Please wait a minute...
Advances in Psychological Science    2019, Vol. 27 Issue (12) : 1996-2006     DOI: 10.3724/SP.J.1042.2019.01996
Regular Articles |
Predictive coding in auditory cortex: The neural responses to sound repetition and auditory change
LU Xuejing(),HOU Xin
CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
Download: PDF(662 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Predictive coding is arguably one of the most important mechanisms to explain the interactions between the brain and the complex environment. Indeed, one of the main functions of sensory system is to predict upcoming events, which is vital for survival. Take auditory modality for instance. The neural responses to sound repetition and auditory change, such as mismatch negativity (MMN) and stimulus- specific adaptation (SSA), can be explained under a predictive coding view. As a theoretical framework, predictive coding is now facing some unresolved questions and challenges. However, combining human and animal studies under this framework will provide an excellent chance to investigate the neural mechanisms of auditory processing.

Keywords predictive coding      repetition suppression      prediction error      MMN      SSA     
ZTFLH:  B842  
Corresponding Authors: Xuejing LU     E-mail: luxj@psych.ac.cn
Issue Date: 21 October 2019
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xuejing LU
Xin HOU
Cite this article:   
Xuejing LU,Xin HOU. Predictive coding in auditory cortex: The neural responses to sound repetition and auditory change[J]. Advances in Psychological Science, 2019, 27(12): 1996-2006.
URL:  
http://journal.psych.ac.cn/xlkxjz/EN/10.3724/SP.J.1042.2019.01996     OR     http://journal.psych.ac.cn/xlkxjz/EN/Y2019/V27/I12/1996
[1] Arnal, L. H., & Giraud, A. L . ( 2012). Cortical oscillations and sensory predictions. Trends in Cognitive Sciences, 16( 7), 390-398.
[2] Auksztulewicz, R., & Friston, K. (2015). Attentional enhancement of auditory mismatch responses: A DCM/MEG study. Cerebral Cortex, 25( 11), 4273-4283.
[3] Baldeweg, T. (2006). Repetition effects to sounds: Evidence for predictive coding in the auditory system. Trends in Cognitive Sciences, 10( 3), 93-94.
[4] Barry, R. J., Cocker, K. I., Anderson, J. W., Gordon, E., & Rennie, C . ( 1992). Does the N100 evoked potential really habituate? Evidence from a paradigm appropriate to a clinical setting. International Journal of Psychophysiology, 13( 1), 9-16.
[5] Bendixen, A., Scharinger, M., Strauss, A., & Obleser, J . ( 2014). Prediction in the service of comprehension: Modulated early brain responses to omitted speech segments. Cortex, 53, 9-26.
[6] Bregman, A. S. ( 1994). Auditory scene analysis: The perceptual organization of sound . Cambridge, MA: The MIT Press.
[7] Budd, T. W., Barry, R. J., Gordon, E., Rennie, C., & Michie, P. T . ( 1998). Decrement of the N1 auditory event-related potential with stimulus repetition: Habituation vs. refractoriness. International Journal of Psychophysiology, 31( 1), 51-68.
[8] Cacciaglia, R., Costa-Faidella, J., Zarnowiec, K., Grimm, S., & Escera, C . ( 2019). Auditory predictions shape the neural responses to stimulus repetition and sensory change. NeuroImage, 86, 200-210.
[9] Carbajal, G. V., & Malmierca, M. S . ( 2018). The neuronal basis of predictive coding along the auditory pathway: From the subcortical roots to cortical deviance detection. Trends in Hearing, 22, 1-33.
[10] Chennu, S., Noreika, V., Gueorguiev, D., Blenkmann, A., Kochen, S., Ibanez, A., .. Bekinschtein, T. A . ( 2013). Expectation and attention in hierarchical auditory prediction. Journal of Neuroscience, 33( 27), 11194-11205.
