Please wait a minute...
Advances in Psychological Science    2020, Vol. 28 Issue (3) : 416-425     DOI: 10.3724/SP.J.1042.2020.00416
Regular Articles |
Pupil size as a biomarker of memory processing
Yang YU1,Yingjie JIANG1(),Yongsheng WANG2,Mingyang YU1
1 Department of Psychology, Northeast Normal University, Changchun 130024, China
2 Institute of Psychology and Behavior, Tianjin Normal University, Tianjin 300037, China
Download: PDF(586 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Pupils were found to exhibit consistent changing patterns in the same processing stage of different memory tasks, and the changes in pupil size reflect the activation state of the nervous system during information processing. During the pre-coding phase before the stimulus is presented, pupils contract as the individual's endogenous attention level increases. In the information encoding stage, the degree of pupil dilation is used as a bio-marker of the subsequent memory effect, which can predict the memory performance of the future information retrieval stage. In the retrieval phase, when the free recall task is used, pupils contract rapidly with the release of memory load, but the report of each item will cause a small pupil dilation; In the recognition task, pupil dilation is more pronounced when old stimulus is presented than that with new stimulus, producing pupil old/ new effect. Pupil size is a sensitive and stable bio-marker in memory processing. Pupil tracking measurement is an effective approach to explore the physiological mechanism of memory processing. In the future research, pupil tracking along with multiple research methods should be used to further explore the physiological mechanism of memory.

Keywords pupil      memory      subsequent memory effect      pupil old/ new effect      eye tracking     
Corresponding Authors: Yingjie JIANG     E-mail: jiangyj993@nenu.edu.cn
Issue Date: 18 January 2020
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yang YU
Yingjie JIANG
Yongsheng WANG
Mingyang YU
Cite this article:   
Yang YU,Yingjie JIANG,Yongsheng WANG, et al. Pupil size as a biomarker of memory processing[J]. Advances in Psychological Science, 2020, 28(3): 416-425.
URL:  
http://journal.psych.ac.cn/xlkxjz/EN/10.3724/SP.J.1042.2020.00416     OR     http://journal.psych.ac.cn/xlkxjz/EN/Y2020/V28/I3/416
[1] Allan K., & Rugg M. D . (1997). An event-related potential study of explicit memory on tests of cued recall and recognition. Neuropsychologia, 35(4), 387-397.
[2] Appen R. E .(1993). Archives of Ophthalmology. In I. E. Loewenfeld (Ed.), The pupil: Anatomy, physiology and clinical applications: Vol. 1517. (pp. 11-27). Detroit: Wayne State University Press.
[3] Ariel R., & Castel A. D . (2014). Eyes wide open: Enhanced pupil dilation when selectively studying important information. Experimental Brain Research, 232(1), 337-344.
[4] Bayer M., Sommer W., & Schacht A . (2011). Emotional words impact the mind but not the body: Evidence from pupillary responses. Psychophysiology, 48(11), 1554-1562.
[5] Beatty J . 1982. Phasic not tonic pupillary responses vary with auditory vigilance performance. Psychophysiology, 19, 167-172.
[6] Beatty J., & Lucero-Wagoner B . (2012). The pupillary system. In: J. T. Cacioppo, L. G. Tassinary, & G. G. Bernston, (Eds.), Handbook of Psychophysiology, 2nd ed. (pp. 142-162). New York, Cambridge University Press.
url: http://dx.doi.org/. T. Cacioppo, L. G. Tassinary,
[7] Bradley M. M., & Lang P. J . (2015). Memory, emotion, and pupil diameter: Repetition of natural scenes. Psychophysiology, 52(9), 1186-1193.
[8] Cabeza R., Ciaramelli E., Olson I. R., & Moscovitch M . (2008). The parietal cortex and recognition memory: An attentional account. Nature Reviews Neuroscience, 9, 613-625.
[9] Dobbins I., & Han S . (2007). What constitutes a model of item-based memory decisions? Psychology of Learning and Motivation, 48, 95-144.
[10] Einhäuser W., Koch C., & Carter O. L . (2010). Pupil dilation betrays the timing of decisions. Frontiers in Human Neuroscience, 4, 18-37.
[11] Einhäuser W., Stout J., Koch C., & Carter O . (2008). Pupil dilation reflects perceptual selection and predicts subsequent stability in perceptual rivalry. Proceedings of the National Academy of Sciences of the United States of America, 105(5), 1704-1709.
