Please wait a minute...
Advances in Psychological Science    2020, Vol. 28 Issue (6) : 959-968     DOI: 10.3724/SP.J.1042.2020.00959
Regular Articles |
Feedback-related negativity and addiction
CHEN Lele,HUANG Rong,JIA Shiwei()
School of Psychology, Shandong Normal University, Jinan 250358, China
Download: PDF(620 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    

Feedback-related negativity (FRN) refers to the electroencephalogram component induced by feedback processing which reflects the individual's sensitivity to reward. Addiction can be broadly classified into substance addiction and behavior addiction. Both types of addicted individuals show pathological patterns in feedback processing. Comparing with the ordinary feedback (such as money), the FRN amplitude induced by feedback of addiction substance significantly increased in individuals with substance addiction. In the control study with non-addicted subjects, substance addicts also showed abnormal patterns relating to addiction when processing monetary feedback stimuli. Similar FRN irregularities were also observed in individuals with behavioral addiction. However, the classification of addiction disorders in most previous studies is not specific enough, and the characteristics of different subtypes of addiction disorders should be further taken into consideration in future studies. Moreover, addicted individuals are often accompanied by other mental disorders (such as depression, anxiety). Further studies should distinguish the influences of comorbid factors and reveal the unique reward processing mechanisms underlying addiction.

Keywords feedback-related negativity      substance addiction      behavioral addiction      reinforcement learning      reward mechanism     
ZTFLH:  B845  
Corresponding Authors: Shiwei JIA     E-mail:
Issue Date: 22 April 2020
E-mail this article
E-mail Alert
Articles by authors
Shiwei JIA
Cite this article:   
Lele CHEN,Rong HUANG,Shiwei JIA. Feedback-related negativity and addiction[J]. Advances in Psychological Science, 2020, 28(6): 959-968.
URL:     OR
成瘾研究 成瘾物质/行为 程度 N 诊断标准/工具 实验任务 FRN
Baker et al., 2011 Pol. 亚临床 18 ASSIST 赌博* 普通奖赏物 ↓
Baker et al., 2016 Pol. 亚临床 195 ASSIST 赌博 普通奖赏物 ↓
Baker, Wood, & Holroyd, 2016 Pol. 亚临床 12 ASSIST 赌博 成瘾物质 ↑
Baker et al., 2017 烟草 亚临床 20 FTND 赌博 成瘾物质 ↑
Fein et al., 2008 酒精 临床 22 DSM-Ⅳ BART 普通奖赏物 ↓
Franken et al., 2010 酒精 正常 47 QFV-I RPT 普通奖赏物 ↑
Hixson et al., 2019 酒精 临床 15 DSM-Ⅳ GRT 普通奖赏物 ↑
Kamarajan et al., 2010 酒精 临床 40 DSM-Ⅳ 赌博 普通奖赏物 ↓
Morie et al., 2016 可卡因 临床 23 DSM-Ⅳ 快速反应任务 普通奖赏物 ↓
Muñoz et al., 2012 烟草 亚临床 32 FTND 预测任务 成瘾物质 ↑
Parvaz et al., 2015 可卡因 临床 50 临床访谈 门任务 普通奖赏物 ↓
Potts et al., 2014 烟草 亚临床 22 DSM-Ⅳ RPT 普通奖赏物 ↑
Soder et al., 2019 酒精 正常 85 DDQ-R RPT, BART 普通奖赏物 ↓
Wei et al., 2018 甲基苯丙胺 临床 21 DSM-Ⅴ 赌博 普通奖赏物 ↑
Hewig et al., 2010 赌博 临床 20 DSM-Ⅳ 真实赌博 普通奖赏物 ↑
He et al., 2017 网络 亚临床 16 临床访谈 赌博 普通奖赏物 ↓
Lole et al., 2015 赌博 亚临床 16 PGSI 赌博 普通奖赏物 ↓
Li et al., 2019 网络 临床 34 DSM-Ⅴ 赌博 普通奖赏物 ↓
Oberg et al., 2011 赌博 亚临床 15 CPGI IGT 普通奖赏物 ↑
Torres et al., 2013 赌博 临床 21 DSM-Ⅳ 反转学习 普通奖赏物 ↓
Ulrich et al., 2018 赌博 亚临床 20 DSM-Ⅳ 赌博 普通奖赏物 ↓
Yau et al., 2015 网络 亚临床 39 临床访谈 BART 普通奖赏物 ↓
[1] 李丹阳, 李鹏, 李红 . (2018). 反馈负波及其近10年理论解释. 心理科学进展, 26(9), 1642-1650.