[11] Chennu, S., Noreika, V., Gueorguiev, D., Shtyrov, Y., Bekinschtein, T. A., & Henson, R . ( 2016). Silent expectations: Dynamic causal modeling of cortical prediction and attention to sounds that weren't. Journal of Neuroscience, 36( 32), 8305-8316.
[12] Chouiter, L., Tzovara, A., Dieguez, S., Annoni, J.-M., Magezi, D., De Lucia, M., & Spierer, L . ( 2015). Experience-based auditory predictions modulate brain activity to silence as do real sounds. Journal of Cognitive Neuroscience, 27( 10), 1968-1980.
[13] Clark, A. (2013). Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behavioral and Brain Sciences, 36( 3), 181-204.
[14] Costa-Faidella, J., Baldeweg, T., Grimm, S., & Escera, C . ( 2011). Interactions between "what" and "when" in the auditory system: Temporal predictability enhances repetition suppression. Journal of Neuroscience, 31( 50), 18590-18597.
[15] Denham, S. L., & Winkler, I. (2018). Predictive coding in auditory perception: Challenges and unresolved questions. European Journal of Neuroscience. Advance online publication. doi: 10.1111/ejn.13802.
doi: 10.1111/ejn.13802
[16] Duque, D., Pais, R., & Malmierca, M. S . ( 2018). Stimulus- specific adaptation in the anesthetized mouse revealed by brainstem auditory evoked potentials. Hearing Research, 370, 294-301.
[17] Dü rschmid, S., Edwards, E., Reichert, C., Dewar, C., Hinrichs, H., Heinze, H.-J., .. Knight, R. T . ( 2016). Hierarchy of prediction errors for auditory events in human temporal and frontal cortex. Proceedings of the National Academy of Sciences, 113( 24), 6755-6760.
[18] Dürschmid, S., Reichert, C., Hinrichs, H., Heinze, H.-J., Kirsch, H. E., Knight, R. T., & Deouell, L. Y . ( 2018). Direct evidence for prediction signals in frontal cortex independent of prediction error. Cerebral Cortex. doi: 10.1093/cercor/bhy331.
doi: 10.1093/cercor/bhy331
[19] Eriksson, J., & Villa, A. E . ( 2005). Event-related potentials in an auditory oddball situation in the rat. Biosystems, 79( 1-3), 207-212.
[20] Fishman, Y. I., & Steinschneider, M. (2012). Searching for the mismatch negativity in primary auditory cortex of the awake monkey: Deviance detection or stimulus specific adaptation? Journal of Neuroscience, 32( 45), 15747-15758.
[21] Friston, K. (2005). A theory of cortical responses. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 360( 1456), 815-836.
[22] Friston, K. (2010). The free-energy principle: A unified brain theory? Nature Reviews Neuroscience, 11( 2), 127-138.
[23] Friston, K. (2018). Does predictive coding have a future? Nature Neuroscience, 21( 8), 1019-1021.
[24] Gorina-Careta, N., Zarnowiec, K., Costa-Faidella, J., & Escera, C . ( 2016). Timing predictability enhances regularity encoding in the human subcortical auditory pathway. Scientific Reports, 6, 37405.
[25] Grimm, S., Escera, C., & Nelken, I . ( 2016). Early indices of deviance detection in humans and animal models. Biological Psychology, 116, 23-27.
[26] Grotheer, M., & Kovacs, G. (2016). Can predictive coding explain repetition suppression? Cortex, 80, 113-124.
[27] Haenschel, C., Vernon, D. J., Dwivedi, P., Gruzelier, J. H., & Baldeweg, T . ( 2005). Event-related brain potential correlates of human auditory sensory memory-trace formation. Journal of Neuroscience, 25( 45), 10494-10501.
[28] Harms, L., Fulham, W. R., Todd, J., Budd, T. W., Hunter, M., Meehan, C., .. Michie, P. T . ( 2014). Mismatch negativity (MMN) in freely-moving rats with several experimental controls. PLoS One, 9( 10), e110892.
