Please wait a minute...
Advances in Psychological Science    2019, Vol. 27 Issue (7) : 1284-1296     DOI: 10.3724/SP.J.1042.2019.01284
Regular Articles |
From the view of game theory: A new model for hyperscanning multi-subject interaction paradigm
BEI Litian1,JIANG Ke2,LI Xianchun1,XIONG Zhehong1()
1 School of Psychological and Cognitive Science, East China Normal University, Shanghai 200062, China
2 School of Psychiatry, Wenzhou Medical University, Wenzhou Zhejiang 325035, China
Download: PDF(685 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks     Supporting Info
Guide   
Abstract  

Hyperscanning refers to measure neural activities simultaneously from two or more agents interacting in the same task, and explain the neural mechanism of interpersonal exchange. From the perspective of game theory, three types of tasks in hyperscanning researches are clarified: conflict, cooperation and coordination task, which contributes to distinguishing "coordination" and "cooperation", two concepts which are not well-defined in existing hyperscanning studies, and establishes a new model to depict the multi-subject paradigms in this area. Future studies might further explore the psychological and cerebral mechanism underlying the differences between cooperation and coordination behavior and the formation of norms, in combination with the usage of evolutionary game theory model.

Keywords cooperation      coordination      game theory      multi-subject interaction      hyperscanning     
ZTFLH:  B849: C91  
Corresponding Authors: Zhehong XIONG     E-mail: zhxiong@psy.ecnu.edu.cn
Issue Date: 22 May 2019
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Litian BEI
Ke JIANG
Xianchun LI
Zhehong XIONG
Cite this article:   
Litian BEI,Ke JIANG,Xianchun LI, et al. From the view of game theory: A new model for hyperscanning multi-subject interaction paradigm[J]. Advances in Psychological Science, 2019, 27(7): 1284-1296.
URL:  
http://journal.psych.ac.cn/xlkxjz/EN/10.3724/SP.J.1042.2019.01284     OR     http://journal.psych.ac.cn/xlkxjz/EN/Y2019/V27/I7/1284
  
  
  
互动方式/任务类型 协作任务 合作任务 冲突任务
同时型互动任务 联合按键
手势与节奏同步
合奏、合唱
言语交流
手势猜词
表情与眼神交流
/ 竞争条件下的协作任务
(竞争条件下的联合按键)
回合型互动任务 棋盘游戏
积木游戏
视觉搜索任务
盲人驾驶任务
电子桌球游戏
囚徒博弈
斗鸡博弈
信任博弈
独裁者博弈
最后通牒博弈
竞争条件下的协作任务
(竞争条件下的棋盘游戏、积木游戏、视觉搜索、桌球游戏等)
猜物游戏
沙牌游戏
高生态效度下的实时互动任务 模拟飞行
医护-患者互动
课堂教学
无领导小组讨论
/ /
  
[1] 李先春, 卑力添, 袁涤, 丁雅娜, 冯丹阳 . (2018). 超扫描视角下的社会互动脑机制. 心理科学, 41(6), 1484-1491. doi: 10.16719/j.cnki.1671-6981.20180629.
doi: 10.16719/j.cnki.1671-6981.20180629
[2] 叶佩霞, 朱睿达, 唐红红, 买晓琴, 刘超 . (2017). 近红外光学成像在社会认知神经科学中的应用. 心理科学进展, 25(5), 731-741. doi: 10.3724/sp.j.1042.2017.00731.
doi: 10.3724/sp.j.1042.2017.00731
[3] 张文莉, 唐红红, 刘超, 买晓琴 . (2016). 多人交互同步记录技术在大脑神经活动测量中的应用. 心理与行为研究, 14(6), 834-841.