[2] 李鹏, 李红 . (2008). 反馈负波及其理论解释. 心理科学进展, 16(5), 705-711.
[3] 杨玲, 王斌强, 耿银凤, 姚东伟, 曹华, 张建勋, 许琼英 . (2019). 虚拟和真实金钱奖赏幅度对海洛因戒断者风险决策的影响. 心理学报, 51(4), 507-516.
[4] Ahlskog, J. E . (2011). Pathological behaviors provoked by dopamine agonist therapy of Parkinson's disease. Physiology & Behavior, 104(1), 168-172.
[5] Ahmed, S. H . (2005). Imbalance between drug and non-drug reward availability: A major risk factor for addiction. European Journal of Pharmacology, 526(1-3), 9-20.
[6] American Psychiatric Association. DSM-5 Task Force. (2013). Diagnostic and Statistical Manual of Mental Disorders: DSM-5?. Arlington, VA, US.
[7] Baker, T. B., Piper, M. E., McCarthy, D. E., Majeskie, M. R., & Fiore, M. C . (2004). Addiction motivation reformulated: An affective processing model of negative reinforcement. Psychological Review, 111(1), 33-51.
[8] Baker, T. E., Lesperance, P., Tucholka, A., Potvin, S., Larcher, K., Zhang, Y., ... Conrod, P . (2017). Reversing the atypical valuation of drug and nondrug rewards in smokers using multimodal neuroimaging. Biological Psychiatry, 82(11), 819-827.
[9] Baker, T. E., Stockwell, T., Barnes, G., & Holroyd, C. B . (2011). Individual differences in substance dependence: At the intersection of brain, behaviour and cognition. Addiction Biology, 16(3), 458-466.
[10] Baker, T. E., Stockwell, T., Barnes, G., Haesevoets, R., & Holroyd, C. B . (2016). Reward sensitivity of ACC as an intermediate phenotype between DRD4-521T and substance misuse. Journal of Cognitive Neuroscience, 28(3), 460-471.
[11] Baker, T. E., Wood, J. M. A., & Holroyd, C. B . (2016). Atypical valuation of monetary and cigarette rewards in substance dependent smokers. Clinical Neurophysiology, 127(2), 1358-1365.
[12] Baler, R. D., & Volkow, N. D . (2006). Drug addiction: The neurobiology of disrupted self-control. Trends in Molecular Medicine, 12(12), 559-566.
[13] Bjork, J. M., Momenan, R., Smith, A. R., & Hommer, D. W . (2008). Reduced posterior mesofrontal cortex activation by risky rewards in substance-dependent patients. Drug and Alcohol Dependence, 95(1-2), 115-128.
[14] Blum, K., Braverman, E. R., Holder, J. M., Lubar, J. F., Monastra, V. J., Miller, D., ... Comings, D. E . (2000). The reward deficiency syndrome: A biogenetic model for the diagnosis and treatment of impulsive, addictive and compulsive behaviors. Journal of Psychoactive Drugs, 32(suppl1-4), 1-112.
[15] Bodkyn, C. N., & Holroyd, C. B . (2019). Neural mechanisms of affective instability and cognitive control in substance use. International Journal of Psychophysiology, 146, 1-19.
[16] Bolla, K., Ernst, M., Kiehl, K., Mouratidis, M., Eldreth, D., Contoreggi, C., … London, E . (2004). Prefrontal cortical dysfunction in abstinent cocaine abusers. Journal of Neuropsychiatry and Clinical Neurosciences, 16(4), 456-464.
[17] Carbonell, X . (2017). From pong to pokemon go, catching the essence of the internet gaming disorder diagnosis. Journal of Behavioral Addictions, 6(2), 124-127.
[18] Cockburn, J., & Holroyd, C. B . (2018). Feedback information and the reward positivity. International Journal of Psychophysiology, 132, 243-251.
[19] Euser, A. S., Greaves-Lord, K., Crowley, M. J., Evans, B. E., Huizink, A. C., & Franken, I. H. A . (2013). Blunted feedback processing during risky decision making in adolescents with a parental history of substance use disorders. Development and Psychopathology, 25(4pt1), 1119-1136.
[20] Euser, A. S., van Meel, C. S., Snelleman, M., & Franken, I. H. A . (2011). Acute effects of alcohol on feedback processing and outcome evaluation during risky decision-making: An ERP study. Psychopharmacology, 217(1), 111.
[21] Fein, G., & Chang, M . (2008). Smaller feedback ERN amplitudes during the BART are associated with a greater family history density of alcohol problems in treatment- naive alcoholics. Drug and Alcohol Dependence, 92(1-3), 141-148.
