Please wait a minute...
Advances in Psychological Science    2020, Vol. 28 Issue (4) : 566-578     DOI: 10.3724/SP.J.1042.2020.00566
Regular Articles |
The global modulation of feature-based attention: Enhancement or suppression?
HUANG Zili1,DING Yulong2,QU Zhe1()
1 Department of Psychology, Sun Yat-Sen University, Guangzhou, 510006, China
2 School of Psychology, South China Normal University, Guangzhou, 510006, China
Download: PDF(1147 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Feature-based attention (FBA) is the ability that observers can direct their attention to a specific feature dimension or value. In the attentional focus, FBA can modulate the response of neurons in visual cortex: it selectively increases the responses of neurons encoding attended features while suppresses the responses of neurons encoding distracting features. Many studies found that this attentional modulation can spread outside the focus of attention, but the underlying mechanism of the global modulation of FBA (enhancement or suppression) is still controversial. The global enhancement mechanism and the global suppression mechanism are different in time courses and may play distinctive roles in visual information processing. Compared to the global enhancement mechanism, the global suppression mechanism seems more likely to be influenced by experimental designs and parameters. Future studies are needed to investigate under what conditions the global suppression mechanism takes effect and to further disassociate these two global mechanisms in the process of feature-based attention.

Keywords feature-based attention      global modulation      global enhancement      global suppression     
PACS:  B842  
Corresponding Authors: Zhe QU     E-mail: quzhe@mail.sysu.edu.cn
Issue Date: 24 February 2020
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Zili HUANG
Yulong DING
Zhe QU
Cite this article:   
Zili HUANG,Yulong DING,Zhe QU. The global modulation of feature-based attention: Enhancement or suppression?[J]. Advances in Psychological Science, 2020, 28(4): 566-578.
URL:  
http://journal.psych.ac.cn/xlkxjz/EN/10.3724/SP.J.1042.2020.00566     OR     http://journal.psych.ac.cn/xlkxjz/EN/Y2020/V28/I4/566
1 Amer T., Campbell K. L., & Hasher L . ( 2016). Cognitive control as a double-edged sword. Trends in Cognitive Sciences, 20( 12), 905-915.
2 Andersen S. K., Hillyard S. A., & Müller M. M . ( 2008). Attention facilitates multiple stimulus features in parallel in human visual cortex. Current Biology, 18( 13), 1006-1009.
3 Andersen S. K., Hillyard S. A., & Müller M. M . ( 2013). Global facilitation of attended features is obligatory and restricts divided attention. Journal of Neuroscience, 33( 46), 18200-18207.
4 Andersen, S. K., & Müller, M. M . ( 2010). Behavioral performance follows the time course of neural facilitation and suppression during cued shifts of feature-selective attention. Proceedings of the National Academy of Sciences, 107( 31), 13878-13882.
5 Andersen S. K., Müller M. M., & Hillyard S. A . ( 2015). Attentional selection of feature conjunctions is accomplished by parallel and independent selection of single features. Journal of Neuroscience, 35( 27), 9912-9919.
6 Bartsch M. V., Boehler C. N., Stoppel C. M., Merkel C., Heinze H. J., Schoenfeld M. A., & Hopf J. M . ( 2015). Determinants of global color-based selection in human visual cortex. Cerebral Cortex, 25( 9), 2828-2841.
7 Bartsch M. V., Donohue S. E., Strumpf H., Schoenfeld M. A., & Hopf J. M . ( 2018). Enhanced spatial focusing increases feature-based selection in unattended locations. Scientific Reports, 8( 1), 16132.
8 Bartsch M. V., Loewe K., Merkel C., Heinze H. J., Schoenfeld M. A., Tsotsos J. K., & Hopf J. M . ( 2017). Attention to color sharpens neural population tuning via feedback processing in the human visual cortex hierarchy. Journal of Neuroscience, 37( 43), 10346-10357.
9 Becker M. W., Hemsteger S., & Peltier C . ( 2015). No templates for rejection: A failure to configure attention to ignore task-irrelevant features. Visual Cognition, 23( 9-10), 1150-1167.