[4] 郑丽莉, 成晓君, 胡谊., 李先春 . (2015). 超扫描的发展及其在教育领域的应用潜力. 教育生物学杂志, 2(1), 35-42. doi: 10.3969/j.issn.2095-4301.2015.01.008.
doi: 10.3969/j.issn.2095-4301.2015.01.008
[5] Ahn S., Cho H., Kwon M., Kim K., Kwon H., Kim B. S., … Jun S. C . (2018). Interbrain phase synchronization during turn-taking verbal interaction-a hyperscanning study using simultaneous EEG/MEG. Human Brain Mapping, 39(1), 171-188, doi: 10.1002/hbm.23834.
doi: 10.1002/hbm.23834 url: http://doi.wiley.com/10.1002/hbm.23834
[6] Anders S., Heinzle J., Weiskopf N., Ethofer T., & Haynes J. D . (2011). Flow of affective information between communicating brains. NeuroImage, 54(1), 439-446, doi: 10.1016/j.neuroimage.2010.07.004.
doi: 10.1016/j.neuroimage.2010.07.004 url: https://linkinghub.elsevier.com/retrieve/pii/S1053811910009559
[7] Astolfi L., Cincotti F., Mattia D., De Vico Fallani F., Salinari S., Marciani M. G., … Babiloni F . (2009). Estimation of the cortical activity from simultaneous multi-subject recordings during the prisoner's dilemma. In Proceedings of 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (pp. 1937-1939). Minneapolis, MN, USA: IEEE, doi: 10.1109/IEMBS.2009.5333456.
doi: 10.1109/IEMBS.2009.5333456
[8] Astolfi L., Cincotti F., Mattia D., De Vico Fallani F., Salinari S., Vecchiato G., … Babiloni F . (2010). Imaging the social brain: Multi-subjects EEG recordings during the "Chicken's game". In Proceedings of 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology (pp. 1734-1737). Buenos Aires, Argentina: IEEE, doi: 10.1109/IEMBS.2010.5626708.
doi: 10.1109/IEMBS.2010.5626708
[9] Astolfi L., Toppi J., Borghini G., Vecchiato G., Isabella R., De Vico Fallani F., .. Babiloni F . (2011). Study of the functional hyperconnectivity between couples of pilots during flight simulation: An EEG hyperscanning study. In the Proceedings of 2011 Annual International Conference of IEEE Engineering in Medicine and Biology (pp.2338-2341). Boston, MA, USA: IEEE, doi: 10.1109/iembs.2011.6090654.
doi: 10.1109/iembs.2011.6090654
[10] Astolfi L., Toppi J., Casper C., Freitag C., Mattia D., Babiloni F., … Siniatchkin M . (2015). Investigating the neural basis of empathy by EEG hyperscanning during a Third Party Punishment. In Proceedings of the 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (pp. 5384-5387). Milan, Italy: IEEE, doi: 10.1109/embc.2015.7319608.
doi: 10.1109/embc.2015.7319608
[11] Astolfi L., Toppi J., De Vico Fallani F., Vecchiato G., Salinari S., Mattia D., ... Babiloni F . (2010). Neuroelectrical hyperscanning measures simultaneous brain activity in humans. Brain Topography, 23(3), 243-256. doi: 10.1007/s10548-010-0147-9.
doi: 10.1007/s10548-010-0147-9 url: http://link.springer.com/10.1007/s10548-010-0147-9
[12] Babiloni C., Buffo P., Vecchio F., Marzano N., Del Percio C., Spada D., … Perani D . (2012). Brains "in concert": Frontal oscillatory alpha rhythms and empathy in professional musicians. NeuroImage, 60(1), 105-116, doi: 10.1016/j.neuroimage.2011.12.008.
doi: 10.1016/j.neuroimage.2011.12.008 url: https://linkinghub.elsevier.com/retrieve/pii/S1053811911014108
[13] Babiloni F., & Astolfi L. , (2014). Social neuroscience and hyperscanning techniques: Past, present and future. Neuroscience and Biobehavioral Reviews, 44, 76-93. doi: 10.1016/j.neubiorev.2012.07.006.
doi: 10.1016/j.neubiorev.2012.07.006
[14] Babiloni F., Astolfi L., Cincotti F., Mattia D., Tocci A., Tarantino A., ... De Vico Fallani F ., (2007). Cortical activity and connectivity of human brain during the Prisoner's Dilemma: An EEG hyperscanning study. In Proceedings of 29th Annual International Conference of the IEEE Engineering in Medicine and Biology (pp. 4953-4956). Lyon, France: IEEE, doi: 10.1109/IEMBS.2007.4353452
doi: 10.1109/IEMBS.2007.4353452
[15] Baker J. M., Liu N., Cui X., Vrticka P., Saggar M., Hosseini S. M. H., & Reiss A. L . (2016). Sex differences in neural and behavioral signatures of cooperation revealed by fNIRS hyperscanning. Scientific Reports, 6, 26492, doi: 10.1038/srep26492.
