Please wait a minute...
Advances in Psychological Science    2020, Vol. 28 Issue (4) : 566-578     DOI: 10.3724/SP.J.1042.2020.00566
Regular Articles |
The global modulation of feature-based attention: Enhancement or suppression?
HUANG Zili1,DING Yulong2,QU Zhe1()
1 Department of Psychology, Sun Yat-Sen University, Guangzhou, 510006, China
2 School of Psychology, South China Normal University, Guangzhou, 510006, China
Download: PDF(1147 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Feature-based attention (FBA) is the ability that observers can direct their attention to a specific feature dimension or value. In the attentional focus, FBA can modulate the response of neurons in visual cortex: it selectively increases the responses of neurons encoding attended features while suppresses the responses of neurons encoding distracting features. Many studies found that this attentional modulation can spread outside the focus of attention, but the underlying mechanism of the global modulation of FBA (enhancement or suppression) is still controversial. The global enhancement mechanism and the global suppression mechanism are different in time courses and may play distinctive roles in visual information processing. Compared to the global enhancement mechanism, the global suppression mechanism seems more likely to be influenced by experimental designs and parameters. Future studies are needed to investigate under what conditions the global suppression mechanism takes effect and to further disassociate these two global mechanisms in the process of feature-based attention.

Keywords feature-based attention      global modulation      global enhancement      global suppression     
ZTFLH:  B842  
Corresponding Authors: Zhe QU     E-mail: quzhe@mail.sysu.edu.cn
Issue Date: 24 February 2020
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Zili HUANG
Yulong DING
Zhe QU
Cite this article:   
Zili HUANG,Yulong DING,Zhe QU. The global modulation of feature-based attention: Enhancement or suppression?[J]. Advances in Psychological Science, 2020, 28(4): 566-578.
URL:  
http://journal.psych.ac.cn/xlkxjz/EN/10.3724/SP.J.1042.2020.00566     OR     http://journal.psych.ac.cn/xlkxjz/EN/Y2020/V28/I4/566
  
  
  
  
1 Amer T., Campbell K. L., & Hasher L . ( 2016). Cognitive control as a double-edged sword. Trends in Cognitive Sciences, 20( 12), 905-915.
url: http://dx.doi.org/10.1016/j.tics.2016.10.002
2 Andersen S. K., Hillyard S. A., & Müller M. M . ( 2008). Attention facilitates multiple stimulus features in parallel in human visual cortex. Current Biology, 18( 13), 1006-1009.
url: http://dx.doi.org/10.1016/j.cub.2008.06.030
3 Andersen S. K., Hillyard S. A., & Müller M. M . ( 2013). Global facilitation of attended features is obligatory and restricts divided attention. Journal of Neuroscience, 33( 46), 18200-18207.
url: http://dx.doi.org/10.1523/JNEUROSCI.1913-13.2013
4 Andersen, S. K., & Müller, M. M . ( 2010). Behavioral performance follows the time course of neural facilitation and suppression during cued shifts of feature-selective attention. Proceedings of the National Academy of Sciences, 107( 31), 13878-13882.
url: http://dx.doi.org/10.1073/pnas.1002436107
5 Andersen S. K., Müller M. M., & Hillyard S. A . ( 2015). Attentional selection of feature conjunctions is accomplished by parallel and independent selection of single features. Journal of Neuroscience, 35( 27), 9912-9919.
url: http://dx.doi.org/10.1523/JNEUROSCI.5268-14.2015
6 Bartsch M. V., Boehler C. N., Stoppel C. M., Merkel C., Heinze H. J., Schoenfeld M. A., & Hopf J. M . ( 2015). Determinants of global color-based selection in human visual cortex. Cerebral Cortex, 25( 9), 2828-2841.
url: http://dx.doi.org/10.1093/cercor/bhu078
7 Bartsch M. V., Donohue S. E., Strumpf H., Schoenfeld M. A., & Hopf J. M . ( 2018). Enhanced spatial focusing increases feature-based selection in unattended locations. Scientific Reports, 8( 1), 16132.
url: http://dx.doi.org/10.1038/s41598-018-34424-5
8 Bartsch M. V., Loewe K., Merkel C., Heinze H. J., Schoenfeld M. A., Tsotsos J. K., & Hopf J. M . ( 2017). Attention to color sharpens neural population tuning via feedback processing in the human visual cortex hierarchy. Journal of Neuroscience, 37( 43), 10346-10357.
