not in Met-allele carriers.61The COMT polymorphism predicts the influence of tDCS on response inhibition.61Genetic information appears effective to individualize brain stimulation effects.

Nitsche, M.A., & Paulus, W.( 2011).

Transcranial direct current stimulation--update 2011

Restorative Neurology and Neuroscience, 29( 6), 463-492

[本文引用: 1]

Nobusako, S., Nishi, Y., Nishi, Y., Shuto, T., Asano, D., Osumi, M., & Morioka, S. ( 2017).

Transcranial direct current stimulation of the temporoparietal junction and inferior frontal cortex improves imitation-inhibition and perspective-taking with no effect on the autism-spectrum quotient score

Frontiers in Behavioral Neuroscience, 11, 84

DOI:10.3389/fnbeh.2017.00084      URL     [本文引用: 1]

Nozari, N., Woodard, K., & Thompson-Schill, S. L. ( 2014).

Consequences of cathodal stimulation for behavior: when does it help and when does it hurt performance?

PloS One, 9( 1), e84338

DOI:10.1371/journal.pone.0084338      URL     [本文引用: 1]

Obeso, I., Wilkinson, L., Casabona, E., Bringas, M. L., Álvarez, M., Álvarez, L., ... Marjan, J. ( 2011).

Deficits in inhibitory control and conflict resolution on cognitive and motor tasks in Parkinson’s disease

Experimental Brain Research, 212( 3), 371-384

DOI:10.1007/s00221-011-2736-6      URL     [本文引用: 2]

Oldrati, V., Patricelli, J., Colombo, B., & Antonietti, A. ( 2016).

The role of dorsolateral prefrontal cortex in inhibition mechanism: A study on cognitive reflection test and similar tasks through neuromodulation

Neuropsychologia, 91, 499-508

DOI:10.1016/j.neuropsychologia.2016.09.010      URL     [本文引用: 1]

Padmanabhan, A., Garver, K., O'Hearn, K., Nawarawong, N., Liu, R., Minshew, N., ... Luna, B. ( 2015).

Developmental changes in brain function underlying inhibitory control in autism spectrum disorders

Autism Research, 8( 2), 123-135

DOI:10.1002/aur.1398      URL     [本文引用: 1]

Palm, U., Segmiller, F. M., Epple, A. N., Freisleder, F. J., Koutsouleris, N., Schulte-Körne, G., & Padberg, F. ( 2016).

Transcranial direct current stimulation in children and adolescents: A comprehensive review

Journal of Neural Transmission, 123( 10), 1219-1234

DOI:10.1007/s00702-016-1572-z      URL     [本文引用: 1]

Paulus, W.( 2004).

Outlasting excitability shifts induced by direct current stimulation of the human brain

Supplements to Clinical Neurophysiology, 57( 1), 708-714

DOI:10.1016/S1567-424X(09)70411-8      URL     [本文引用: 1]

Peña-Gómez, C., Sala-Lonch, R., Junqué, C., Clemente, I. C., Vidal, D., Bargalló, N., ... Bartrés-Faz, D. ( 2012).

Modulation of large-scale brain networks by transcranial direct current stimulation evidenced by resting-state functional MRI

Brain Stimulation, 5( 3), 252-263

DOI:10.1016/j.brs.2011.08.006      URL     [本文引用: 1]

Peng, C. K., Costa, M., & Goldberger, A. L. ( 2009).

Adaptive data analysis of complex fluctuations in physiologic time series

Advances in Adaptive Data Analysis, 1( 1), 61-70

DOI:10.1142/S1793536909000035      URL     [本文引用: 1]

We introduce a generic framework of dynamical complexity to understand and quantify fluctuations of physiologic time series. In particular, we discuss the importance of applying adaptive data analysis techniques, such as the empirical mode decomposition algorithm, to address the challenges of nonlinearity and nonstationarity that are typically exhibited in biological fluctuations.

Priori, A., Hallett, M., & Rothwell, J. C. ( 2009).