doi: 10.1038/srep26492
[16] Balardin J. B., Zimeo Morais G. A., Furucho R. A., Trambaiolli L., Vanzella P., Biazoli C Jr., & Sato J. R . (2017). Imaging brain function with functional near-infrared spectroscopy in unconstrained environments. Frontiers in Human Neuroscience, 11, 258, doi: 10.3389/fnhum.2017.00258.
doi: 10.3389/fnhum.2017.00258
[17] Balconi M., Pezard L., Nandrino J. L., & Vanutelli M. E . (2017). Two is better than one: The effects of strategic cooperation on intra-and inter-brain connectivity by fNIRS. PLoS One, 12(11), e0187652, doi: 10.1371/journal.pone.0187652.
doi: 10.1371/journal.pone.0187652
[18] Balconi M., & Vanutelli M. E . (2017). Brains in competition: Improved cognitive performance and inter-brain coupling by hyperscanning paradigm with functional near-infrared spectroscopy. Frontiers in Behavioral Neuroscience, 11, 163, doi: 10.3389/fnbeh.2017.00163.
doi: 10.3389/fnbeh.2017.00163
[19] Cavallo A., Lungu O., Becchio C., Ansuini C., Rustichini A., & Fadiga L . (2015). When gaze opens the channel for communication: Integrative role of IFG and MPFC. NeuroImage, 119, 63-69, doi: 10.1016/j.neuroimage.2015.06.025.
doi: 10.1016/j.neuroimage.2015.06.025
[20] Cheng X. J., Li X. C., & Hu Y . (2015). Synchronous brain activity during cooperative exchange depends on gender of partner: A fNIRS-based hyperscanning study. Human Brain Mapping, 36(6), 2039-2048, doi: 10.1002/hbm.22754.
doi: 10.1002/hbm.22754 url: http://doi.wiley.com/10.1002/hbm.22754
[21] Chiu P. H., Kayali M. A., Kishida K. T., Tomlin D., Klinger L. G., Klinger M. R., & Montague P. R . (2008). Self responses along cingulate cortex reveal quantitative neural phenotype for high-functioning autism. Neuron, 57(3), 463-473, doi: 10.1016/j.neuron.2007.12.020.
doi: 10.1016/j.neuron.2007.12.020 url: https://linkinghub.elsevier.com/retrieve/pii/S0896627307010331
[22] Colman A. M . (2003). Cooperation, psychological game theory, and limitations of rationality in social interaction. Behavioral and Brain Sciences, 26(2), 139-198. doi: 10.1017/s0140525x03350058.
doi: 10.1017/s0140525x03350058
[23] Cui X., Bryant D. M., & Reiss A. L . (2012). NIRS-based hyperscanning reveals increased interpersonal coherence in superior frontal cortex during cooperation. NeuroImage, 59(3), 2430-2437, doi: 10.1016/j.neuroimage.2011.09.003.
doi: 10.1016/j.neuroimage.2011.09.003 url: https://linkinghub.elsevier.com/retrieve/pii/S1053811911010421
[24] Dawes R. M., & Messick D. M . (2000). Social dilemmas. International Journal of Psychology, 35(2), 111-116. doi: 10.1080/002075900399402.
doi: 10.1080/002075900399402
[25] De Jonge J. , (1998). Coordination and cooperation in game theory. Economist, 146(1), 159-167. doi: 10.1023/A:1003262227223.
doi: 10.1023/A:1003262227223
[26] De Vico Fallani F., Nicosia V., Sinatra R., Astolfi L., Cincotti F., Mattia D., … Babiloni F . (2010). Defecting or not defecting: How to "read" human behavior during cooperative games by EEG measurements. PLoS ONE, 5(12), e14187, doi: 10.1371/journal.pone.0014187.
doi: 10.1371/journal.pone.0014187 url: https://dx.plos.org/10.1371/journal.pone.0014187
[27] Dikker S., Wan L., Davidesco I., Kaggen L., Oostrik M., McClintock J., … Poeppel D . (2017). Brain-to-brain synchrony tracks real-world dynamic group interactions in the classroom. Current Biology, 27(9), 1375-1380, doi: 10.1016/j.cub.2017.04.002.