10 Berggren, N., & Eimer, M . ( 2018). Electrophysiological correlates of active suppression and attentional selection in preview visual search. Neuropsychologia, 120, 75-85.
11 Boynton G. M., Ciaramitaro V. M., & Arman A. C . ( 2006). Effects of feature-based attention on the motion aftereffect at remote locations. Vision Research, 46( 18), 2968-2976.
12 Bridwell, D. A., & Srinivasan, R . ( 2012). Distinct attention networks for feature enhancement and suppression in vision. Psychological Science, 23( 10), 1151-1158.
13 Brummerloh, B., & Müller, M. M . ( 2019). Time matters: Feature-specific prioritization follows feature integration in visual object processing. NeuroImage, 196, 81-93.
14 Carrasco, M . ( 2011). Visual attention: The past 25 years. Vision Research, 51( 13), 1484-1525.
15 Conci M., Deichsel C., Müller H. J., & T?llner T . ( 2019). Feature guidance by negative attentional templates depends on search difficulty. Visual Cognition, 27, 317-326.
16 Cunningham, C. A., & Egeth, H. E . ( 2016). Taming the white bear: Initial costs and eventual benefits of distractor inhibition. Psychological Science, 27( 4), 476-485.
17 Daffner K. R., Zhuravleva T. Y., Sun X., Tarbi E. C., Haring A. E., Rentz D. M., & Holcomb P. J . ( 2012). Does modulation of selective attention to features reflect enhancement or suppression of neural activity?. Biological Psychology, 89( 2), 398-407.
18 Desimone, R., & Duncan, J . ( 1995). Neural mechanisms of selective visual attention. Annual Review of Neuroscience, 18( 1), 193-222.
19 Drew, T., & Stothart, C . ( 2016). Clarifying the role of target similarity, task relevance and feature-based suppression during sustained inattentional blindness. Journal of Vision, 16( 15), 1-9.
20 Eimer, M . ( 2014). The neural basis of attentional control in visual search. Trends in Cognitive Sciences, 18( 10), 526-535.
21 Forschack N., Andersen S. K., & Müller M. M . ( 2017). Global enhancement but local suppression in feature-based attention. Journal of Cognitive Neuroscience, 29( 4), 619-627.
22 Gaspelin, N., & Luck, S. J . ( 2018). The role of inhibition in avoiding distraction by salient stimuli. Trends in Cognitive Sciences, 22( 1), 79-92.
23 Geng, J. J . ( 2014). Attentional mechanisms of distractor suppression. Current Directions in Psychological Science, 23( 2), 147-153.
24 Geng J. J., DiQuattro N. E., & Helm J . ( 2017). Distractor probability changes the shape of the attentional template. Journal of Experimental Psychology: Human Perception and Performance, 43( 12), 1993-2007.
25 Grubert, A., & Eimer, M . ( 2015). Rapid parallel attentional target selection in single-color and multiple-color visual search. Journal of Experimental Psychology: Human Perception and Performance, 41( 1), 86-101.
26 Han, S. W., & Kim, M. S . ( 2009). Do the contents of working memory capture attention? Yes, but cognitive control matters. Journal of Experimental Psychology: Human Perception and Performance, 35( 5), 1292-1302.
27 Herrmann K., Heeger D. J., & Carrasco M . ( 2012). Feature-based attention enhances performance by increasing response gain. Vision Research, 74, 10-20.
28 Hickey C., Di Lollo V., & McDonald J. J . ( 2009). Electrophysiological indices of target and distractor processing in visual search. Journal of Cognitive Neuroscience, 21( 4), 760-775.
29 Ho T. C., Brown S., Abuyo N. A., Ku E. H. J., & Serences J. T . ( 2012). Perceptual consequences of feature-based attentional enhancement and suppression. Journal of Vision, 12( 8), 1-17.
30 Hu L., Ding Y., & Qu Z . ( 2019). Perceptual learning induces active suppression of physically nonsalient shapes. Psychophysiology, 56( 9), e13393.
31 Huang W., Su Y., Zhen Y., & Qu Z . ( 2016). The role of top‐down spatial attention in contingent attentional capture. Psychophysiology, 53( 5), 650-662.