[12] Ezzyat Y., Kragel J. E., Burke J. F., Levy D. F., Lyalenko A., Wanda P., ... Kahana M . (2017). Direct brain stimulation modulates encoding states and memory performance in humans . Current Biology, 27(9), 1251-1258.
[13] Friedman D., Hakerem G., Sutton S., & Fleiss J. L . (1973). Effect of stimulus uncertainty on the pupillary dilation response and the vertex evoked potential. Electroencephalography & Clinical Neurophysiology, 34(5), 475-484.
url: http://dx.doi.org/ectroencephalography
[14] Gardner R. M., Beltramo J. S., & Krkinsky R . (1975). Pupillary changes during encoding, storage, and retrieval of information. Perceptual and Motor Skills, 41(3), 951-955.
[15] Goldinger S. D., & Papesh M. H . (2012). Pupil dilation reflects the creation and retrieval of memories. Current Directions in Psychological Science, 21(2), 90-95.
[16] Granholm E., & Steinhauer S. R . (2004). Pupillometric measures of cognitive and emotional processes. International Journal of Psychophysiology, 52(1), 1-6.
[17] Hess E. H., & Polt J. M . (1960). Pupil size as related to interest value of visual stimuli. Science, 132(3423), 349-350.
[18] Hillyard S., Squires K., Bauer J., & Lindsay P . (1971). Evoked potential correlates of auditory signal detection. Science, 172(3990), 1357-1360.
[19] Inaba M., Nomura M., & Ohira H . (2005). Neural evidence of effects of emotional valence on word recognition. International Journal of Psychophysiology, 57(3), 165-173.
[20] Jaeger A., Cox J. C., & Dobbins I. G . (2012). Recognition confidence under violated and confirmed memory expectations. Journal of Experimental Psychology: General, 141(2), 282-301.
[21] Janisse M. P . (1977). Pupillometry: The psychology of the pupillary response. London, UK: Wiley.
[22] Johnson R . (1995). Event-related potential insights into the neurobiology of memory systems. In J. C. Baron & J. Grafman (Eds.), The handbook of neuropsychology, 10. (pp. 135-164). Amsterdam: Elsevier.
url: http://dx.doi.org/ C. Baron
[23] Joshi S., Li Y., Kalwani R. M., & Gold J. I . (2016). Relationships between pupil diameter and neuronal activity in the locus coeruleus, colliculi, and cingulate cortex. Neuron, 89(1), 221-234.
[24] Just M. A., & Carpenter P. A . (1993). The intensity dimension of thought: Pupillometric indices of sentence processing. Canadian Journal of Experimental Psychology, 47(2), 310-339.
[25] Jutras M. J., Fries P., & Buffalo E. A . (2013). Oscillatory activity in the monkey hippocampus during visual exploration and memory formation. Proceedings of the National Academy of Sciences, 110(32), 13144-13149.
[26] Kagan J., & Lewis M . (1965). Studies of attention in the human infant. Merrill-Palmer Quarterly of Behavior and Development, 11(2), 95-127.
[27] Kahana M. J . (2006). The cognitive correlates of human brain oscillations. Journal of Neuroscience the Official Journal of the Society for Neuroscience, 26(6), 1669-1672.
[28] Kahneman D., & Beatty J . (1966). Pupil diameter and load on memory. Science, 154(3756), 1583-1585.
[29] Karatekin C . (2004). Development of attentional allocation in the dual task paradigm. International Journal of Psychophysiology, 52(1), 7-21.
[30] Kim H . (2011). Neural activity that predicts subsequent memory and forgetting: A meta-analysis of 74 fMRI studies. NeuroImage, 54(3), 2446-2461.
[31] Kristjansson S. D . (2009). Detecting phasic lapses in alertness using pupillometric measures. Applied Ergonomics, 40(6), 978-986.
[32] Kucewicz M. T., Dolezal J., Kremen V., Berry B. M., Miller L. R., Magee A. L., ... Worrell G . (2018). Pupil size reflects successful encoding and recall of memory in humans. Scientific Reports, 8(1), 4949.
[33] Lacey J. I . (1959). Psychophysiological approaches to the evaluation of psychotherapeutic process and outcome. In E. A. Rubinstein & M. B. Parloff (Eds.), Research in psychotherapy(pp. 160-208). American Psychological Association. https://doi.org/10.1037/10036-010
url: https://doi.org/10.1037/10036-010
[34] Leonard T. K., & Hoffman K. L . (2017). Sharp-wave ripples in primates are enhanced near remembered visual objects. Current Biology, 27(2), 257-262.
[35] Loewenfeld I. E .(1999). The pupil: Anatomy, physiology, and clinical applications Detroit: Iowa State University Press, Ames/ Wayne State University Press.