doi: 10.1016/j.cub.2017.04.002 url: https://linkinghub.elsevier.com/retrieve/pii/S0960982217304116
[28] Duan L., Dai R. N., Xiao X., Sun P. P., Li Z., & Zhu C. Z . (2015). Cluster imaging of multi-brain networks (CIMBN): A general framework for hyperscanning and modeling a group of interacting brains. Frontiers in Neuroscience, 9, 267. doi: 10.3389/fnins.2015.00267.
doi: 10.3389/fnins.2015.00267
[29] Dumas G., Lachat F., Martinerie J., Nadel J., & George N . (2011). From social behaviour to brain synchronization: Review and perspectives in hyperscanning. IRBM, 32(1), 48-53. doi: 10.1016/j.irbm.2011.01.002.
doi: 10.1016/j.irbm.2011.01.002
[30] Dumas G., Nadel J., Soussignan R., Martinerie J., & Garnero L . (2010). Inter-brain synchronization during social interaction. PLoS One, 5(8), e12166. doi: 10.1371/journal.pone.0012166.
doi: 10.1371/journal.pone.0012166
[31] Filho E., Bertollo M., Tamburro G., Schinaia L., Chatel-Goldman J., Di Fronso S., … Comani S . (2016). Hyperbrain features of team mental models within a juggling paradigm: A proof of concept. PeerJ, 4, e2457, doi: 10.7717/peerj.2457.
doi: 10.7717/peerj.2457
[32] Funane T., Kiguchi M., Atsumori H., Sato H., Kubota K., & Koizumi H . (2011). Synchronous activity of two people's prefrontal cortices during a cooperative task measured by simultaneous near-infrared spectroscopy. Journal of Biomedical Optics, 16(7), 077011, doi: 10.1117/1.3602853.
doi: 10.1117/1.3602853 url: http://biomedicaloptics.spiedigitallibrary.org/article.aspx?doi=10.1117/1.3602853
[33] Hari R., Henriksson L., Malinen S., & Parkkonen L . (2015). Centrality of social interaction in human brain function. Neuron, 88(1), 181-193, doi: 10.1016/j.neuron.2015.09.022.
doi: 10.1016/j.neuron.2015.09.022 url: https://linkinghub.elsevier.com/retrieve/pii/S0896627315007795
[34] Hasson U., Ghazanfar A. A., Galantucci B., Garrod S., & Keysers C . (2012). Brain-to-brain coupling: A mechanism for creating and sharing a social world. Trends in Cognitive Sciences, 16(2), 114-121, doi: 10.1016/j.tics.2011.12.007.
doi: 10.1016/j.tics.2011.12.007 url: https://linkinghub.elsevier.com/retrieve/pii/S1364661311002580
[35] Hirsch J., Zhang X., Noah J. A., & Ono Y . (2017). Frontal temporal and parietal systems synchronize within and across brains during live eye-to-eye contact. NeuroImage, 157, 314-330, doi: 10.1016/j.neuroimage.2017.06.018.
doi: 10.1016/j.neuroimage.2017.06.018
[36] Holper L., Goldin A. P., Shalom D. E., Battro A. M., Wolf M., & Sigman M . (2013). The teaching and the learning brain: A cortical hemodynamic marker of teacher-student interactions in the Socratic dialog. International Journal of Educational Research, 59, 1-10, doi: 10.1016/j.ijer.2013.02.002.
doi: 10.1016/j.ijer.2013.02.002
[37] Hu Y., Hu Y. Y., Li X. C., Pan Y. F., & Cheng X. J . (2017). Brain-to-brain synchronization across two persons predicts mutual prosociality. Social Cognitive and Affective Neuroscience, 12(12), 1835-1844. doi: 10.1093/scan/nsx118.
doi: 10.1093/scan/nsx118
[38] Hu Y., Pan Y., Shi X., Cai Q., Li X., & Cheng X . (2018). Inter-brain synchrony and cooperation context in interactive decision making. Biological Psychology, 133, 54-62. doi: 10.1016/j.biopsycho.2017.12.005.