32 Irons J. L., Folk C. L., & Remington R. W . ( 2012). All set! Evidence of simultaneous attentional control settings for multiple target colors. Journal of Experimental Psychology: Human Perception and Performance, 38( 3), 758-775.
33 Jenkins M., Grubert A., & Eimer M . ( 2017). Target objects defined by a conjunction of colour and shape can be selected independently and in parallel. Attention, Perception, & Psychophysics, 79( 8), 2310-2326.
34 Keil, A., & Müller, M. M . ( 2010). Feature selection in the human brain: Electrophysiological correlates of sensory enhancement and feature integration. Brain Research, 1313, 172-184.
35 Klimesch, W . ( 2012). Alpha-band oscillations, attention, and controlled access to stored information. Trends in Cognitive Sciences, 16( 12), 606-617.
36 Kozyrev V., Daliri M. R., Schwedhelm P., & Treue S . ( 2019). Strategic deployment of feature-based attentional gain in primate visual cortex. PLoS Biology, 17( 8), e3000387.
37 Lee J., Leonard C. J., Luck S. J., & Geng J. J . ( 2018). Dynamics of feature-based attentional selection during color-shape conjunction search. Journal of Cognitive Neuroscience, 30( 12), 1773-1787.
38 Lenartowicz A., Simpson G. V., Haber C. M., & Cohen M. S . ( 2014). Neurophysiological signals of ignoring and attending are separable and related to performance during sustained intersensory attention. Journal of Cognitive Neuroscience, 26( 9), 2055-2069.
39 Leonard C. J., Balestreri A., & Luck S. J . ( 2015). Interactions between space-based and feature-based attention. Journal of Experimental Psychology: Human Perception and Performance, 41( 1), 11-16.
40 Ling S., Liu T., & Carrasco M . ( 2009). How spatial and feature-based attention affect the gain and tuning of population responses. Vision Research, 49( 10), 1194-1204.
41 Liu, T., & Hou, Y . ( 2011). Global feature-based attention to orientation. Journal of Vision, 11( 10), 1-8.
42 Liu T., Larsson J., & Carrasco M . ( 2007). Feature-based attention modulates orientation-selective responses in human visual cortex. Neuron, 55( 2), 313-323.
43 Liu, T., & Mance, I . ( 2011). Constant spread of feature-based attention across the visual field. Vision Research, 51( 1), 26-33.
44 Martinez-Trujillo, J. C., & Treue, S . ( 2004). Feature-based attention increases the selectivity of population responses in primate visual cortex. Current Biology, 14( 9), 744-751.
45 Maunsell, J. H., & Treue, S . ( 2006). Feature-based attention in visual cortex. Trends in Neurosciences, 29( 6), 317-322.
46 Maunsell, J. H . ( 2015). Neuronal mechanisms of visual attention. Annual Review of Vision Science, 1, 373-391.
47 McAdams, C. J., & Maunsell, J. H . ( 1999). Effects of attention on orientation-tuning functions of single neurons in macaque cortical area V4. Journal of Neuroscience, 19( 1), 431-441.
48 Moher J., Lakshmanan B. M., Egeth H. E., & Ewen J. B . ( 2014). Inhibition drives early feature-based attention. Psychological Science, 25( 2), 315-324.
49 Moore, T., & Zirnsak, M . ( 2017). Neural mechanisms of selective visual attention. Annual Review of Psychology, 68, 47-72.
50 Müller M. M., Gundlach C., Forschack N., & Brummerloh B . ( 2018). It takes two to tango: Suppression of task-irrelevant features requires (spatial) competition. NeuroImage, 178, 485-492.
51 Noonan M. P., Adamian N., Pike A., Printzlau F., Crittenden B. M., & Stokes M. G . ( 2016). Distinct mechanisms for distractor suppression and target facilitation. Journal of Neuroscience, 36( 6), 1797-1807.
52 Noonan M. P., Crittenden B. M., Jensen O., & Stokes M. G . ( 2018). Selective inhibition of distracting input. Behavioural Brain Research, 355, 36-47.