[29] Heilbron, M., & Chait, M. (2018). Great expectations: Is there evidence for predictive coding in auditory cortex? Neuroscience, 389, 54-73.
[30] Jääskeläinen, I. P., Ahveninen, J., Bonmassar, G., Dale, A. M., Ilmoniemi, R. J., Levanen, S., .. Belliveau, J. W . ( 2004). Human posterior auditory cortex gates novel sounds to consciousness. Proceedings of the National Academy of Sciences, 101( 17), 6809-6814.
[31] Khouri, L., & Nelken, I. (2015). Detecting the unexpected. Current Opinion in Neurobiology, 35, 142-147.
[32] Koelsch, S., Vuust, P., & Friston, K . ( 2019). Predictive processes and the peculiar case of music. Trends in Cognitive Sciences, 23( 1), 63-77.
[33] Kogo, N., & Trengove, C. (2015). Is predictive coding theory articulated enough to be testable? Frontiers in Computational Neuroscience, 9, 111.
[34] Lumaca, M., Trusbak Haumann, N., Brattico, E., Grube, M., & Vuust, P . ( 2018). Weighting of neural prediction error by rhythmic complexity: A predictive coding account using Mismatch Negativity. European Journal of Neuroscience, 49( 12), 1597-1609.
[35] Malmierca, M. S., Cristaudo, S., Perez-Gonzalez, D., & Covey, E . ( 2009). Stimulus-specific adaptation in the inferior colliculus of the anesthetized rat. Journal of Neuroscience, 29( 17), 5483-5493.
[36] May, P. J., & Tiitinen, H. (2010). Mismatch negativity (MMN), the deviance-elicited auditory deflection, explained. Psychophysiology, 47( 1), 66-122.
[37] Morillon, B., & Schroeder, C.E . ( 2015). Neuronal oscillations as a mechanistic substrate of auditory temporal prediction. Annals of the New York Academy of Sciences, 1337( 1), 26-31.
[38] Muenssinger, J., Stingl, K. T., Matuz, T., Binder, G., Ehehalt, S., & Preissl, H . ( 2013). Auditory habituation to simple tones: Reduced evidence for habituation in children compared to adults. Frontiers in Human Neuroscience, 7, 377.
[39] Näätänen, R., Jacobsen, T., & Winkler, I . ( 2005). Memory-based or afferent processes in mismatch negativity (MMN): A review of the evidence. Psychophysiology, 42( 1), 25-32.
[40] Näätänen, R., Paavilainen, P., & Reinikainen, K . ( 1989). Do event-related potentials to infrequent decrements in duration of auditory stimuli demonstrate a memory trace in man. Neuroscience Letters, 107( 1-3), 347-352.
[41] Näätänen, R., Paavilainen, P., Rinne, T., & Alho, K . ( 2007). The mismatch negativity (MMN) in basic research of central auditory processing: A review. Clinical Neurophysiology, 118( 12), 2544-2590.
[42] Näätänen, R., Pakarinen, S., Rinne, T., & Takegata, R . ( 2004). The mismatch negativity (MMN): Towards the optimal paradigm. Clinical Neurophysiology, 115( 1), 140-144.
[43] Näätänen, R., & Picton, T. (1987). The N1 wave of the human electric and magnetic response to sound: A review and an analysis of the component structure. Psychophysiology, 24( 4), 375-425.
[44] Näätänen, R., Simpson, M., & Loveless, N. E . ( 1982). Stimulus deviance and evoked potentials. Biological Psychology, 14( 1-2), 53-98.
[45] Näätänen, R., Tervaniemi, M., Sussman, E., Paavilainen, P., & Winkler, I . ( 2001). ‘Primitive intelligence’in the auditory cortex. Trends in Neurosciences, 24( 5), 283-288.
[46] Nelken, I. (2014). Stimulus-specific adaptation and deviance detection in the auditory system: Experiments and models. Biological Cybernetics, 108( 5), 655-663.