Repetitive transcranial magnetic stimulation or transcranial direct current stimulation?

Brain Stimulation, 2( 4), 241-245

DOI:10.1016/j.brs.2009.02.004      URL     [本文引用: 1]

Quinn, C. R., Harris, A., & Kemp, A. H. ( 2012).

The impact of depression heterogeneity on inhibitory control

Australian and New Zealand Journal of Psychiatry, 46( 4), 374-383

DOI:10.1177/0004867411432073      URL     [本文引用: 1]

Roberts, A.C., & Wallis, J.D . ( 2000).

Inhibitory control and affective processing in the prefrontal cortex: Neuropsychological studies in the common marmoset

Cerebral Cortex, 10( 3), 252-262

DOI:10.1093/cercor/10.3.252      URL     [本文引用: 1]

Rubia, K., Smith, A. B., Brammer, M. J., & Taylor, E. ( 2003).

Right inferior prefrontal cortex mediates response inhibition while mesial prefrontal cortex is responsible for error detection

NeuroImage, 20( 1), 351-358

DOI:10.1016/S1053-8119(03)00275-1      URL     [本文引用: 1]

Schmitt, L. M., White, S. P., Cook, E. H., Sweeney, J. A., & Mosconi, M. W. ( 2018).

Cognitive mechanisms of inhibitory control deficits in autism spectrum disorder. The

Journal of Child Psychology and Psychiatry, 59( 5), 586-595

DOI:10.1111/jcpp.2018.59.issue-5      URL     [本文引用: 1]

Schneider, H.D., & Hopp, J.P . ( 2011).

The use of the Bilingual Aphasia Test for assessment and transcranial direct current stimulation to modulate language acquisition in minimally verbal children with autism

Clinical Linguistics & Phonetics, 25( 6-7), 640-654

[本文引用: 1]

Sehm, B., Kipping, J., Schäfer, A., Villringer, A., & Ragert, P. ( 2013).

A comparison between uni- and bilateral tDCS effects on functional connectivity of the human motor cortex

Frontiers in Human Neuroscience, 7, 183

[本文引用: 1]

Sehm, B., Schäfer, A., Kipping, J., Margulies, D., Conde, V., Taubert, M., ... Ragert, P. ( 2012).

Dynamic modulation of intrinsic functional connectivity by transcranial direct current stimulation

Journal of Neurophysiology, 108( 12), 3253-3263

DOI:10.1152/jn.00606.2012      URL     [本文引用: 1]

Shimamura, A. P., Jurica, P. J., Mangels, J. A., Gershberg, F. B., & Knight, R. T. ( 1995).

Susceptibility to memory interference effects following frontal lobe damage: Findings from tests of paired-associate learning

Journal of Cognitive Neuroscience, 7( 2), 144-152

DOI:10.1162/jocn.1995.7.2.144      URL     [本文引用: 1]

Shimoni, M., Engel-Yeger, B., & Tirosh, E. ( 2012).

Executive dysfunctions among boys with attention deficit hyperactivity disorder (ADHD): Performance-based test and parents report

Research in Developmental Disabilities, 33( 3), 858-865

DOI:10.1016/j.ridd.2011.12.014      URL     [本文引用: 1]

Smith, J. L., Jamadar, S., Provost, A. L., & Michie, P. T. ( 2013).

Motor and non-motor inhibition in the Go/NoGo task: An ERP and fMRI study

International Journal of Psychophysiology, 87( 3), 244-253

DOI:10.1016/j.ijpsycho.2012.07.185      URL     PMID:22885679      [本文引用: 1]

78 Motor and non-motor Go/NoGo tasks with ERP and fMRI in separate sessions. 78 Increased P3 for Press NoGo compared to Count NoGo. 78 Significant deactivation of motor regions for Press NoGo relative to Count NoGo. 78 Press NoGo involves an active inhibition process, not just the absence of movement.

