Please wait a minute...
Advances in Psychological Science    2019, Vol. 27 Issue (12) : 2007-2018     DOI: 10.3724/SP.J.1042.2019.02007
Regular Articles |
The neural mechanism of multiple object tracking
WEI Liuqing1,2,ZHANG Xuemin2,3()
1 Department of Psychology, Faculty of Education, Hubei University, Wuhan 430062, China
2 Beijing Key Laboratory of Applied Experimental Psychology; National Demonstration Center for Experimental Psychology Education (Beijing Normal University); Faculty of Psychology, Beijing Normal University, Beijing 100875, China
3 State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
Download: PDF(632 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Researchers have used the Multiple Object Tracking (MOT) task to study how people distribute visual attention in when they view dynamic scenes. Studies have used event-related potential (ERP) to investigate neural electrophysiological activity and functional magnetic resonance imaging (fMRI) to measure functional localization in the human brain while people process dynamic visual information. Studies found that ERP amplitudes changed with tracking load. The difference between ERP amplitudes elicited by the probes on the targets versus distractors reflected how people were distributing attention between the targets and distractors. In other words, the ERP amplitudes reflected people's increased attention to the targets and inhibited attention to the distractors during tracking. The fMRI studies consistently found strong activation in the dorsolateral frontal cortex (DLFC) and the parietal lobe, including the anterior intraparietal sulcus (AIPS), posterior intraparietal sulcus (PostIPS), and superior parietal lobule (SPL). The IPS had a particularly strong relationship with attentional load. The level of activation in the IPS was directly related to observers’ attentional tracking performance. The evidence also suggests that the SPL might be responsible for attentional shifts and that the DLFC might be related to the sensorimotor prediction during tracking.

Keywords Multiple Object Tracking      attention distribution      event-related potentials (ERP)      functional magnetic resonance imaging (fMRI)      intraparietal sulcus (IPS)     
ZTFLH:  B842  
Corresponding Authors: Xuemin ZHANG     E-mail: xmzhang@bnu.edu.cn
Issue Date: 21 October 2019
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Liuqing WEI
Xuemin ZHANG
Cite this article:   
Liuqing WEI,Xuemin ZHANG. The neural mechanism of multiple object tracking[J]. Advances in Psychological Science, 2019, 27(12): 2007-2018.
URL:  
http://journal.psych.ac.cn/xlkxjz/EN/10.3724/SP.J.1042.2019.02007     OR     http://journal.psych.ac.cn/xlkxjz/EN/Y2019/V27/I12/2007
脑区 功能 相关研究文献
顶内沟(IPS)、顶上小叶(SPL)、楔前叶(Precuneus)、额叶眼动区(FEF)、颞中区(MT) 注意追踪激活的相关脑区 Aln?s et al., 2014; Culham et al., 1998; Culham et al., 2001; Howe et al., 2009; Jahn et al., 2012; Jovicich et al., 2001;
顶内沟(IPS) 与注意负荷密切相关; 可能负责目标客体上索引的保持 Battelli et al., 2009; Blumberg et al., 2015; Jahn et al., 2012; Aln?s et al., 2015
顶上小叶(SPL) 可能负责注意转移 Aln?s et al., 2015
楔前叶(Precuneus) 可能负责空间方位的保持和更新 Jahn et al., 2012
背外侧额叶皮层(DLFC) 可能负责追踪时的感觉运动预测过程 Atmaca et al., 2013
  
[1] 马玉, 张学民, 张盈利, 魏柳青 . ( 2013). 自闭症儿童视觉动态信息的注意加工特点——来自多目标追踪任务的证据. 心理发展与教育, 29( 6), 571-577.
[2] 廖彦罡, 张学民, 葛春林 . ( 2006). 运动员在多目标视觉追踪任务中表现的研究. 西安体育学院学报, 23( 2), 124-127.