[22] Franken, I. H. A., van den Berg, I., & van Strien, J. W . (2010). Individual differences in alcohol drinking frequency are associated with electrophysiological responses to unexpected nonrewards. Alcoholism: Clinical and Experimental Research, 34(4), 702-707.
[23] Gehring, W. J., & Willoughby, A. R . (2002). The medial frontal cortex and the rapid processing of monetary gains and losses. Science, 295(5563), 2279-2282.
[24] Goldstein, R. Z., Parvaz, M. A., Maloney, T., Alia-Klein, N., Woicik, P. A., Telang, F., ... Volkow, N. D . (2008). Compromised sensitivity to monetary reward in current cocaine users: An ERP study. Psychophysiology, 45(5), 705-713.
[25] Goldstein, R. Z., Tomasi, D., Alia-Klein, N., Cottone, L. A., Zhang, L., Telang, F., & Volkow, N. D . (2007). Subjective sensitivity to monetary gradients is associated with frontolimbic activation to reward in cocaine abusers. Drug and Alcohol Dependence, 87(2-3), 233-240.
[26] Gu, R., Jiang, Y., Kiser, S., Black, C. L., Broster, L. S., Luo, Y. J., & Kelly, T. H . (2017). Impulsive personality dimensions are associated with altered behavioral performance and neural responses in the monetary incentive delay task. Neuropsychologia, 103, 59-68.
[27] Haber, S. N., & Knutson, B . (2010). The reward circuit: Linking primate anatomy and human imaging. Neuropsychopharmacology, 35(1), 4-26.
[28] Hajcak, G., Moser, J. S., Holroyd, C. B., & Simons, R. F . (2006). The feedback-related negativity reflects the binary evaluation of good versus bad outcomes. Biological Psychology, 71(2), 148-154.
[29] He, W., Qi, A., Wang, Q., Wu, H., Zhang, Z., Gu, R., & Luo, W . (2017). Abnormal reward and punishment sensitivity associated with Internet addicts. Computers in Human Behavior, 75, 678-683.
[30] Hewig, J., Kretschmer, N., Trippe, R. H., Hecht, H., Coles, M. G. H., Holroyd, C. B., & Miltner, W. H. R . (2010). Hypersensitivity to reward in problem gamblers. Biological Psychiatry, 67(8), 781-783.
[31] Hixson, H., Burkhouse, K. L., Gorka, S. M., & Klumpp, H . (2019). A preliminary examination of the relation between neural sensitivity to reward and history of alcohol use disorder among adults with internalizing psychopathologies. Neuroscience Letters, 690, 17-22.
[32] Holroyd, C. B., & Coles, M. G. H . (2002). The neural basis of human error processing: Reinforcement learning, dopamine, and the error-related negativity. Psychological Review, 109(4), 679-709.
[33] Holroyd, C. B., Pakzad-Vaezi, K. L., & Krigolson, O. E . (2008). The feedback correct-related positivity: Sensitivity of the event-related brain potential to unexpected positive feedback. Psychophysiology, 45(5), 688-697.
[34] Howse, A. D., Hassall, C. D., Williams, C. C., Hajcak, G., & Krigolson, O. E . (2018). Alcohol hangover impacts learning and reward processing within the medial-frontal cortex. Psychophysiology, 55(8), e13081.
[35] Ikemoto, S., & Bonci, A . (2014). Neurocircuitry of drug reward. Neuropharmacology, 76, 329-341.
[36] Jiang, D., Zhang, D., Chen, Y., He, Z., Gao, Q., Gu, R., & Xu, P . (2018). Trait anxiety and probabilistic learning: Behavioral and electrophysiological findings. Biological Psychology, 132, 17-26.
[37] Kamarajan, C., Rangaswamy, M., Tang, Y., Chorlian, D. B., Pandey, A. K., Roopesh, B. N., ... Porjesz, B . (2010). Dysfunctional reward processing in male alcoholics: An ERP study during a gambling task. Journal of Psychiatric Research, 44(9), 576-590.
[38] Koob, G. F . (2013). Negative reinforcement in drug addiction: The darkness within. Current Opinion in Neurobiology, 23(4), 559-563.
[39] Koob, G. F., & Le Moal, M . (2005). Plasticity of reward neurocircuitry and the 'dark side' of drug addiction. Nature Neuroscience, 8(11), 1442-1444.
[40] Krigolson, O. E . (2018). Event-related brain potentials and the study of reward processing: Methodological considerations. International Journal of Psychophysiology, 132, 175-183.