url: http://dx.doi.org/10.1523/JNEUROSCI.0666-17.2017
9 Becker M. W., Hemsteger S., & Peltier C . ( 2015). No templates for rejection: A failure to configure attention to ignore task-irrelevant features. Visual Cognition, 23( 9-10), 1150-1167.
url: http://dx.doi.org/10.1080/13506285.2016.1149532
10 Berggren, N., & Eimer, M . ( 2018). Electrophysiological correlates of active suppression and attentional selection in preview visual search. Neuropsychologia, 120, 75-85.
url: http://dx.doi.org/10.1016/j.neuropsychologia.2018.10.016
11 Boynton G. M., Ciaramitaro V. M., & Arman A. C . ( 2006). Effects of feature-based attention on the motion aftereffect at remote locations. Vision Research, 46( 18), 2968-2976.
url: http://dx.doi.org/10.1016/j.visres.2006.03.003
12 Bridwell, D. A., & Srinivasan, R . ( 2012). Distinct attention networks for feature enhancement and suppression in vision. Psychological Science, 23( 10), 1151-1158.
url: http://dx.doi.org/10.1177/0956797612440099
13 Brummerloh, B., & Müller, M. M . ( 2019). Time matters: Feature-specific prioritization follows feature integration in visual object processing. NeuroImage, 196, 81-93.
url: http://dx.doi.org/10.1016/j.neuroimage.2019.04.023
14 Carrasco, M . ( 2011). Visual attention: The past 25 years. Vision Research, 51( 13), 1484-1525.
url: http://dx.doi.org/10.1016/j.visres.2011.04.012
15 Conci M., Deichsel C., Müller H. J., & T?llner T . ( 2019). Feature guidance by negative attentional templates depends on search difficulty. Visual Cognition, 27, 317-326.
url: http://dx.doi.org/10.1080/13506285.2019.1581316
16 Cunningham, C. A., & Egeth, H. E . ( 2016). Taming the white bear: Initial costs and eventual benefits of distractor inhibition. Psychological Science, 27( 4), 476-485.
url: http://dx.doi.org/10.1177/0956797615626564
17 Daffner K. R., Zhuravleva T. Y., Sun X., Tarbi E. C., Haring A. E., Rentz D. M., & Holcomb P. J . ( 2012). Does modulation of selective attention to features reflect enhancement or suppression of neural activity?. Biological Psychology, 89( 2), 398-407.
url: http://dx.doi.org/10.1016/j.biopsycho.2011.12.002
18 Desimone, R., & Duncan, J . ( 1995). Neural mechanisms of selective visual attention. Annual Review of Neuroscience, 18( 1), 193-222.
url: http://dx.doi.org/10.1146/annurev.ne.18.030195.001205
19 Drew, T., & Stothart, C . ( 2016). Clarifying the role of target similarity, task relevance and feature-based suppression during sustained inattentional blindness. Journal of Vision, 16( 15), 1-9.
20 Eimer, M . ( 2014). The neural basis of attentional control in visual search. Trends in Cognitive Sciences, 18( 10), 526-535.
url: http://dx.doi.org/10.1016/j.tics.2014.05.005
21 Forschack N., Andersen S. K., & Müller M. M . ( 2017). Global enhancement but local suppression in feature-based attention. Journal of Cognitive Neuroscience, 29( 4), 619-627.
url: http://dx.doi.org/10.1162/jocn_a_01075
22 Gaspelin, N., & Luck, S. J . ( 2018). The role of inhibition in avoiding distraction by salient stimuli. Trends in Cognitive Sciences, 22( 1), 79-92.
url: http://dx.doi.org/10.1016/j.tics.2017.11.001
23 Geng, J. J . ( 2014). Attentional mechanisms of distractor suppression. Current Directions in Psychological Science, 23( 2), 147-153.
url: http://dx.doi.org/10.1177/0963721414525780
24 Geng J. J., DiQuattro N. E., & Helm J . ( 2017). Distractor probability changes the shape of the attentional template. Journal of Experimental Psychology: Human Perception and Performance, 43( 12), 1993-2007.