[3] 孙金燕 . ( 2013). 利用脑电及光电联合检测分别研究注意中的定向和执行控制(博士学位论文). 华中科技大学, 武汉.
[4] 魏柳青, 张学民 . ( 2014). 多身份追踪中基于范畴的分组效应. 心理科学进展, 22( 9), 1383-1392.
[5] 魏柳青, 张学民, 李永娜, 马玉 . ( 2014). 视听通道双任务对多目标追踪的影响: 干扰还是促进? 心理学报, 46( 6), 727-739.
[6] 张滨熠, 丁锦红 . ( 2010). 多目标视觉追踪的注意策略及其眼动模式. 心理学探新, 30( 4), 50-53.
[7] 张学民, 刘冰, 鲁学明 . ( 2009). 多目标追踪任务中不同运动方式非目标的抑制机制. 心理学报, 41( 10), 922-931.
[8] 张学民, 廖彦罡, 葛春林 . ( 2008). 运动员与普通大学生在多目标追踪任务中的表现. 北京体育大学学报, 31( 4), 504-507.
[9] 张学民, 鲁学明, 魏柳青 . ( 2011). 目标与非目标数量变化对多目标追踪的选择性抑制效应. 心理科学, 34( 6), 1295-1301.
[10] Allen, R., McGeorge, P., Pearson, D., & Milne, A. B . ( 2004). Attention and expertise in multiple target tracking. Applied Cognitive Psychology, 18( 3), 337-347.
[11] Alnæs, D., Sneve, M. H., Espeseth, T., Endestad, T., van de Pavert, S. H. P., & Laeng, B . ( 2014). Pupil size signals mental effort deployed during multiple object tracking and predicts brain activity in the dorsal attention network and the locus coeruleus. Journal of Vision, 14( 4), 1-20.
[12] Alnæs, D., Sneve, M. H., Richard, G., Skåtun, K. C., Kaufmann, T., Nordvik, J. E., … Westlye, L. T . ( 2015). Functional connectivity indicates differential roles for the intraparietal sulcus and the superior parietal lobule in multiple object tracking. Neuroimage, 123, 129-137.
[13] Alvarez, G. A., & Franconeri, S. L . ( 2007). How many objects can you track? Evidence for a resource-limited attentive tracking mechanism. Journal of Vision, 7( 13), 1-10.
[14] Atmaca, S., Stadler, W., Keitel, A., Ott, D. V. M., Lepsien, J., & Prinz, W . ( 2013). Prediction processes during multiple object tracking (MOT): Involvement of dorsal and ventral premotor cortices. Brain Behavior, 3( 6), 683-700.
[15] Battelli, L., Alvarez, G. A., Carlson, T., & Pascual-Leone, A . ( 2009). The role of the parietal lobe in visual extinction studied with transcranial magnetic stimulation. Journal of Cognitive Neuroscience, 21(10), 1946-1955.
[16] Blumberg, E. J., Peterson, M. S., & Parasuraman, R . ( 2015). Enhancing multiple object tracking performance with noninvasive brain stimulation: A causal role for the anterior intraparietal sulcus. Frontiers in Systems Neuroscience, 9( 3), 1-9.
[17] Cavanagh, P., & Alvarez, G. A . ( 2005). Tracking multiple targets with multifocal attention. Trends in Cognitive Sciences, 9( 7), 349-354.
[18] Corbetta, M., Patel, G., & Shulman, G. L . ( 2008). The reorienting system of the human brain: From environment to theory of mind. Neuron, 58( 3), 306-324.
[19] Culham, J. C., Brandt, S. A., Cavanagh, P., Kanwisher, N. G., Dale, A. M., & Tootell, R. B. H. (1998). Cortical fMRI activation produced by attentive tracking of moving targets. Journal of Neurophysiology, 80( 5), 2657-2670.
[20] Culham, J. C., Cavanagh, P., & Kanwisher, N. G . ( 2001). Attention response functions: Characterizing brain areas using fMRI activation during parametric variations of attentional load. Neuron, 32( 4), 737-745.
