Please wait a minute...
Advances in Psychological Science    2020, Vol. 28 Issue (7) : 1133-1140     DOI: 10.3724/SP.J.1042.2020.01133
Research Reports |
Emotional processing in vocal and instrumental music: An ERP study
JIANG Jun1(), ZHANG Weixia2, WANG Wanqi3
1Music College, Shanghai Normal University, Shanghai 200234, China
2College of Education, Shanghai Normal University, Shanghai 200234, China
3School of Finance and Business, Shanghai Normal University, Shanghai 200234, China
Download: PDF(2686 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks     Supporting Info
Guide   
Abstract  

The event-related potential (ERP) technique was used to investigate whether there are different neural responses to musical emotion when the same melodies are presented in the voice and instrumental timbre such as the violin. With a crossmodal affective priming paradigm, target faces were primed by affectively congruent or incongruent vocal and instrumental music. Participants were asked to judge whether the prime-target pair was affectively congruent or incongruent. The results revealed a larger late positive component (LPC) at the time window of 473~677 ms in response to affectively incongruent versus congruent trials in the vocal version, whereas a larger N400 effect at the time window of 281~471 ms was observed in the instrumental version. These results indicate differential patterns of neurophysiological responses to emotion processing of vocal and instrumental music.

Keywords vocal music      instrumental music      emotion processing      N400      LPC     
:  B842  
  B845  
Corresponding Authors: Jun JIANG     E-mail: jjxytc@163.com
Issue Date: 21 May 2020
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jun JIANG
Weixia ZHANG
Wanqi WANG
Cite this article:   
Jun JIANG,Weixia ZHANG,Wanqi WANG. Emotional processing in vocal and instrumental music: An ERP study[J]. Advances in Psychological Science, 2020, 28(7): 1133-1140.
URL:  
http://journal.psych.ac.cn/xlkxjz/EN/10.3724/SP.J.1042.2020.01133     OR     http://journal.psych.ac.cn/xlkxjz/EN/Y2020/V28/I7/1133
  
  
  
[1] 龚栩, 黄宇霞, 王妍, 罗跃嘉. (2011). 中国面孔表情图片系统的修订. 中国心理卫生杂志, 25(1), 40-46.
[2] 张伟霞, 王莞琪, 周临舒, 蒋存梅. (2018). 歌词对音乐情绪加工的影响: 行为与ERP研究. 心理学报, 50(12), 1346-1355.
[3] 郑志伟, 黄贤军. (2013). 情绪语音调节面孔表情的识别: ERP证据. 心理科学, 36(1), 33-37.
[4] Ali, S. O., & Peynircioğlu, Z. F. (2006). Songs and emotions: Are lyrics and melodies equal partners? Psychology of Music, 34(4), 511-534.
[5] Brattico, E., Alluri, V., Bogert, B., Jacobsen, T., Vartiainen, N., Nieminen, S., & Tervaniemi, M. (2011). A functional MRI study of happy and sad emotions in music with and without lyrics. Frontiers in Psychology, 2, 308. doi: 10.3389/fpsyg.2011.00308.
pmid: 22144968 url: https://www.ncbi.nlm.nih.gov/pubmed/22144968
[6] Cheal, J. L., Heisz, J. J., Walsh, J. A., Shedden, J. M., & Rutherford, M. D. (2014). Afterimage induced neural activity during emotional face perception. Brain Research, 1549, 11-21.
pmid: 24423986 url: https://www.ncbi.nlm.nih.gov/pubmed/24423986
[7] Diamond, E., & Zhang, Y. (2016). Cortical processing of phonetic and emotional information in speech: A cross-modal priming study. Neuropsychologia, 82, 110-122.
doi: 10.1016/j.neuropsychologia.2016.01.019 pmid: 26796714 url: https://www.ncbi.nlm.nih.gov/pubmed/26796714
[8] Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175-191.
pmid: 17695343 url: https://www.ncbi.nlm.nih.gov/pubmed/17695343
[9] Föcker, J., & Röder, B. (2019). Event-related potentials reveal evidence for late integration of emotional prosody and facial expression in dynamic stimuli: An ERP study. Multisensory Research, 32(6), 473-497.
[10] Franco, F., Chew, M., & Swaine, J. S. (2017). Preschoolers’ attribution of affect to music: A comparison between vocal and instrumental performance. Psychology of Music, 45(1), 131-149.