url: http://dx.doi.org/10.1037/xhp0000430
25 Grubert, A., & Eimer, M . ( 2015). Rapid parallel attentional target selection in single-color and multiple-color visual search. Journal of Experimental Psychology: Human Perception and Performance, 41( 1), 86-101.
url: http://dx.doi.org/10.1037/xhp0000019
26 Han, S. W., & Kim, M. S . ( 2009). Do the contents of working memory capture attention? Yes, but cognitive control matters. Journal of Experimental Psychology: Human Perception and Performance, 35( 5), 1292-1302.
url: http://dx.doi.org/10.1037/a0016452
27 Herrmann K., Heeger D. J., & Carrasco M . ( 2012). Feature-based attention enhances performance by increasing response gain. Vision Research, 74, 10-20.
url: http://dx.doi.org/10.1016/j.visres.2012.04.016
28 Hickey C., Di Lollo V., & McDonald J. J . ( 2009). Electrophysiological indices of target and distractor processing in visual search. Journal of Cognitive Neuroscience, 21( 4), 760-775.
url: http://dx.doi.org/10.1162/jocn.2009.21039
29 Ho T. C., Brown S., Abuyo N. A., Ku E. H. J., & Serences J. T . ( 2012). Perceptual consequences of feature-based attentional enhancement and suppression. Journal of Vision, 12( 8), 1-17.
30 Hu L., Ding Y., & Qu Z . ( 2019). Perceptual learning induces active suppression of physically nonsalient shapes. Psychophysiology, 56( 9), e13393.
31 Huang W., Su Y., Zhen Y., & Qu Z . ( 2016). The role of top‐down spatial attention in contingent attentional capture. Psychophysiology, 53( 5), 650-662.
url: http://dx.doi.org/10.1111/psyp.12615
32 Irons J. L., Folk C. L., & Remington R. W . ( 2012). All set! Evidence of simultaneous attentional control settings for multiple target colors. Journal of Experimental Psychology: Human Perception and Performance, 38( 3), 758-775.
url: http://dx.doi.org/10.1037/a0026578
33 Jenkins M., Grubert A., & Eimer M . ( 2017). Target objects defined by a conjunction of colour and shape can be selected independently and in parallel. Attention, Perception, & Psychophysics, 79( 8), 2310-2326.
url: http://dx.doi.org/tention, Perception,
34 Keil, A., & Müller, M. M . ( 2010). Feature selection in the human brain: Electrophysiological correlates of sensory enhancement and feature integration. Brain Research, 1313, 172-184.
url: http://dx.doi.org/10.1016/j.brainres.2009.12.006
35 Klimesch, W . ( 2012). Alpha-band oscillations, attention, and controlled access to stored information. Trends in Cognitive Sciences, 16( 12), 606-617.
url: http://dx.doi.org/10.1016/j.tics.2012.10.007
36 Kozyrev V., Daliri M. R., Schwedhelm P., & Treue S . ( 2019). Strategic deployment of feature-based attentional gain in primate visual cortex. PLoS Biology, 17( 8), e3000387.
url: http://dx.doi.org/10.1371/journal.pbio.3000387
37 Lee J., Leonard C. J., Luck S. J., & Geng J. J . ( 2018). Dynamics of feature-based attentional selection during color-shape conjunction search. Journal of Cognitive Neuroscience, 30( 12), 1773-1787.
url: http://dx.doi.org/10.1162/jocn_a_01318
38 Lenartowicz A., Simpson G. V., Haber C. M., & Cohen M. S . ( 2014). Neurophysiological signals of ignoring and attending are separable and related to performance during sustained intersensory attention. Journal of Cognitive Neuroscience, 26( 9), 2055-2069.
url: http://dx.doi.org/10.1162/jocn_a_00613
39 Leonard C. J., Balestreri A., & Luck S. J . ( 2015). Interactions between space-based and feature-based attention. Journal of Experimental Psychology: Human Perception and Performance, 41( 1), 11-16.
url: http://dx.doi.org/10.1037/xhp0000011
40 Ling S., Liu T., & Carrasco M . ( 2009). How spatial and feature-based attention affect the gain and tuning of population responses. Vision Research, 49( 10), 1194-1204.