[21] Doran, M. M., & Hoffman, J. E . ( 2010). The Role of Visual Attention in Multiple Object Tracking: Evidence from ERPs. Attention, Perception, & Psychophysics, 72( 1), 33-33.
[22] Drew, T., Horowitz, T. S., & Vogel, E. K . ( 2013). Swapping or dropping? Electrophysiological measures of difficulty during multiple object tracking. Cognition, 126( 2), 213-223.
[23] Drew, T., Horowitz, T. S., Wolfe, J. M., & Vogel, E. K . ( 2011). Delineating the neural signatures of tracking spatial position and working memory during attentive tracking. Journal of Neuroscience, 31( 2), 659-668.
[24] Drew, T., McCollough, A. W., Horowitz, T. S., & Vogel, E. K . ( 2009). Attentional enhancement during multiple-object tracking. Psychonomic Bulletin & Review, 16( 2), 411-417.
[25] Drew, T., & Vogel, E. K . ( 2008). Neural measures of individual differences in selecting and tracking multiple moving objects. Journal of Neuroscience, 28( 216), 4183-4183.
[26] Erlikhman, G., Keane, B. P., Mettler, E., Horowitz, T. S., & Kellman, P. J . ( 2013). Automatic feature-based grouping during multiple object tracking. Journal of Experimental Psychology: Human Perception & Performance, 39( 6), 1625-1637.
[27] Franconeri, S. L., Jonathan, S. V., & Scimeca, J. M . ( 2010). Tracking multiple objects is limited only by object spacing, not by speed, time, or capacity. Psychological Science, 21( 7), 920-925.
[28] Franconeri, S. L., Pylyshyn, Z. W., & Scholl, B. J . ( 2006). Spatiotemporal cues for tracking multiple objects through occlusion. Visual Cognition, 14, 100-103.
[29] Green, C. S., & Bavelier, D. (2006). Enumeration versus multiple object tracking: the case of action video game players. Cognition, 101( 1), 217-245.
[30] Howe, P. D., Horowitz, T. S., Akos Morocz, I., Wolfe, J., & Livingstone, M. S . ( 2009). Using fMRI to distinguish components of the multiple object tracking task. Journal of Vision, 9( 4), 1-11.
[31] Howe, P. D. L., & Holcombe, A. O . ( 2012). The effect of visual distinctiveness on multiple object tracking performance. Frontiers in Perception Science, 3, 307.
[32] Huang, J., Wang, F., Ding, Y. L., Niu, H. J., Tian, F. H., Liu, H. L., & Song, Y . ( 2015) Predicting N2pc from anticipatory HbO activity during sustained visuospatial attention: A concurrent fNIRS-ERP study. NeuroImage, 113, 225-234.
[33] Jahn, G., Wendt, J., Lotze, M., Papenmeier, F., & Huff, M . ( 2012). Brain activation during spatial updating and attentive tracking of moving targets. Brain & Cognition, 78( 2), 105-113.
[34] Jovicich, J., Peters, R. J., Koch, C., Braun, J., Chang, L., & Ernst, T . ( 2001). Brain areas specific for attentional load in a motion-tracking task. Journal of Cognitive Neuroscience, 13, 1048-1058.
[35] Liu, G., Austen, E. L., Booth, K. S., Fisher, B. D., Argue, R., Rempel, M. I., & Enns, J. T . ( 2005). Multiple-object tracking is based on scene, not retinal, coordinates. Journal of Experimental Psychology: Human Perception & Performance, 31( 2), 235-247.
[36] Liu, T. W., Chen, W. F., Liu, C. H., & Fu, X. L . ( 2012). Benefits and costs of uniqueness in multiple object tracking: The role of object complexity. Vision Research, 66, 31-38.
[37] Luck, S. J. ( 2005). An introduction to the event-related potential technique,. Cambridge MA: MIT Press.