53 Painter D. R., Dux P. E., Travis S. L., & Mattingley J. B . ( 2014). Neural responses to target features outside a search array are enhanced during conjunction but not unique-feature search. Journal of Neuroscience, 34( 9), 3390-3401.
54 Polk T. A., Drake R. M., Jonides J. J., Smith M. R., & Smith E. E . ( 2008). Attention enhances the neural processing of relevant features and suppresses the processing of irrelevant features in humans: A functional magnetic resonance imaging study of the Stroop task. Journal of Neuroscience, 28( 51), 13786-13792.
55 Saenz M., Buracas G. T., & Boynton G. M . ( 2002). Global effects of feature-based attention in human visual cortex. Nature Neuroscience, 5( 7), 631-632.
56 Saenz M., Buracas G. T., & Boynton G. M . ( 2003). Global feature-based attention for motion and color. Vision Research, 43( 6), 629-637.
57 Sawaki, R., & Luck, S. J . ( 2010). Capture versus suppression of attention by salient singletons: Electrophysiological evidence for an automatic attend-to-me signal. Attention, Perception, & Psychophysics, 72( 6), 1455-1470.
58 Schmidt, F., & Schmidt, T . ( 2010). Feature-based attention to unconscious shapes and colors. Attention, Perception, & Psychophysics, 72( 6), 1480-1494.
59 Serences, J. T., & Boynton, G. M . ( 2007). Feature-based attentional modulations in the absence of direct visual stimulation. Neuron, 55( 2), 301-312.
60 Serences J. T., Saproo S., Scolari M., Ho T., & Muftuler L. T . ( 2009). Estimating the influence of attention on population codes in human visual cortex using voxel-based tuning functions. Neuroimage, 44( 1), 223-231.
61 Slagter H. A., Prinssen S., Reteig L. C., & Mazaheri A . ( 2016). Facilitation and inhibition in attention: Functional dissociation of pre-stimulus alpha activity, P1, and N1 components. Neuroimage, 125, 25-35.
62 St?rmer, V. S., & Alvarez, G. A . ( 2014). Feature-based attention elicits surround suppression in feature space. Current Biology, 24( 17), 1985-1988.
63 Tootell R. B., Reppas J. B., Dale A. M., Look R. B., Sereno M. I., Malach R., .. Rosen B. R . ( 1995). Visual motion aftereffect in human cortical area MT revealed by functional magnetic resonance imaging. Nature, 375( 6527), 139-141.
64 Treue, S., & Maunsell, J. H . ( 1996). Attentional modulation of visual motion processing in cortical areas MT and MST. Nature, 382( 6591), 539-541.
65 Treue, S., & Maunsell, J. H . ( 1999). Effects of attention on the processing of motion in macaque middle temporal and medial superior temporal visual cortical areas. Journal of Neuroscience, 19( 17), 7591-7602.
66 Treue, S., & Trujillo, J. C. M . ( 1999). Feature-based attention influences motion processing gain in macaque visual cortex. Nature, 399( 6736), 575-579.
67 van Diepen R. M., Miller L. M., Mazaheri A., & Geng J. J . ( 2016). The role of alpha activity in spatial and feature- based attention. Eneuro, 3( 5).
68 Wang Y., Miller J., & Liu T . ( 2015). Suppression effects in feature-based attention. Journal of Vision, 15( 5), 1-16.
69 Wegener D., Ehn F., Aurich M. K., Galashan F. O., & Kreiter A. K . ( 2008). Feature-based attention and the suppression of non-relevant object features. Vision Research, 48( 27), 2696-2707.
70 Wen W., Hou Y., & Li S . ( 2018). Memory guidance in distractor suppression is governed by the availability of cognitive control. Attention, Perception, & Psychophysics, 80( 5), 1157-1168.
71 White, A. L., & Carrasco, M . ( 2011). Feature-based attention involuntarily and simultaneously improves visual performance across locations. Journal of Vision, 11( 6), 1-10.
72 Wolfe, J. M., & Horowitz, T. S . ( 2017). Five factors that guide attention in visual search. Nature Human Behaviour, 1( 3), 0058.