url: http://dx.doi.org/10.1016/j.visres.2008.05.025
41 Liu, T., & Hou, Y . ( 2011). Global feature-based attention to orientation. Journal of Vision, 11( 10), 1-8.
42 Liu T., Larsson J., & Carrasco M . ( 2007). Feature-based attention modulates orientation-selective responses in human visual cortex. Neuron, 55( 2), 313-323.
url: http://dx.doi.org/10.1016/j.neuron.2007.06.030
43 Liu, T., & Mance, I . ( 2011). Constant spread of feature-based attention across the visual field. Vision Research, 51( 1), 26-33.
url: http://dx.doi.org/10.1016/j.visres.2010.09.023
44 Martinez-Trujillo, J. C., & Treue, S . ( 2004). Feature-based attention increases the selectivity of population responses in primate visual cortex. Current Biology, 14( 9), 744-751.
url: http://dx.doi.org/10.1016/j.cub.2004.04.028
45 Maunsell, J. H., & Treue, S . ( 2006). Feature-based attention in visual cortex. Trends in Neurosciences, 29( 6), 317-322.
url: http://dx.doi.org/10.1016/j.tins.2006.04.001
46 Maunsell, J. H . ( 2015). Neuronal mechanisms of visual attention. Annual Review of Vision Science, 1, 373-391.
url: http://dx.doi.org/10.1146/annurev-vision-082114-035431
47 McAdams, C. J., & Maunsell, J. H . ( 1999). Effects of attention on orientation-tuning functions of single neurons in macaque cortical area V4. Journal of Neuroscience, 19( 1), 431-441.
url: http://dx.doi.org/10.1523/JNEUROSCI.19-01-00431.1999
48 Moher J., Lakshmanan B. M., Egeth H. E., & Ewen J. B . ( 2014). Inhibition drives early feature-based attention. Psychological Science, 25( 2), 315-324.
url: http://dx.doi.org/10.1177/0956797613511257
49 Moore, T., & Zirnsak, M . ( 2017). Neural mechanisms of selective visual attention. Annual Review of Psychology, 68, 47-72.
url: http://dx.doi.org/10.1146/annurev-psych-122414-033400
50 Müller M. M., Gundlach C., Forschack N., & Brummerloh B . ( 2018). It takes two to tango: Suppression of task-irrelevant features requires (spatial) competition. NeuroImage, 178, 485-492.
url: http://dx.doi.org/10.1016/j.neuroimage.2018.05.073
51 Noonan M. P., Adamian N., Pike A., Printzlau F., Crittenden B. M., & Stokes M. G . ( 2016). Distinct mechanisms for distractor suppression and target facilitation. Journal of Neuroscience, 36( 6), 1797-1807.
url: http://dx.doi.org/10.1523/JNEUROSCI.2133-15.2016
52 Noonan M. P., Crittenden B. M., Jensen O., & Stokes M. G . ( 2018). Selective inhibition of distracting input. Behavioural Brain Research, 355, 36-47.
url: http://dx.doi.org/10.1016/j.bbr.2017.10.010
53 Painter D. R., Dux P. E., Travis S. L., & Mattingley J. B . ( 2014). Neural responses to target features outside a search array are enhanced during conjunction but not unique-feature search. Journal of Neuroscience, 34( 9), 3390-3401.
url: http://dx.doi.org/10.1523/JNEUROSCI.3630-13.2014
54 Polk T. A., Drake R. M., Jonides J. J., Smith M. R., & Smith E. E . ( 2008). Attention enhances the neural processing of relevant features and suppresses the processing of irrelevant features in humans: A functional magnetic resonance imaging study of the Stroop task. Journal of Neuroscience, 28( 51), 13786-13792.
url: http://dx.doi.org/10.1523/JNEUROSCI.1026-08.2008
55 Saenz M., Buracas G. T., & Boynton G. M . ( 2002). Global effects of feature-based attention in human visual cortex. Nature Neuroscience, 5( 7), 631-632.
url: http://dx.doi.org/10.1038/nn876
56 Saenz M., Buracas G. T., & Boynton G. M . ( 2003). Global feature-based attention for motion and color. Vision Research, 43( 6), 629-637.