[47] O'Shea, R. P . ( 2015). Refractoriness about adaptation. Frontiers in Human Neuroscience, 9, 38.
[48] Okada, K., Matchin, W., & Hickok, G . ( 2018). Neural evidence for predictive coding in auditory cortex during speech production. Psychonomic Bulletin & Review, 25( 1), 423-430.
[49] Parras, G. G., Nieto-Diego, J., Carbajal, G. V., Valdes- Baizabal, C., Escera, C., & Malmierca, M. S . ( 2017). Neurons along the auditory pathway exhibit a hierarchical organization of prediction error. Nature Communications, 8, 2148.
[50] Polterovich, A., Jankowski, M. M., & Nelken, I . ( 2018). Deviance sensitivity in the auditory cortex of freely moving rats. PLoS One, 13( 6), e0197678.
[51] Rao, R. P., & Ballard, D.H . ( 1999). Predictive coding in the visual cortex: A functional interpretation of some extra- classical receptive-field effects. Nature Neuroscience, 2( 1), 79-87.
[52] Recasens, M., Leung, S., Grimm, S., Nowak, R., & Escera, C . ( 2015). Repetition suppression and repetition enhancement underlie auditory memory-trace formation in the human brain: An MEG study. NeuroImage, 108, 75-86.
[53] Ritter, W., Vaughan, H. G., & Costa, L. D . ( 1968). Orienting and habituation to auditory stimuli: A study of short-term changes in averaged evoked responses. Electroencephalography and Clinical Neurophysiology, 25( 6), 550-556.
[54] Rubin, J., Ulanovsky, N., Nelken, I., & Tishby, N . ( 2016). The representation of prediction error in auditory cortex. PloS Computational Biology, 12( 8), e1005058.
[55] Rosburg, T., Trautner, P., Boutros, N. N., Korzyukov, O. A., Schaller, C., Elger, C. E., & Kurthen, M . ( 2006). Habituation of auditory evoked potentials in intracranial and extracranial recordings. Psychophysiology, 43( 2), 137-144.
[56] Rummell, B. P., Klee, J. L., & Sigurdsson, T . ( 2016). Attenuation of responses to self-generated sounds in auditory cortical neurons. Journal of Neuroscience, 36( 47), 12010-12026.
[57] Salimpoor, V. N., Zald, D. H., Zatorre, R. J., Dagher, A., & McIntosh, A. R . ( 2015). Predictions and the brain: How musical sounds become rewarding. Trends in Cognitive Sciences, 19( 2), 86-91.
[58] Sams, M., Paavilainen, P., Alho, K., & Näätänen, R . ( 1985). Auditory frequency discrimination and event-related potentials. Electroencephalography and Clinical Neurophysiology, 62( 2), 437-448.
[59] SanMiguel, I., Saupe, K., & Schröger, E . ( 2013). I know what is missing here: Electrophysiological prediction error signals elicited by omissions of predicted "what" but not "when". Frontiers in Human Neuroscience, 7, 407.
[60] SanMiguel, I., Widmann, A., Bendixen, A., Trujillo-Barreto, N., & Schröger, E . ( 2013). Hearing silences: Human auditory processing relies on preactivation of sound- specific brain activity patterns. Journal of Neuroscience, 33( 20), 8633-8639.
[61] Sohoglu, E., Peelle, J. E., Carlyon, R. P., & Davis, M. H . ( 2012). Predictive top-down integration of prior knowledge during speech perception. Journal of Neuroscience, 32( 25), 8443-8453.
[62] Stefanics, G., Kremlacek, J., & Czigler, I . ( 2016). Mismatch negativity and neural adaptation: Two sides of the same coin. Response: Commentary: Visual mismatch negativity: A predictive coding view. Frontiers in Human Neuroscience, 10, 13.