[38] Makovski, T., & Jiang, Y. V . ( 2009 a). The role of visual working memory in attentive tracking of unique objects. Journal of Experimental Psychology: Human Perception & Performance, 35( 6), 1687-1697.
[39] Makovski, T., & Jiang, Y.V . ( 2009 b). Feature binding in attentive tracking of distinct objects. Visual cognition, 17( 1-2), 180-194.
[40] Merkel, C., Hopf, J.-M., Heinze, H.-J., & Schoenfeld, M. A . ( 2015). Neural correlates of multiple object tracking strategies. NeuroImage, 118, 63-73.
[41] Merkel, C., Stoppel, C. M., Hillyard, S. A., Heinze, H. J., Hopf, J. M., & Schoenfeld, M. A . ( 2014). Spatio-temporal patterns of brain activity distinguish strategies of multiple- object tracking. Journal of Cognitive Neuroscience, 26( 1), 28-40.
[42] Ogawa, H., & Yagi, A. (2002). The effects of the information of untracked objects on multiple object tracking. The Japanese Journal of Psychonomic Science, 21( 1), 49-50.
[43] Oksama, L., & Hyönä, J. (2004). Is multiple object tracking carried out automatically by an early vision mechanism independent of higher-order cognition? An individual difference approach. Visual Cognition, 11( 5), 631-671.
[44] Pylyshyn, Z. W . ( 2000). Situating vision in the world. Trends in Cognitive Sciences, 4( 5), 197-207.
[45] Pylyshyn, Z. W . ( 2001). Visual indexes, Preconceptual objects, and situated vision. Cognition, 80( 1-2), 127-158.
[46] Pylyshyn, Z. W. ( 2003). Seeing and visualizing : It’s not what you think. Cambridge, MA: MIT Press, Bradford Books.
[47] Pylyshyn, Z. W . ( 2006). Some puzzling findings in multiple object tracking (MOT): II. Inhibition of moving nontargets. Visual Cognition, 14( 2), 175-198.
[48] Pylyshyn, Z. W., Haladjian, H. H., King, C. E., & Reilly, J. E . ( 2008). Selective nontarget inhibition in multiple object tracking. Visual Cognition, 16( 8), 1011-1021.
[49] Pylyshyn, Z. W., & Storm, R. W . ( 1988). Tracking multiple independent targets: Evidence for a parallel tracking mechanism. Spatial Vision, 3( 3), 179-197.
[50] Ren, D. N., Chen, W. F., Liu, C. H., & Fu, X. L . ( 2009). Identity processing in multiple-face tracking. Journal of Vision, 9( 5), 1-15.
[51] Scholl, B. J., Pylyshyn, Z. W., & Feldman, J . ( 2001). What is a visual object? Evidence from target merging in multiple object tracking. Cognition, 80( 1-2), 159-177.
[52] St.Clair, R., Huff, M., & Seiffert, A. E . ( 2010). Conflicting motion information impairs multiple object tracking. Journal of Vision, 10( 4), 1-13.
[53] Sternshein, H., Agam, Y., & Sekuler, R . ( 2011). EEG correlates of attentional load during multiple object tracking. PLoS ONE, 6( 7), e22660.
[54] Suganuma, M., & Yokosawa, K. (2006). Grouping and trajectory storage in multiple object tracking: Impairments due to common item motions. Perception, 35( 4), 483-495.
[55] Thomas, L., & Seiffert, A. (2010). Self-motion impairs multiple-object tracking. Cognition, 117( 1), 80-86.
[56] Tombu, M., & Seiffert, A. E . ( 2011). Tracking planets and moons: Mechanisms of object tracking revealed with a new paradigm. Attention, Perception, & Psychophysics, 73( 3), 738-750.
[57] Tombu, M., & Seiffert, A. E . ( 2008). Attentional costs in multiple-object tracking. Cognition, 108( 1), 1-25.