url: http://dx.doi.org/10.1016/S0042-6989(02)00595-3
57 Sawaki, R., & Luck, S. J . ( 2010). Capture versus suppression of attention by salient singletons: Electrophysiological evidence for an automatic attend-to-me signal. Attention, Perception, & Psychophysics, 72( 6), 1455-1470.
url: http://dx.doi.org/tention, Perception,
58 Schmidt, F., & Schmidt, T . ( 2010). Feature-based attention to unconscious shapes and colors. Attention, Perception, & Psychophysics, 72( 6), 1480-1494.
url: http://dx.doi.org/tention, Perception,
59 Serences, J. T., & Boynton, G. M . ( 2007). Feature-based attentional modulations in the absence of direct visual stimulation. Neuron, 55( 2), 301-312.
url: http://dx.doi.org/10.1016/j.neuron.2007.06.015
60 Serences J. T., Saproo S., Scolari M., Ho T., & Muftuler L. T . ( 2009). Estimating the influence of attention on population codes in human visual cortex using voxel-based tuning functions. Neuroimage, 44( 1), 223-231.
url: http://dx.doi.org/10.1016/j.neuroimage.2008.07.043
61 Slagter H. A., Prinssen S., Reteig L. C., & Mazaheri A . ( 2016). Facilitation and inhibition in attention: Functional dissociation of pre-stimulus alpha activity, P1, and N1 components. Neuroimage, 125, 25-35.
url: http://dx.doi.org/10.1016/j.neuroimage.2015.09.058
62 St?rmer, V. S., & Alvarez, G. A . ( 2014). Feature-based attention elicits surround suppression in feature space. Current Biology, 24( 17), 1985-1988.
url: http://dx.doi.org/10.1016/j.cub.2014.07.030
63 Tootell R. B., Reppas J. B., Dale A. M., Look R. B., Sereno M. I., Malach R., .. Rosen B. R . ( 1995). Visual motion aftereffect in human cortical area MT revealed by functional magnetic resonance imaging. Nature, 375( 6527), 139-141.
url: http://dx.doi.org/10.1038/375139a0
64 Treue, S., & Maunsell, J. H . ( 1996). Attentional modulation of visual motion processing in cortical areas MT and MST. Nature, 382( 6591), 539-541.
url: http://dx.doi.org/10.1038/382539a0
65 Treue, S., & Maunsell, J. H . ( 1999). Effects of attention on the processing of motion in macaque middle temporal and medial superior temporal visual cortical areas. Journal of Neuroscience, 19( 17), 7591-7602.
url: http://dx.doi.org/10.1523/JNEUROSCI.19-17-07591.1999
66 Treue, S., & Trujillo, J. C. M . ( 1999). Feature-based attention influences motion processing gain in macaque visual cortex. Nature, 399( 6736), 575-579.
url: http://dx.doi.org/10.1038/21176
67 van Diepen R. M., Miller L. M., Mazaheri A., & Geng J. J . ( 2016). The role of alpha activity in spatial and feature- based attention. Eneuro, 3( 5).
68 Wang Y., Miller J., & Liu T . ( 2015). Suppression effects in feature-based attention. Journal of Vision, 15( 5), 1-16.
69 Wegener D., Ehn F., Aurich M. K., Galashan F. O., & Kreiter A. K . ( 2008). Feature-based attention and the suppression of non-relevant object features. Vision Research, 48( 27), 2696-2707.
url: http://dx.doi.org/10.1016/j.visres.2008.08.021
70 Wen W., Hou Y., & Li S . ( 2018). Memory guidance in distractor suppression is governed by the availability of cognitive control. Attention, Perception, & Psychophysics, 80( 5), 1157-1168.
url: http://dx.doi.org/tention, Perception,
71 White, A. L., & Carrasco, M . ( 2011). Feature-based attention involuntarily and simultaneously improves visual performance across locations. Journal of Vision, 11( 6), 1-10.
72 Wolfe, J. M., & Horowitz, T. S . ( 2017). Five factors that guide attention in visual search. Nature Human Behaviour, 1( 3), 0058.
url: http://dx.doi.org/10.1038/s41562-017-0058
73 Xiao G., Xu G., Liu X., Xu J., Wang F., Li L., .. Lu J . ( 2014). Feature-based attention is independent of object appearance. Journal of Vision, 14( 1), 1-11.