[41] Kuss, D. J., & Lopez-Fernandez, O . (2016). Internet addiction and problematic internet use: A systematic review of clinical research. World Journal of Psychiatry, 6(1), 143-176.
[42] Leshner, A. I . (1997). Addiction Is a Brain Disease, and It Matters. Science, 278(5335), 45-47.
[43] Li, P., Peng, W., Li, H., & Holroyd, C. B . (2018). Electrophysiological measures reveal the role of anterior cingulate cortex in learning from unreliable feedback. Cognitive, Affective, & Behavioral Neuroscience, 18(5), 949-963.
url:, Affective,
[44] Li, Q., Wang, Y., Yang, Z., Dai, W., Zheng, Y., Sun, Y., & Liu, X . (2019). Dysfunctional cognitive control and reward processing in adolescents with Internet gaming disorder. Psychophysiology, e13469.
[45] Lole, L., Gonsalvez, C. J., & Barry, R. J . (2015). Reward and punishment hyposensitivity in problem gamblers: A study of event-related potentials using a principal components analysis. Clinical Neurophysiology, 126(7), 1295-1309.
[46] Miltner, W. H. R., Braun, C. H., & Coles, M. G. H . (1997). Event-related brain potentials following incorrect feedback in a time-estimation task: Evidence for a "generic" neural system for error detection. Journal of Cognitive Neuroscience, 9(6), 788-798.
[47] Morie, K. P., de Sanctis, P., Garavan, H., & Foxe, J. J . (2016). Regulating task-monitoring systems in response to variable reward contingencies and outcomes in cocaine addicts. Psychopharmacology, 233(6), 1105-1118.
[48] Morie, K. P., Wu, J., Landi, N., Potenza, M. N., Mayes, L. C., & Crowley, M. J . (2018). Feedback processing in adolescents with prenatal cocaine exposure: An electrophysiological investigation. Developmental Neuropsychology, 43(3), 183-197.
[49] Muñoz, M. á., Anllo-Vento, L., del Carmen Fernández, M., Montoya, P., & Vila, J . (2012). Modulation of the outcome-related negativity associated with nicotine abstinence. Experimental and Clinical Psychopharmacology, 20(2), 151.
[50] Nelson, L. D., Patrick, C. J., Collins, P., Lang, A. R., & Bernat, E. M . (2011). Alcohol impairs brain reactivity to explicit loss feedback. Psychopharmacology, 218(2), 419-428.
[51] Nestor, L., Hester, R., & Garavan, H . (2010). Increased ventral striatal BOLD activity during non-drug reward anticipation in cannabis users. Neuroimage, 49(1), 1133-1143.
[52] Oberg, S. A. K., Christie, G. J., & Tata, M. S . (2011). Problem gamblers exhibit reward hypersensitivity in medial frontal cortex during gambling. Neuropsychologia, 49(13), 3768-3775.
[53] Parvaz, M. A., Konova, A. B., Proudfit, G. H., Dunning, J. P., Malaker, P., Moeller, S. J., ... Goldstein, R. Z . (2015). Impaired neural response to negative prediction errors in cocaine addiction. Journal of Neuroscience, 35(5), 1872-1879.
[54] Peoples, L. L . (2002). Neuroscience: Will, anterior cingulate cortex, and addiction. Science, 296(5573), 1623-1624.
[55] Petry, N. M . (2006). Should the scope of addictive behaviors be broadened to include pathological gambling? Addiction, 101( Suppl 1), 152-160.
[56] Potenza, M. N . (2006). Should addictive disorders include non-substance-related conditions? Addiction, 101(Suppl. 1), 142-151.
[57] Potts, G. F., Bloom, E. L., Evans, D. E., & Drobes, D. J . (2014). Neural reward and punishment sensitivity in cigarette smokers. Drug and Alcohol Dependence, 144, 245-253.
[58] Proudfit, G. H . (2015). The reward positivity: From basic research on reward to a biomarker for depression. Psychophysiology, 52(4), 449-459.
[59] Quandt, T . (2017). Stepping back to advance: Why IGD needs an intensified debate instead of a consensus. Journal of Behavioral Addictions, 6(2), 121-123.
[60] Redish, A. D., Jensen, S., & Johnson, A . (2008). A unified framework for addiction: Vulnerabilities in the decision process. Behavioral & Brain Sciences, 31(4), 415-437.
[61] Robinson, T. E., & Berridge, K. C . (1993). The neural basis of drug craving: An incentive-sensitization theory of addiction. Brain Research Reviews, 18(3), 247-291.