doi: 10.1016/j.biopsycho.2017.12.005 url: https://linkinghub.elsevier.com/retrieve/pii/S0301051117303538
[39] Jahng J., Kralik J. D., Hwang D. U., & Jeong J . (2017). Neural dynamics of two players when using nonverbal cues to gauge intentions to cooperate during the Prisoner's Dilemma Game. NeuroImage, 157, 263-274, doi: 10.1016/j.neuroimage.2017.06.024.
doi: 10.1016/j.neuroimage.2017.06.024
[40] Jiang J., Chen C. S., Dai B. H., Shi G., Ding G. S., Liu L., & Lu C. M . (2015). Leader emergence through interpersonal neural synchronization. Proceedings of the National Academy of Sciences of the United States of America, 112(14), 4274-4279, doi: 10.1073/pnas.1422930112.
doi: 10.1073/pnas.1422930112 url: http://www.pnas.org/lookup/doi/10.1073/pnas.1422930112
[41] Jiang J., Dai B. H., Peng D. L., Zhu C. Z., Liu L., & Lu C. M . (2012). Neural synchronization during face-to-face communication. Journal of Neuroscience, 32(45), 16064-16069, doi: 10.1523/JNEUROSCI.2926-12.2012.
doi: 10.1523/JNEUROSCI.2926-12.2012 url: http://www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.2926-12.2012
[42] Kawano T., Majima Y., Maekawa Y., Katagiri M., & Ishigame A. , (2016) . Inter-brain synchronization between nurse and patient during drawing blood. In Proceedings of the 9th International Conference on Health Informatics (pp. 507-511). Setubal, Portugal: INSTICC Press, doi: 10.5220/0005825605070511.
doi: 10.5220/0005825605070511
[43] King-Casas B., Tomlin D., Anen C., Camerer C. F., Quartz S. R., & Montague P. R . (2005). Getting to know you: Reputation and trust in a two-person economic exchange. Science, 308(5718), 78-83, doi: 10.1126/science.1108062.
doi: 10.1126/science.1108062 url: http://www.sciencemag.org/cgi/doi/10.1126/science.1108062
[44] Knoblich G., Butterfill S., & Sebanz N . (2011). Psychological research on joint action: Theory and data. Psychology of Learning and Motivation, 54, 59-101. doi: 10.1016/b978-0-12-385527-5.00003-6
doi: 10.1016/b978-0-12-385527-5.00003-6 url: https://linkinghub.elsevier.com/retrieve/pii/B9780123855275000036
[45] Koike T., Tanabe H. C., & Sadato N . (2015). Hyperscanning neuroimaging technique to reveal the "two-in-one" system in social interactions. Neuroscience Research, 90, 25-32, doi: 10.1016/j.neures.2014.11.006.
doi: 10.1016/j.neures.2014.11.006
[46] Konvalinka I., Bauer M., Stahlhut C., Hansen L. K., Roepstorff A., & Frith C. D . (2014). Frontal alpha oscillations distinguish leaders from followers: Multivariate decoding of mutually interacting brains. NeuroImage, 94, 79-88. doi: 10.1016/j.neuroimage.2014.03.003.
doi: 10.1016/j.neuroimage.2014.03.003
[47] Krill A. L., & Platek S. M . (2012). Working together may be better: Activation of reward centers during a cooperative maze task. PLoS One, 7(2), e30613. doi: 10.1371/journal.pone.0030613.
doi: 10.1371/journal.pone.0030613
[48] Leong V., Byrne E., Clackson K., Georgieva S., Lam S., & Wass S . (2017). Speaker gaze increases information coupling between infant and adult brains. Proceedings of the National Academy of Sciences of the United States of America, 114(50), 13290-13295, doi: 10.1073/pnas.1702493114.
doi: 10.1073/pnas.1702493114 url: http://www.pnas.org/lookup/doi/10.1073/pnas.1702493114
[49] Lindenberger U., Li S. C., Gruber W., & Müller V . (2009). Brains swinging in concert: Cortical phase synchronization while playing guitar. BMC Neuroscience, 10, 22, doi: 10.1186/1471-2202-10-22.