[36] Mccormick D. A . (1989). Cholinergic and noradrenergic modulation of thalamocortical processing. Trends in Neurosciences, 12(6), 215-221.
[37] Mill R. D., O’Connor A. R., & Dobbins I. G . (2016). Pupil dilation during recognition memory: Isolating unexpected recognition from judgment uncertainty. Cognition, 154, 81-94.
[38] Montefinese M., Ambrosini E., Fairfield B., & Mammarella N . (2013). The ‘subjective’ pupil old/new effect: Is the truth plain to see? International Journal of Psychophysiology, 89(1), 48-56.
[39] Montefinese M., Vinson D., & Ambrosini E . (2018). Recognition memory and featural similarity between concepts: The pupil’s point of view. Biological Psychology, 135, 159-169.
[40] Müller H. J., & Rabbitt P. M . (1989). Reflexive and voluntary orienting of visual attention: Time course of activation and resistance to interruption. Journal of Experimental Psychology: Human Perception and Performance, 15(2), 315-330.
[41] Nelson T. O . (1990). Metamemory: A Theoretical Framework and New Findings. Psychology of Learning and Motivation - Advances in Research and Theory, 26, 125-173.
[42] Netser S., Ohayon S., & Gutfreund Y . (2010). Multiple manifestations of microstimulation in the optic tectum: Eye movements, pupil dilations, and sensory priming. Journal of Neurophysiology, 104(1), 108-118.
[43] O’Connor A. R., Han S., & Dobbins I. G . (2010). The inferior parietal lobule and recognition memory: Expectancy violation or successful retrieval? The Journal of Neuroscience, 30(8), 2924-2934.
[44] Otero S. C., Weekes B. S., & Hutton S. B . (2011). Pupil size changes during recognition memory. Psychophysiology, 48(10), 1346-1353.
[45] Papesh M., & Goldinger S . (2015). Pupillometry and memory: External signals of metacognitive control. In G. Gendolla, M. Tops, & S. Koole (Eds.), Handbook of biobehavioral approaches to self-regulation(pp. 125-139). New York, the United States: Springer.
url: http://dx.doi.org/ Gendolla, M. Tops,
[46] Papesh M. H., Goldinger S. D., & Hout M. C . (2012). Memory strength and specificity revealed by pupillometry. International Journal of Psychophysiology, 83(1), 56-64.
[47] Ratcliff R., & Murdock B. B . (1976). Retrieval processes in recognition memory. Psychological Review, 83(3), 190-214.
[48] Reimer J., Froudarakis E., Cadwell C., Yatsenko D., Denfield G., & Tolias A . (2014). Pupil fluctuations track fast switching of cortical states during quiet wakefulness. Neuron, 84(2), 355-362.
[49] Reimer J., Mcginley M. J., Liu Y., Rodenkirch C., Wang Q., Mccormick D. A., & Tolias A . (2016). Pupil fluctuations track rapid changes in adrenergic and cholinergic activity in cortex. Nature Communications, 7, 13289.
[50] Rugg M. D., & Allan K . (2000). Event-related potential studies of memory. In E. Tulving & F. I. M. Craik (Eds.), The Oxford handbook of memory (pp. 521-537). New York, NY: Oxford University Press.
url: http://dx.doi.org/ Tulving
[51] Sanquist T., Rohrbaugh J., Syndulko K., & Lindsley D . (1980). Electrocortical signs of levels of processing: Perceptual analysis and recognition memory. Psychophysiology, 17(6), 568-576.
[52] Starc M., Anticevic A., & Repovš G . (2017). Fine-grained versus categorical: Pupil size differentiates between strategies for spatial working memory performance. Psychophysiology, 54(5), 724-735.
[53] Steiner G. Z., & Barry R. J . (2011). Pupillary responses and event-related potentials as indices of the orienting reflex. Psychophysiology, 48(12), 1648-1655.
[54] Unsworth N., & Robison M. K . (2016). Pupillary correlates of lapses of sustained attention. Cognitive, Affective, & Behavioral Neuroscience, 16(4), 601-615.
url: http://dx.doi.org/gnitive, Affective,
[55] van Steenbergen H., & Band G . (2013). Pupil dilation in the Simon task as a marker of conflict processing. Frontiers in Human Neuroscience, 7, 215-223.
[56] Vogelsang D. A., Bonnici H. M., Bergstr M Z. M., Ranganath C., & Simons J. S . (2016). Goal-directed mechanisms that constrain retrieval predict subsequent memory for new “foil” information. Neuropsychologia, 89, 356-363.