73 Xiao G., Xu G., Liu X., Xu J., Wang F., Li L., .. Lu J . ( 2014). Feature-based attention is independent of object appearance. Journal of Vision, 14( 1), 1-11.
74 Zanto, T. P., & Rissman, J . ( 2015). Top-down suppression. Brain Mapping, 261-267.
75 Zhang, W., & Luck, S. J . ( 2009). Feature-based attention modulates feedforward visual processing. Nature Neuroscience, 12( 1), 24-25.
76 Zirnsak, M., & Hamker, F. H . ( 2010). Attention alters feature space in motion processing. Journal of Neuroscience, 30( 20), 6882-6890.
[1] WEN Fangfang,ZUO Bin,MA Shuhan,XIE Zhijie. Own-group bias in face recognition[J]. Advances in Psychological Science, 2020, 28(7): 1164-1171.
[2] CHENG Shijing,HE Wenguang. The acquisition, development and aging of semantic cognition and related neural mechanism[J]. Advances in Psychological Science, 2020, 28(7): 1156-1163.
[3] Rong YIN. Use gesture instead of speech: Hand action and language evolution[J]. Advances in Psychological Science, 2020, 28(7): 1141-1155.
[4] Jun JIANG,Weixia ZHANG,Wanqi WANG. Emotional processing in vocal and instrumental music: An ERP study[J]. Advances in Psychological Science, 2020, 28(7): 1133-1140.
[5] ZHANG Manman,ZANG Chuanli,BAI Xuejun. The spatial extent and depth of parafoveal pre-processing during Chinese reading[J]. Advances in Psychological Science, 2020, 28(6): 871-882.
[6] ZHANG Jingjing,LIANG Xiaoyue,CHEN Yidi,CHEN Qingrong. The cognitive mechanism of music syntactic processing and the influence of music structure on its processing[J]. Advances in Psychological Science, 2020, 28(6): 883-892.
[7] HE Tingyu,DING Yi,LI Haokun,CHENG Xiaorong,FAN Zhao,DING Xianfeng. The multidimensional spatial representation of time: Dissociations on its ontogenetic origin and activation mechanism[J]. Advances in Psychological Science, 2020, 28(6): 935-944.
[8] ZHONG Chupeng,QU Zhe,DING Yulong. The influences of prestimulus alpha oscillation on visual perception[J]. Advances in Psychological Science, 2020, 28(6): 945-958.
[9] ZHAO Ying,WU Xinchun,XIE Ruibo,FENG Jie,SUN Peng,CHEN Hongjun. Effects of visual language on reading among people who are deaf and hard of hearing and the underlying mechanisms[J]. Advances in Psychological Science, 2020, 28(6): 969-977.
[10] WU Ke,CHEN Jie,LI Wenjie,CHEN Jiejia,LIU Lei,LIU Cuihong. Neural mechanisms for voice processing[J]. Advances in Psychological Science, 2020, 28(5): 752-765.
[11] WANG Xiao, WU Guorong, WU Xinran, QIU Jiang, CHEN Hong. Language lateralization, handedness and functional connectivity[J]. Advances in Psychological Science, 2020, 28(5): 778-789.
[12] YANG Weiping,LI Shengnan,LI Zimo,GUO Ao,REN Yanna. The influential factors and neural mechanisms of audiovisual integration in older adults[J]. Advances in Psychological Science, 2020, 28(5): 790-799.
[13] HE Zeyu,ZHANG Ziqi,LI Kexuan,HE Weiqi. Spatial frequencies affect the processing of fearful facial expression in neural pathways[J]. Advances in Psychological Science, 2020, 28(4): 579-587.
[14] CAI Xiao,ZHANG Qingfang. The integration mechanisms of feedforward and feedback control in speech motor system[J]. Advances in Psychological Science, 2020, 28(4): 588-603.
[15] ZHANG Ziqi,HE Zeyu,LUO Wenbo,WU Haiyan. The predictive effect of metacognitive confidence on joint decision making[J]. Advances in Psychological Science, 2020, 28(4): 604-611.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Advances in Psychological Science
Support by Beijing Magtech