doi: 10.1186/1471-2202-10-22
[50] Liu N., Mok C., Witt E. E., Pradhan A. H., Chen J. E., & Reiss A. L . (2016). NIRS-based hyperscanning reveals inter-brain neural synchronization during cooperative Jenga game with face-to-face communication. Frontiers in Human Neuroscience, 10, 82. doi: 10.3389/fnhum.2016.00082.
doi: 10.3389/fnhum.2016.00082
[51] Liu T., & Pelowski M. , (2014). Clarifying the interaction types in two-person neuroscience research. Frontiers in Human Neuroscience, 8, 276, doi: 10.3389/fnhum.2014.00276.
doi: 10.3389/fnhum.2014.00276
[52] Liu T., Saito G., Lin C. H., & Saito H . (2017). Inter-brain network underlying turn-based cooperation and competition: A hyperscanning study using near-infrared spectroscopy. Scientific Reports, 7(1), 8684, doi: 10.1038/s41598-017-09226-w.
doi: 10.1038/s41598-017-09226-w url: http://www.nature.com/articles/s41598-017-09226-w
[53] Liu T., Saito H., & Oi M . (2015). Role of the right inferior frontal gyrus in turn-based cooperation and competition: A near-infrared spectroscopy study. Brain and Cognition, 99, 17-23, doi: 10.1016/j.bandc.2015.07.001.
doi: 10.1016/j.bandc.2015.07.001
[54] Louwerse M. M., Dale R., Bard E. G., & Jeuniaux P . (2012). Behavior matching in multimodal communication is synchronized. Cognitive Science, 36(8), 1404-1426. doi: 10.1111/j.1551-6709.2012.01269.x.
doi: 10.1111/j.1551-6709.2012.01269.x
[55] Mehta J., Starmer C., & Sugden R . (1994). Focal points in pure coordination games: An experimental investigation. Theory and Decision, 36(2), 163-185. doi: 10.1007/BF01079211.
doi: 10.1007/BF01079211
[56] Miller L . (2007). Coordination and collective action. Revista Internacional de Sociología, 65(46), 161-183.
[57] Montague P. R., Berns G. S., Cohen J. D., McClure S. M., Pagnoni G., Dhamala M., ... Fisher R. E . (2002). Hyperscanning: Simultaneous fMRI during linked social interactions. NeuroImage, 16(4), 1159-1164. doi: 10.1006/nimg.2002.1150
doi: 10.1006/nimg.2002.1150 url: https://linkinghub.elsevier.com/retrieve/pii/S105381190291150X
[58] Mu Y., Guo C. Y., & Han S. H . (2016). Oxytocin enhances inter-brain synchrony during social coordination in male adults. Social Cognitive and Affective Neuroscience, 11(12), 1882-1893, doi: 10.1093/scan/nsw106.
doi: 10.1093/scan/nsw106 url: https://academic.oup.com/scan/article/11/12/1882/2544478
[59] Mu Y., Han S. H., & Gelfand M. J . (2017). The role of gamma interbrain synchrony in social coordination when humans face territorial threats. Social Cognitive and Affective Neuroscience, 12(9), 1614-1623, doi: 10.1093/scan/nsx093.
doi: 10.1093/scan/nsx093 url: https://academic.oup.com/scan/article/12/10/1614/4040963
[60] Müller V., Sänger J., & Lindenberger U . (2013). Intra-and inter-brain synchronization during musical improvisation on the guitar. PLoS One, 8(9), e73852. doi: 10.1371/journal.pone.0073852
doi: 10.1371/journal.pone.0073852
[61] Myerson R . (1997). Game theory: Analysis of conflict. Cambridge, MA: Harvard University Press.