[11] Goerlich, K. S., Witteman, J., Schiller, N. O., van Heuven, V. J., Aleman, A., & Martens, S. (2012). The nature of affective priming in music and speech. Journal of Cognitive Neuroscience, 24(8), 1725-1741.
doi: 10.1162/jocn_a_00213 pmid: 22360592 url: https://www.ncbi.nlm.nih.gov/pubmed/22360592
[12] Hajcak, G., MacNamara, A., & Olvet, D. M. (2010). Event-related potentials, emotion, and emotion regulation: An integrative review. Developmental Neuropsychology, 35(2), 129-155.
doi: 10.1080/87565640903526504 pmid: 20390599 url: https://www.ncbi.nlm.nih.gov/pubmed/20390599
[13] Hajcak, G., & Olvet, D. M. (2008). The persistence of attention to emotion: Brain potentials during and after picture presentation. Emotion, 8(2), 250-255.
doi: 10.1037/1528-3542.8.2.250 pmid: 18410198 url: https://www.ncbi.nlm.nih.gov/pubmed/18410198
[14] Herring, D. R., Taylor, J. H., White, K. R., & Crites Jr, S. L. (2011). Electrophysiological responses to evaluative priming: The LPP is sensitive to incongruity. Emotion, 11(4), 794-806.
[15] Imbir, K. K., Spustek, T., & Żygierewicz, J. (2016). Effects of valence and origin of emotions in word processing evidenced by event related potential correlates in a lexical decision task. Frontiers in Psychology, 7, 271. doi: 10.3389/fpsyg.2016.00271.
[16] Jarymowicz, M. T., & Imbir, K. K. (2015). Toward a human emotions taxonomy (based on their automatic vs. reflective origin). Emotion Review, 7(2), 183-188.
[17] Kraus, D., & Horowitz-Kraus, T. (2014). The effect of learning on feedback-related potentials in adolescents with dyslexia: An EEG-ERP study. PLoS ONE, 9(6), e100486. doi: 10.1371/journal.pone.0100486.
[18] Kutas, M., & Federmeier, K. D. (2011). Thirty years and counting: Finding meaning in the N400 component of the event-related brain potential (ERP). Annual Review of Psychology, 62(1), 621-647.
[19] Loui, P., Bachorik, J. P., Li, H. C., & Schlaug, G. (2013). Effects of voice on emotional arousal. Frontiers in Psychology, 4, 675. doi: 10.3389/fpsyg.2013.00675.
[20] Luck, S. J.(2014). An introduction to the event-related potential technique (2nd ed.). Cambridge, MA: The MIT Press.
[21] Maris, E., & Oostenveld, R. (2007). Nonparametric statistical testing of EEG- and MEG-data. Journal of Neuroscience Methods, 164(1), 177-190.
pmid: 17517438 url: https://www.ncbi.nlm.nih.gov/pubmed/17517438
[22] Oostenveld, R., Fries, P., Maris, E., & Schoffelen, J.-M. (2011). FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Computational Intelligence and Neuroscience, 1-9. doi: 10.1155/2011/156869.
[23] Painter, J. G., & Koelsch, S. (2011). Can out-of-context musical sounds convey meaning? An ERP study on the processing of meaning in music. Psychophysiology, 48(5), 645-655.
pmid: 20883505 url: https://www.ncbi.nlm.nih.gov/pubmed/20883505
[24] Paulmann, S., & Pell, M. D. (2010). Contextual influences of emotional speech prosody on face processing: How much is enough? Cognitive, Affective, & Behavioral Neuroscience, 10(2), 230-242.
[25] Paulmann, S., & Uskul, A. K. (2017). Early and late brain signatures of emotional prosody among individuals with high versus low power. Psychophysiology, 54(4), 555-565.
[26] Pell, M. D., Rothermich, K., Liu, P., Paulmann, S., Sethi, S., & Rigoulot, S. (2015). Preferential decoding of emotion from human non-linguistic vocalizations versus speech prosody. Biological Psychology, 111, 14-25.
pmid: 26307467 url: https://www.ncbi.nlm.nih.gov/pubmed/26307467
[27] Schirmer, A., Kotz, S. A., & Friederici, A. D. (2005). On the role of attention for the processing of emotions in speech: Sex differences revisited. Cognitive Brain Research, 24(3), 442-452.