[63] Strauss, M., Sitt, J. D., King, J. R., Elbaz, M., Azizi, L., Buiatti, M., .. Dehaene, S . ( 2015). Disruption of hierarchical predictive coding during sleep. Proceedings of the National Academy of Sciences, 112( 11), E1353-E1362.
[64] Summerfield, C., Trittschuh, E. H., Monti, J. M., Mesulam, M. M., & Egner, T . ( 2008). Neural repetition suppression refiects fulfilled perceptual expectations. Nature Neuroscience, 11( 9), 1004-1006.
[65] Sussman, E., Winkler, I., Huotilainen, M., Ritter, W., & Näätänen, R . ( 2002). Top-down effects can modify the initially stimulus-driven auditory organization. Cognitive Brain Research, 13( 3), 393-405.
[66] Sussman, E., Winkler, I., & Wang, W . ( 2003). MMN and attention: Competition for deviance detection. Psychophysiology, 40( 2003), 430-435.
[67] Sussman, E. S . ( 2007). A new view on the MMN and attention debate. Journal of Psychophysiology, 21( 3), 164-175.
[68] Symonds, R. M., Lee, W. W., Kohn, A., Schwartz, O., Witkowski, S., & Sussman, E. S . ( 2017). Distinguishing neural adaptation and predictive coding hypotheses in auditory change detection. Brain Topography, 30( 1), 136-148.
[69] Szymanski, F. D., Garcia-Lazaro, J. A., & Schnupp, J. W . ( 2009). Current source density profiles of stimulus- specific adaptation in rat auditory cortex. Journal of Neurophysiology, 102( 3), 1483-1490.
[70] Taaseh, N., Yaron, A., & Nelken, I . ( 2011). Stimulus-specific adaptation and deviance detection in the rat auditory cortex. PLoS One, 6( 8), e23369.
[71] Todorovic, A., & de Lange, F.P . ( 2012). Repetition suppression and expectation suppression are dissociable in time in early auditory evoked fields. Journal of Neuroscience, 32( 39), 13389-13395.
[72] Todorovic, A., van Ede, F., Maris, E., & de Lange, F. P. (2011). Prior expectation mediates neural adaptation to repeated sounds in the auditory cortex: An MEG study. Journal of Neuroscience, 31( 25), 9118-9123.
[73] Ulanovsky, N., Las, L., Farkas, D., & Nelken, I . ( 2004). Multiple time scales of adaptation in auditory cortex neurons. Journal of Neuroscience, 24( 46), 10440-10453.
[74] Ulanovsky, N., Las, L., & Nelken, I . ( 2003). Processing of low-probability sounds by cortical neurons. Nature Neuroscience, 6( 4), 391-398.
[75] von der Behrens, W., Bäuerle, P., Kossl, M., & Gaese, B. H . ( 2009). Correlating stimulus-specific adaptation of cortical neurons and local field potentials in the awake rat. Journal of Neuroscience, 29( 44), 13837-13849.
[76] Wacongne, C., Changeux, J. P., & Dehaene, S . ( 2012). A neuronal model of predictive coding accounting for the mismatch negativity. Journal of Neuroscience, 32( 11), 3665-3678.
[77] Wacongne, C., Labyt, E., van Wassenhove, V., Bekinschtein, T., Naccache, L., & Dehaene, S . ( 2011). Evidence for a hierarchy of predictions and prediction errors in human cortex. Proceedings of the National Academy of Sciences, 108( 51), 20754-20759.
[78] Winkler, I. (2007). Interpreting the mismatch negativity. Journal of Psychophysiology, 21( 3-4), 147-163.
[79] Winkler, I., Denham, S. L., & Nelken, I . ( 2009). Modeling the auditory scene: Predictive regularity representations and perceptual objects. Trends in Cognitive Sciences, 13( 12), 532-540.
[80] Winkler, I., & Schröger, E. (2015). Auditory perceptual objects as generative models: Setting the stage for communication by sound. Brain and Language, 148, 1-22.