[62] Naeem M., Prasad G., Watson D. R., & Kelso J. A . (2012). Electrophysiological signatures of intentional social coordination in the 10-12 Hz range. NeuroImage, 59(2), 1795-1803. doi: 10.1016/j.neuroimage.2011.08.010.
doi: 10.1016/j.neuroimage.2011.08.010
[63] Novembre G., Sammler D., & Keller P. E . (2016). Neural alpha oscillations index the balance between self-other integration and segregation in real-time joint action. Neuropsychologia, 89, 414-425, doi: 10.1016/j.neuropsychologia.2016.07.027.
doi: 10.1016/j.neuropsychologia.2016.07.027
[64] Osaka N., Minamoto T., Yaoi K., Azuma M., Shimada Y. M., & Osaka M . (2015). How two brains make one synchronized mind in the inferior frontal cortex: fNIRS-based hyperscanning during cooperative singing. Frontiers in Psychology, 6, 1811, doi: 10.3389/fpsyg.2015.01811.
doi: 10.3389/fpsyg.2015.01811
[65] Pan Y. F., Cheng X. J., Zhang Z. X., Li X. C., & Hu Y . (2017). Cooperation in lovers: An fNIRS-based hyperscanning study. Human Brain Mapping, 38(2), 831-841, doi: 10.1002/hbm.23421.
doi: 10.1002/hbm.23421 url: http://doi.wiley.com/10.1002/hbm.23421
[66] Pérez A., Carreiras M., & Duñabeitia J. A . (2017). Brain-to-brain entrainment: EEG interbrain synchronization while speaking and listening. Scientific Reports, 7(1), 4190, doi: 10.1038/s41598-017-04464-4.
doi: 10.1038/s41598-017-04464-4 url: http://www.nature.com/articles/s41598-017-04464-4
[67] Roos P., Gelfand M., Nau D., & Lun J . (2015). Societal threat and cultural variation in the strength of social norms: An evolutionary basis. Organizational Behavior and Human Decision Processes, 129, 14-23. doi: 10.1016/j.obhdp.2015.01.003.
doi: 10.1016/j.obhdp.2015.01.003
[68] Saito D. N., Tanabe H. C., Izuma K., Hayashi M. J., Morito Y., Komeda H., … Sadato N . (2010). "Stay tuned": Inter-individual neural synchronization during mutual gaze and joint attention. Frontiers in Integrative Neuroscience, 4, 127, doi: 10.3389/fnint.2010.00127.
doi: 10.3389/fnint.2010.00127
[69] Sänger J., Müller V., & Lindenberger U . (2012). Intra-and interbrain synchronization and network properties when playing guitar in duets. Frontiers in Human Neuroscience, 6, 312, doi: 10.3389/fnhum.2012.00312.
doi: 10.3389/fnhum.2012.00312
[70] Sänger J., Müller V., & Lindenberger U . (2013). Directionality in hyperbrain networks discriminates between leaders and followers in guitar duets. Frontiers in Human Neuroscience, 7, 234. doi: 10.3389/fnhum.2013.00234.
doi: 10.3389/fnhum.2013.00234
[71] Schelling T. C. (1980). The strategy of conflict. Cambridge (MA), Harvard University Press.
[72] Schippers M. B., Roebroeck A., Renken R., Nanetti L., & Keysers C . (2010). Mapping the information flow from one brain to another during gestural communication. Proceedings of the National Academy of Sciences of the United States of America, 107(20), 9388-9393. doi: 10.1073/pnas.1001791107.
doi: 10.1073/pnas.1001791107
[73] Sinha N., Maszczyk T., Wanxuan Z., Tan J., and Dauwels J . (2016). EEG hyperscanning study of inter-brain synchrony during cooperative and competitive interaction. In Systems, Man, and Cybernetics (SMC), 2016 IEEE International Conference on IEEE (pp. 4813-4818). Budapest, Hungary: IEEE, doi: 10.1109/SMC.2016.7844990.
doi: 10.1109/SMC.2016.7844990
[74] Spiegelhalder K., Ohlendorf S., Regen W., Feige B., Tebartz van Elst L., Weiller C., … Tuscher O . (2014). Interindividual synchronization of brain activity during live verbal communication. Behavioural Brain Research, 258, 75-79, doi: 10.1016/j.bbr.2013.10.015.
doi: 10.1016/j.bbr.2013.10.015
[75] Stephens G. J., Silbert L. J., & Hasson U . (2010). Speaker-listener neural coupling underlies successful communication. Proceedings of the National Academy of Sciences of the United States of America, 107(32), 14425-14430, doi: 10.1073/pnas.1008662107.