[58] Trick, L. M., Hollinsworth, H., & Brodeur, D. A . ( 2009). Multiple-object tracking across the lifespan: Do different factors contribute to diminished performance in different age groups? In Don Dedrick and Lana Trick (Eds). Computation, Cognition, and Pylyshyn. MIT press.
[59] van, Marle K., & Scholl, B. J . ( 2003). Attentive tracking of objects vs. substances. Psychological Science, 3( 9), 496-504.
[60] Wang, C. D., Hu, L. M., Hu, S. Y., Xu, Y. W., & Zhang, X. M . ( 2018). Functional specialization for feature-based and symmetry-based groupings in multiple object tracking. Cortex, 108, 265-275.
[61] Wang, C. D., Zhang, X. M., Li, Y. N., & Lyu, C . ( 2016). Additivity of feature-based and symmetry-based grouping effects in Multiple Object Tracking. Frontiers in Psychology, 7, 657.
[62] Wei, L. Q., Zhang, X. M., Lyu, C., & Li, Z . ( 2016). The categorical distinction between targets and distractors facilitates tracking in Multiple Identity Tracking task. Frontiers in Psychology, 7, 589.
[63] Wei, L. Q., Zhang, X. M., Li, Z., & Liu, J. Y . ( 2018). The semantic category-based grouping in the Multiple Identity Tracking task. Attention, Perception, & Psychophysics, 80( 1), 118-133.
[64] Wei, L., Zhang, X., Lyu, C., Hu, S., & Li, Z . ( 2017). Brain activation of semantic category-based grouping in multiple identity tracking task. PLoS ONE, 12( 5), e0177709.
[65] Yantis, S. (1992). Multielement visual tracking: Attention and perceptual organization. Cognitive Psychology, 24( 3), 295-340.
[66] Zhang, X. M., Yan, M., & Liao, Y. G . ( 2009). Differential performance of Chinese Volleyball athletes and nonathletes on a multiple-object tracking task. Perceptual and Motor Skills, 109( 3), 747-756.
[67] Zhou, K., Luo, H., Zhou, T. G., Zhuo, Y., & Chen, L . ( 2010). Topological change disturbs object continuity in attentive tracking. Proceedings of the National Academy of Science, 107( 50), 21920-21924.
[1] LI Taian,ZHANG Yu,LI Jie. The application of multiple object tracking in the evaluation and training of different populations[J]. Advances in Psychological Science, 2019, 27(9): 1585-1595.
[2] ZHANG Yu; MA Xiao; WANG Xin-yu. Cue effects in multiple object tracking (MOT) tasks[J]. Advances in Psychological Science, 2016, 24(11): 1737-1746.
[3] LI Hongxia; SI Jiwei; CHEN Zejian; ZHANG Tangzheng. Approximate Number System in Human[J]. Advances in Psychological Science, 2015, 23(4): 562-570.
[4] WEI Liu-Qing;ZHANG Xue-Min;LIU Bing;LU Xue-Ming;LI Ying-Di. The Pattern and Cognitive Mechanism of Visual Multiple Object Tracking[J]. , 2010, 18(12): 1919-1925.
[5] LI Hong-Ting;XU Wei-Dan;GE Lie-Zhong;LI Wen-Shu. Review of Research on the Visual Attention Model of Driver[J]. , 2010, 18(09): 1413-1419.
[6] JIANG Huai-Bin;GONG Yan-Yan;YANG Li-Zhuang. Pylyshyn’s Index Theory: A New Perspective of Visual Representation[J]. , 2009, 17(05): 951-956.
[7] Zhao Lixiang;Hu Zhiguo;Zhang Xuexin. fMRI Studies on Identity Recognition[J]. , 2008, 16(02): 234-239.
[8] ZhangZguhuwl;Yin Huazhan;Huang Xiting. Time Perception and Contingent Negative Variation[J]. , 2007, 15(02): 308-312.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Advances in Psychological Science
Support by Beijing Magtech