pmid: 16099357 url: https://www.ncbi.nlm.nih.gov/pubmed/16099357
[28] Schupp, H. T., Cuthbert, B. N., Bradley, M. M., Cacioppo, J. T., Ito, T., & Lang, P. J. (2000). Affective picture processing: The late positive potential is modulated by motivational relevance. Psychophysiology, 37(2), 257-261.
doi: 10.1111/psyp.2000.37.issue-2 url: http://www.blackwell-synergy.com/toc/psyp/37/2
[29] Steinbeis, N., & Koelsch, S. (2011). Affective priming effects of musical sounds on the processing of word meaning. Journal of Cognitive Neuroscience, 23(3), 604-621.
doi: 10.1162/jocn.2009.21383 url: http://dx.doi.org/10.1162/jocn.2009.21383
[30] Strack, F., & Deutsch, R. (2004). Reflective and impulsive determinants of social behavior. Personality and Social Psychology Review, 8(3), 220-247.
[31] Stratton, V. N., & Zalanowski, A. H. (1994). Affective impact of music vs. lyrics. Empirical Studies of the Arts, 12(2), 173-184.
[32] Zhang, Q., Kong, L., & Jiang, Y. (2012). The interaction of arousal and valence in affective priming: Behavioral and electrophysiological evidence. Brain Research, 1474, 60-72.
pmid: 22820299 url: https://www.ncbi.nlm.nih.gov/pubmed/22820299
[33] Zhang, Q., Lawson, A., Guo, C., & Jiang, Y. (2006). Electrophysiological correlates of visual affective priming. Brain Research Bulletin, 71(1-3), 316-323.
doi: 10.1016/j.brainresbull.2006.09.023 pmid: 17113962 url: https://www.ncbi.nlm.nih.gov/pubmed/17113962
[34] Zhang, Q., Li, X., Gold, B. T., & Jiang, Y. (2010). Neural correlates of cross-domain affective priming. Brain Research, 1329, 142-151.
pmid: 20298681 url: https://www.ncbi.nlm.nih.gov/pubmed/20298681
[35] Zhang, W. X., Liu, F., Zhou, L. S., Wang, W. Q., Jiang, H. Y., & Jiang, C. M. (2019). The effects of timbre on neural responses to musical emotion. Music Perception, 37(2), 134-146.
[36] Zhou, L. S., Liu, F., Jiang, J., & Jiang, C. M. (2019). Impaired emotional processing of chords in congenital amusia: Electrophysiological and behavioral evidence. Brain and Cognition, 135, 103577. doi: 10.1016/j.bandc.2019.06.001.
doi: 10.1016/j.bandc.2019.06.001 pmid: 31202155 url: https://www.ncbi.nlm.nih.gov/pubmed/31202155
[1] YU Xide; LU Cheng; XIONG Xiling; GAO Dingguo. Neural evidence for musical meaning transmission: Findings and thoughts based on the priming paradigm[J]. Advances in Psychological Science, 2017, 25(5): 742-756.
[2] CHEN Shanshan; CAI Houde. Pulvinar Involves in Multiple Pathways of Emotion Processing[J]. Advances in Psychological Science, 2015, 23(2): 234-240.
[3] GUO Chunyan;GAO Chuanji;LI Bingbing. FN400 Effect: Conceptual Processing in Explicit Memory Test[J]. Advances in Psychological Science, 2013, 21(9): 1521-1530.
[4] NIE Qi-Yang;LUO Jing. “Aha!” and “Haha!”: The Common and Distinct Cognitive Brain Processes Underlying Insight and Humor[J]. , 2012, 20(2): 219-227.
[5] ZHANG Jie-Wei;WANG Quan-Hong. The Orthographic Neighborhood Effect in Word Recognition[J]. , 2010, 18(06): 892-899.
[6] ZHOU Ting;LI Juan. Electrophysiological Measures of Repetition Effects in Mild Cognitive Impairment: Paradigm and Implication[J]. , 2009, 17(06): 1185-1190.
[7] ZENG Hong-Ling;LIU Si-Yun. Sentence Comprehension in Discourse Context: Evidence from the N400[J]. , 2009, 17(02): 314-320.
[8] LI He;DING Ni;DONG Qi. Neural Mechanisms of Aging Effect on Emotion Processing[J]. , 2009, 17(02): 356-361.
[9] Cai Houde. Brain Dysfunction in Obsessive-Compulsive Disorde[J]. , 2006, 14(03): 401-407.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Advances in Psychological Science
Support by Beijing Magtech