[81] Yabe, H., Tervaniemi, M., Reinikainen, K., & Näätänen, R . ( 1997). Temporal window of integration revealed by MMN to sound omission. NeuroReport, 8( 8), 1971-1974.
[82] Yabe, H., Tervaniemi, M., Sinkkonen, J., Huotilainen, M., lmoniemi, R. J., & Näätänen, R . ( 1998). Temporal window of integration of auditory information in the human brain. Psychophysiology, 35( 5), 615-619.
[83] Yaron, A., Hershenhoren, I., & Nelken, I . ( 2012). Sensitivity to complex statistical regularities in rat auditory cortex. Neuron, 76( 3), 603-615.
[84] Ylinen, S., Huuskonen, M., Mikkola, K., Saure, E., Sinkkonen, T., & Paavilainen, P . ( 2016). Predictive coding of phonological rules in auditory cortex: A mismatch negativity study. Brain and Language, 162, 72-80.
[1] CHEN Yahong,WANG Jinyan. The effect of music training on pre-attentive processing of the brain[J]. Advances in Psychological Science, 2019, 27(6): 1036-1043.
[2] XIE Kai-Jie,MA Jia-Tao,HE Quan,JIANG Cheng-Ming. Descriptive norms promote willingness to voluntarily donate blood rather than actual blood donation[J]. Advances in Psychological Science, 2019, 27(6): 1019-1024.
[3] Danyang LI,Peng LI,Hong LI. The updated theories of feedback-related negativity in the last decade[J]. Advances in Psychological Science, 2018, 26(9): 1642-1650.
[4] XIN Xin; REN Gui-Qin; LI Jin-Cai; TANG Xiao-Yu. The characteristics and mechanisms of audiovisual integration: Evidence from mismatch negativity[J]. Advances in Psychological Science, 2017, 25(5): 757-768.
[5] Cong Zhang; Lin Yang; Mingsha Zhang. Dynamic change of visual receptive field during visually-guided delay saccades in macaque posterior parietal cortex[J]. Advances in Psychological Science, 2016, 24(Suppl.): 16-.
[6] RAN Guang-Ming; CHEN Xu; ZHANG Xing; MA Yuan-Xiao. The neural mechanism for the superiority effect of social prediction[J]. Advances in Psychological Science, 2016, 24(5): 684-691.
[7] WU Shuangshuang; LYU Zhenyong; CHEN Hong; WANG Yuhui; XIAO Zilun. Fat talk: A psychological communication[J]. Advances in Psychological Science, 2016, 24(1): 111-119.
[8] ZHANG Pei; XIA Mian. Antidepressants Adherence and Its Contributing Factors for Patients with Depression[J]. Advances in Psychological Science, 2015, 23(6): 1009-1020.
[9] RAN Guangming;ZHANG Qi;ZHAO Le;MA Jianling;CHEN Xu;PAN Yangu;MA Jing. Neural Mechanism and Neurobiological Basis of Harm Avoidance[J]. Advances in Psychological Science, 2013, 21(3): 468-479.
[10] HE Jin-Bo;LI Bing-Bing;ZHOU Zong-Kui. Effects of Alcohol on Pre-attentive Processing: Evidence from Mismatch Negativity[J]. , 2011, 19(11): 1645-1650.
[11] YIN Hua-Zhan;HUANG Xi-Ting. The Electrophysiological Index for the Automatic and Control Processing of Temporal Information[J]. , 2009, 17(04): 678-682.
[12] Zhang Chaohong,Ling Wenquan,Fang Liluo. A Review of the Research on Sleeper Effect in West Countries[J]. , 2004, 12(01): 79-86.
[13] Chen Honglei, Zhou Fan. A Review of Research on the Influencing Factors of Cross-cultural Adaptation[J]. , 2003, 11(06): 700-703.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Advances in Psychological Science
Support by Beijing Magtech