Smith, J. L., Johnstone, S. J., & Barry, R. J. ( 2008).

Movement-related potentials in the Go/NoGo task: The P3 reflects both cognitive and motor inhibition

Clinical Neurophysiology, 119( 3), 704-714

DOI:10.1016/j.clinph.2007.11.042      URL     [本文引用: 1]

Soltaninejad, Z., Nejati, V., & Ekhtiari, H. ( 2015).

Effect of anodal and cathodal transcranial direct current stimulation on DLPFC on modulation of inhibitory control in ADHD

Journal of Attention Disorders, 101( 4), 291-302

[本文引用: 3]

Stramaccia, D. F., Penolazzi, B., Sartori, G., Braga, M., Mondini, S., & Galfano, G. ( 2015).

Assessing the effects of tDCS over a delayed response inhibition task by targeting the right inferior frontal gyrus and right dorsolateral prefrontal cortex

Experimental Brain Research, 233( 8), 2283-2290

DOI:10.1007/s00221-015-4297-6      URL     [本文引用: 3]

Sumner, P., Nachev, P., Morris, P., Peters, A. M., Jackson, S. R., Kennard, C., & Husain, M. ( 2007).

Human medial frontal cortex mediates unconscious inhibition of voluntary action

Neuron, 54( 5), 697-711

DOI:10.1016/j.neuron.2007.05.016      URL     PMID:17553420      [本文引用: 1]

Within the medial frontal cortex, the supplementary eye field (SEF), supplementary motor area (SMA), and pre-SMA have been implicated in the control of voluntary action, especially during motor sequences or tasks involving rapid choices between competing response plans. However, the precise roles of these areas remain controversial. Here, we study two extremely rare patients with microlesions of the SEF and SMA to demonstrate that these areas are critically involved in unconscious andinvoluntarymotor control. We employed masked-prime stimuli that evoked automatic inhibition in healthy people and control patients with lateral premotor or pre-SMA damage. In contrast, our SEF/SMA patients showed a complete reversal of the normal inhibitory effect—ocular or manual—corresponding to the functional subregion lesioned. These findings imply that the SEF and SMA mediateautomaticeffector-specific suppression of motor plans. This automatic mechanism may contribute to the participation of these areas in the voluntary control of action.

Thakkar, K. N., Polli, F. E., Joseph, R. M., Tuch, D. S., Hadjikhani, N., Barton, J. J. S., & Manoach, D. S. ( 2008).

Response monitoring, repetitive behaviour and anterior cingulate abnormalities in autism spectrum disorders (ASD)

Brain, 131( 9), 2464-2478

DOI:10.1093/brain/awn099      URL     [本文引用: 1]

van Campen, A. D., Kunert, R., van den Wildenberg, W. P. M., & Ridderinkhof, K. R. ( 2018).

Repetitive transcranial magnetic stimulation over inferior frontal cortex impairs the suppression (but not expression) of action impulses during action conflict

Psychophysiology, 55( 3), e13003

DOI:10.1111/psyp.2018.55.issue-3      URL     [本文引用: 1]

Vicario, C.M., & Nitsche, M.A . ( 2013).

Non-invasive brain stimulation for the treatment of brain diseases in childhood and adolescence: State of the art, current limits and future challenges

Frontiers in Systems Neuroscience, 7, 94

[本文引用: 1]

Wessel, J.R., & Aron, A.R . ( 2015).

It's not too late: The onset of the frontocentral P3 indexes successful response inhibition in the stop-signal paradigm

Psychophysiology, 52( 4), 472-480

DOI:10.1111/psyp.12374      URL     [本文引用: 1]

Wood, J.N., & Grafman, J.( 2003).