[62] Soder, H. E., Webber, T. A., Bornovalova, M. A., Park, J. Y., & Potts, G. F . (2019). A test of dopamine hyper-and hyposensitivity in alcohol use. Addictive Behaviors, 90, 395-401.
[63] Torres, A., Catena, A., Cándido, A., Maldonado, A., Megías, A., & Perales, J. C . (2013). Cocaine dependent individuals and gamblers present different associative learning anomalies in feedback-driven decision making: A behavioral and ERP study. Frontiers in Psychology, 4, 122.
[64] Ulrich, N., & Hewig, J . (2018). Electrophysiological correlates of near outcome and outcome sequence processing in problem gamblers and controls. International Journal of Psychophysiology, 132, 379-392.
[65] van Rooij, A. J., Ferguson, C. J., Colder, C. M., Kardefelt- Winther, D., Shi, J., Aarseth, E., ... Przybylski, A. K . (2018). A weak scientific basis for gaming disorder: Let us err on the side of caution. Journal of Behavior Addiction, 7(1), 1-9.
[66] Voon, V., Gao, J., Brezing, C., Symmonds, M., Ekanayake, V., Fernandez, H., ... Hallett, M . (2011). Dopamine agonists and risk: Impulse control disorders in Parkinson's disease. Brain, 134(5), 1438-1446.
[67] Walsh, J. J., Colino, F. L., Krigolson, O. E., Luehr, S., Gurd, B. J., & Tschakovsky, M. E . (2019). High-intensity interval exercise impairs neuroelectric indices of reinforcement-learning. Physiology & Behavior, 198, 18-26.
[68] Wei, S., Zheng, Y., Li, Q., Dai, W., Sun, J., Wu, H., & Liu, X . (2018). Enhanced neural responses to monetary rewards in methamphetamine use disordered individuals compared to healthy controls. Physiology & Behavior, 195, 118-127.
[69] Yau, Y. H. C., Potenza, M. N., Mayes, L. C., & Crowley, M. J . (2015). Blunted feedback processing during risk-taking in adolescents with features of problematic Internet use. Addictive Behaviors, 45, 156-163.
[70] Yeung, N., & Sanfey, A. G . (2004). Independent coding of reward magnitude and valence in the human brain. Journal of Neuroscience, 24(28), 6258-6264.
[1] CHU Xin-Yu, WANG Ze-Jun, XIAO Huan-Yu. Dual system theory of physical activity: A reinforcement learning perspective[J]. Advances in Psychological Science, 2020, 28(8): 1337-1350.
[2] WAN Nan,ZHU Shuqing,JIA Shiwei. The effect of feedback interval on feedback processing: A perspective of integrating behavioral and electrophysiological researches[J]. Advances in Psychological Science, 2020, 28(2): 230-239.
[3] SU Bobo,ZHENG Meihong. Effects of substance-related cues on response inhibition in addicts[J]. Advances in Psychological Science, 2019, 27(11): 1863-1874.
[4] JIN Yuchang,YU Meng,HU Yunlong. The controversies and tendency of Internet Gaming Disorder research[J]. Advances in Psychological Science, 2019, 27(1): 83-95.
[5] Danyang LI,Peng LI,Hong LI. The updated theories of feedback-related negativity in the last decade[J]. Advances in Psychological Science, 2018, 26(9): 1642-1650.
[6] YANG Ling; CAO Hua; GENG YinFeng; XU Jing ; ZHANG Yan; SU BoBo. The adolescent substance addiction based on the gateway theory[J]. Advances in Psychological Science, 2016, 24(8): 1237-1245.
[7] YANG Ling; SU Bobo; ZHANG Jianxun; LIU Bin; WEI Xiaoyun; ZHAO Xin. Dysfunction of Monetary Reward Processing and Recoverability in Drug Addicts[J]. Advances in Psychological Science, 2015, 23(9): 1617-1626.
[8] ZHAO Chunli. The Neurobiological Mechanisms of Social Conformity[J]. Advances in Psychological Science, 2015, 23(11): 1956-1965.
[9] YUAN Yuan;LIU Chang;SHEN Wang-Bing. Feedback-related Negativity and Social Relation Cognition[J]. Advances in Psychological Science, 2012, 20(10): 1593-1603.
[10] LIU Chun-Lei;ZHANG Qing-Lin. The Neural Mechanisms of Error Processing[J]. , 2009, 17(02): 341-348.
[11] LI Peng;LI Hong. Feedback Related Negativity and its Theoretical Explains[J]. , 2008, 16(05): 705-711.
Full text



Copyright © Advances in Psychological Science
Support by Beijing Magtech