[57] Võ M L., Jacobs A. M., Kuchinke L., Hofmann M., Conrad M., Schacht A., & Hutzler F . (2010). The coupling of emotion and cognition in the eye: Introducing the pupil old/new effect. Psychophysiology, 45(1), 130-140.
[58] Wang C. A., Boehnke S. E., Itti L., & Munoz D. P . (2014). Transient pupil response is modulated by contrast-based saliency. Journal of Neuroscience, 34(2), 408-417.
[59] Wel P. V. D., & Steenbergen H. V . (2018). Pupil dilation as an index of effort in cognitive control tasks: A review. Psychonomic Bulletin & Review, 25(6), 2005-2015.
url: http://dx.doi.org/ychonomic Bulletin
[60] Whittlesea B. W. A., & Williams L. D . (1998). Why do strangers feel familiar, but friends don’t? A discrepancy- attribution account of feelings of familiarity. Acta Psychologica, 98(2-3), 141-165.
[61] Whittlesea B. W. A., & Williams L. D . (2001). The discrepancy-attribution hypothesis: I. The heuristic basis of feelings and familiarity. Journal of Experimental Psychology: Learning, Memory, and Cognition, 27(1), 3-13.
[1] CHEN Wei,LI Junjiao,LING Xiaoyi,ZHANG Xiaoxia,ZHENG Xifu. Behavioral intervention of emotional memory reconsolidation: From bench to bedside[J]. Advances in Psychological Science, 2020, 28(2): 240-251.
[2] SHAO Yiru,ZHOU Chu. Event segmentation: How do we perceive and remember events?[J]. Advances in Psychological Science, 2019, 27(9): 1564-1573.
[3] LIU Peng,SHEN Hongkui. Modulating maladaptive human memory: Evidence from reconsolidation[J]. Advances in Psychological Science, 2019, 27(8): 1417-1426.
[4] LONG Fangfang,LI Yuchen,CHEN Xiaoyu,LI Ziyuan,LIANG Tengfei,LIU Qiang. Consolidation processing of visual working memory: Time course, pattern and mechanism[J]. Advances in Psychological Science, 2019, 27(8): 1404-1416.
[5] LIU Zejun,WANG Yujuan,GUO Chunyan. Investigating the item recognition in associative memory: A unitization perspective[J]. Advances in Psychological Science, 2019, 27(3): 490-498.
[6] LAI Yanqun,YANG Qi,HUANG Baozhen,SAI Liyang. The promoting effect of insight on memory[J]. Advances in Psychological Science, 2019, 27(12): 2034-2042.
[7] ZHAO Mengyang,GUO Ruoyu,MAO Weibin,ZHAO Cancan. Age-related associative memory deficit and its influential factors[J]. Advances in Psychological Science, 2019, 27(10): 1677-1686.
[8] YIN Shufei,LI Tian,ZHU Xinyi. Episodic memory performance and underlying brain mechanisms in elderly with subjective memory decline[J]. Advances in Psychological Science, 2019, 27(1): 51-59.
[9] Yangzhuo LI, Xucheng YANG, Hong GAO, Xiangping GAO. The role of working memory representation in visual search: The perspective of non-target template[J]. Advances in Psychological Science, 2018, 26(9): 1608-1616.
[10] Chen LIU,Xu CHEN. Differences in autobiographical memory retrieval from the perspective of attachment[J]. Advances in Psychological Science, 2018, 26(9): 1590-1599.
[11] Liyue GUO,Chao YAN,Ciping DENG. Enhancing mathematical abilities: A meta-analysis on the effect of working memory training[J]. Advances in Psychological Science, 2018, 26(9): 1576-1589.
[12] Lianlian YANG,Xiting HUANG,Tong YUE,Peiduo LIU. Timing mechanism of retrospective duration estimation[J]. Advances in Psychological Science, 2018, 26(8): 1374-1382.
[13] JIA Chenglong, SUN Li, QIN Jinliang.  The effects of attachment differences on the process of autobiographical memory[J]. Advances in Psychological Science, 2018, 26(4): 645-656.
[14] BAI Xujia, CHEN Xu .  Memory biases of attachment styles: Based on the interpretation of two processing modes[J]. Advances in Psychological Science, 2018, 26(3): 467-475.
[15] TENG Jing, SHEN Wangbing, HAO Ning.  The role of cognitive control in divergent thinking[J]. Advances in Psychological Science, 2018, 26(3): 411-422.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Advances in Psychological Science
Support by Beijing Magtech