Human prefrontal cortex: Processing and representational perspectives

Nature Reviews Neuroscience, 4( 2), 139-147

DOI:10.1002/ajmg.a.10025      URL     PMID:12563285      [本文引用: 1]

Through evolution, humans have acquired 'higher' cognitive skills - such as language, reasoning and planning - and complex social behaviour. Evidence from neuropsychological and neuroimaging research indicates that the prefrontal cortex (PFC) underlies much of this higher cognition. A number of theories have been proposed for how the PFC might achieve this. Although many of these theories focus on the types of 'process' that the PFC carries out, we argue for the validity of a representational approach to understanding PFC function.

Woods, A. J., Antal, A., Bikson, M., Boggio, P. S., Brunoni, A. R., Celnik, P., ... Nitsche, M. A. ( 2016).

A technical guide to tDCS, and related non-invasive brain stimulation tools

Clinical Neurophysiology, 127( 2), 1031-1048

DOI:10.1016/j.clinph.2015.11.012      URL     [本文引用: 2]

Woods, A. J., Hamilton, R. H., Kranjec, A., Minhaus, P., Bikson, M., Yu, J., & Chatterjee, A. ( 2014).

Space, time, and causality in the human brain

NeuroImage, 92( Suppl. C), 285-297

DOI:10.1016/j.neuroimage.2014.02.015      URL     PMID:24561228      [本文引用: 1]

61Transcranial direct current stimulation reduces the perception of causality.61Frontal stimulation reduces causal perceptions of time and space.61Parietal stimulation reduces causal perceptions of space.61Parallel fMRI and tDCS provide direct probe of neural hypotheses.

Yasumura, A., Kokubo, N., Yamamoto, H., Yasumura, Y., Nakagawa, E., Kaga, M., ... Inagaki, M. ( 2014).

Neurobehavioral and hemodynamic evaluation of Stroop and reverse Stroop interference in children with attention- deficit/hyperactivity disorder

Brain & Development, 36( 2), 97-106

[本文引用: 3]

Yu, J. X., Tseng, P., Hung, D. L., Wu, S. W., & Juan, C. H. ( 2015).

Brain stimulation improves cognitive control by modulating medial-frontal activity and preSMA-vmPFC functional connectivity

Human Brain Mapping, 36( 10), 4004-4015

DOI:10.1002/hbm.22893      URL     [本文引用: 1]

Zandbelt, B. B., Bloemendaal, M., Hoogendam, J. M., Kahn, R. S., & Vink, M. ( 2013).

Transcranial magnetic stimulation and functional mri reveal cortical and subcortical interactions during stop-signal response inhibition

Journal of Cognitive Neuroscience, 25( 2), 157-174

DOI:10.1162/jocn_a_00309      URL     [本文引用: 1]

Zhang, B. W., Xu, J., & Chang, Y. ( 2016).

The effect of aging in inhibitory control of major depressive disorder revealed by event-related potentials

Frontiers in Human Neuroscience, 10, 116

[本文引用: 1]

Zhang, W.H., & Lu, J.M . ( 2012).

Time course of automatic emotion regulation during a facial Go/Nogo task

Biological Psychology, 89( 2), 444-449

DOI:10.1016/j.biopsycho.2011.12.011      URL     [本文引用: 1]

Zhu, D. C., Zacks, R. T., & Slade, J. M. ( 2010).

Brain activation during interference resolution in young and older adults: An fMRI study

NeuroImage, 50( 2), 810-817

DOI:10.1016/j.neuroimage.2009.12.087      URL     [本文引用: 1]

Zmigrod, S., Colzato, L. S., & Hommel, B. ( 2014).

Evidence for a role of the right dorsolateral prefrontal cortex in controlling stimulus-response integration: A transcranial direct current stimulation (tDCS) study

Brain Stimulation, 7( 4), 516-520

DOI:10.1016/j.brs.2014.03.004      URL     [本文引用: 1]

/


版权所有 © 《心理科学进展》编辑部
地址:北京市朝阳区林萃路16号院 
邮编:100101 
电话:010-64850861 
E-mail:jinzhan@psych.ac.cn
备案编号:京ICP备10049795号-1 京公网安备110402500018号

本系统由北京玛格泰克科技发展有限公司设计开发