74 Zanto, T. P., & Rissman, J . ( 2015). Top-down suppression. Brain Mapping, 261-267.
75 Zhang, W., & Luck, S. J . ( 2009). Feature-based attention modulates feedforward visual processing. Nature Neuroscience, 12( 1), 24-25.
url: http://dx.doi.org/10.1038/nn.2223
76 Zirnsak, M., & Hamker, F. H . ( 2010). Attention alters feature space in motion processing. Journal of Neuroscience, 30( 20), 6882-6890.
url: http://dx.doi.org/10.1523/JNEUROSCI.3543-09.2010
[1] ZHANG Jingjing, LIANG Xiaoyue, CHEN Yidi, CHEN Qingrong. The cognitive mechanism of music syntactic processing and the influence of music structure on its processing[J]. Advances in Psychological Science, 2020, 28(6): 883-892.
[2] ZHANG Manman, ZANG Chuanli, BAI Xuejun. The spatial extent and depth of parafoveal pre-processing during Chinese reading[J]. Advances in Psychological Science, 2020, 28(6): 871-882.
[3] HE Tingyu, DING Yi, LI Haokun, CHENG Xiaorong, FAN Zhao, DING Xianfeng. The multidimensional spatial representation of time: Dissociations on its ontogenetic origin and activation mechanism[J]. Advances in Psychological Science, 2020, 28(6): 935-944.
[4] ZHONG Chupeng, QU Zhe, DING Yulong. The influences of prestimulus alpha oscillation on visual perception[J]. Advances in Psychological Science, 2020, 28(6): 945-958.
[5] ZHAO Ying, WU Xinchun, XIE Ruibo, FENG Jie, SUN Peng, CHEN Hongjun. Effects of visual language on reading among people who are deaf and hard of hearing and the underlying mechanisms[J]. Advances in Psychological Science, 2020, 28(6): 969-977.
[6] HE Zeyu,ZHANG Ziqi,LI Kexuan,HE Weiqi. Spatial frequencies affect the processing of fearful facial expression in neural pathways[J]. Advances in Psychological Science, 2020, 28(4): 579-587.
[7] CAI Xiao,ZHANG Qingfang. The integration mechanisms of feedforward and feedback control in speech motor system[J]. Advances in Psychological Science, 2020, 28(4): 588-603.
[8] ZHANG Ziqi,HE Zeyu,LUO Wenbo,WU Haiyan. The predictive effect of metacognitive confidence on joint decision making[J]. Advances in Psychological Science, 2020, 28(4): 604-611.
[9] WAN Nan,ZHU Shuqing,JIA Shiwei. The effect of feedback interval on feedback processing: A perspective of integrating behavioral and electrophysiological researches[J]. Advances in Psychological Science, 2020, 28(2): 230-239.
[10] CHEN Xiaowen,CAI Wenshu,XIE Tong,FU Shimin. The characteristics and neural mechanisms of visual orienting and visual search in autism spectrum disorders[J]. Advances in Psychological Science, 2020, 28(1): 98-109.
[11] DING Xiaobin,LIU Jianyi,WANG Yapeng,KANG Tiejun,DANG Chen. The automatic processing of changes in emotion: Implications from EMMN[J]. Advances in Psychological Science, 2020, 28(1): 85-97.
[12] WANG Xin,HANG Mingli,LIANG Dandan. The cognitive neural mechanisms of verb argument structure complexity processing[J]. Advances in Psychological Science, 2020, 28(1): 62-74.
[13] WEI Tongqi,CAO Hui,BI Hong-Yan,YANG Yang. Writing deficits in developmental dyslexia and its neural mechanisms[J]. Advances in Psychological Science, 2020, 28(1): 75-84.
[14] LAI Yanqun,YANG Qi,HUANG Baozhen,SAI Liyang. The promoting effect of insight on memory[J]. Advances in Psychological Science, 2019, 27(12): 2034-2042.
[15] OUYANG Mingkun,CAI Xiao,ZHANG Qingfang. Cognition or metacognition: The psychological mechanism of tip-of-the-tongue in spoken production[J]. Advances in Psychological Science, 2019, 27(12): 2052-2063.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Advances in Psychological Science
Support by Beijing Magtech