doi: 10.1073/pnas.1008662107 url: http://www.pnas.org/cgi/doi/10.1073/pnas.1008662107
[76] Stolk A., Noordzij M. L., Verhagen L., Volman I., Schoffelen J. M., Oostenveld R., … Toni I . (2014). Cerebral coherence between communicators marks the emergence of meaning. Proceedings of the National Academy of Sciences of the United States of America, 111(51), 18183-18188, doi: 10.1073/pnas.1414886111.
doi: 10.1073/pnas.1414886111 url: http://www.pnas.org/lookup/doi/10.1073/pnas.1414886111
[77] Tadić B., Andjelković M., Boshkoska B. M., & Levnajić Z . (2016). Algebraic topology of multi-brain connectivity networks reveals dissimilarity in functional patterns during spoken communications. PLoS ONE, 11(11), e0166787, doi: 10.1371/journal.pone.0166787.
doi: 10.1371/journal.pone.0166787 url: http://dx.plos.org/10.1371/journal.pone.0166787
[78] Tang H. H., Mai X. Q., Wang S., Zhu C. Z., Krueger F., & Liu C . (2016). Interpersonal brain synchronization in the right temporo-parietal junction during face-to-face economic exchange. Social Cognitive and Affective Neuroscience, 11(1), 23-32, doi: 10.1093/scan/nsv092.
doi: 10.1093/scan/nsv092 url: https://academic.oup.com/scan/article/11/1/23/2375145
[79] Tognoli E., Lagarde J., DeGuzman G. C., & Kelso J. A . (2007). The phi complex as a neuromarker of human social coordination. Proceedings of the National Academy of Sciences of the United States of America, 104(19), 8190-8195. doi: 10.1073/pnas.0611453104.
doi: 10.1073/pnas.0611453104
[80] Toppi J., Borghini G., Petti M., He E. J., De Giusti V., He B., ... Babiloni F . (2016). Investigating cooperative behavior in ecological settings: An EEG hyperscanning study. PLoS One, 11(4), e0154236. doi: 10.1371/journal.pone.0154236.
doi: 10.1371/journal.pone.0154236
[81] VanderLecq F . (1996). Conventions and institutions in coordination problems. De Economist, 144(3), 397-428. doi: 10.1007/BF01682834
doi: 10.1007/BF01682834
[82] Vanutelli M. E., Nandrino J. L., & Balconi M . (2016). The boundaries of cooperation: Sharing and coupling from ethology to neuroscience. Neuropsychological Trends(19), 83-104. doi: 10.7358/neur-2016-019-vanu.
doi: 10.7358/neur-2016-019-vanu
[83] Yun K., Watanabe K., & Shimojo S . (2012). Interpersonal body and neural synchronization as a marker of implicit social interaction. Scientific Reports, 2, 959. doi: 10.1038/srep00959.
doi: 10.1038/srep00959
[84] Zhang M. M., Liu T., Pelowski M., & Yu D. C . (2017). Gender difference in spontaneous deception: A hyperscanning study using functional near-infrared spectroscopy. Scientific Reports, 7(1), 7508, doi: 10.1038/s41598-017-06764-1.
doi: 10.1038/s41598-017-06764-1 url: http://www.nature.com/articles/s41598-017-06764-1
[85] Zhdanov A., Nurminen J., Baess P., Hirvenkari L., Jousmaki V., Makela J. P., … Parkkonen L . (2015). An internet-based real-time audiovisual link for dual MEG recordings. PLoS ONE, 10(6), e0128485, doi: 10.1371/journal.pone.0128485.
doi: 10.1371/journal.pone.0128485 url: https://dx.plos.org/10.1371/journal.pone.0128485
[86] Zhou G. Y., Bourguignon M., Parkkonen L., & Hari R . (2016). Neural signatures of hand kinematics in leaders vs. followers: A dual-MEG study. NeuroImage, 731-738, doi: 10.1016/j.neuroimage.2015.11.002.
doi: 10.1016/j.neuroimage.2015.11.002
[1] Xukai ZHANG,Hang YIN,Peng LI,Hong LI. The effect of oxytocin on social decision-making[J]. Advances in Psychological Science, 2018, 26(8): 1438-1449.
[2] YE Peixia; ZHU Ruida; TANG Honghong; MAI Xiaoqin; LIU Chao. The application of functional near-infrared spectroscopy in social cognitive neuroscience[J]. Advances in Psychological Science, 2017, 25(5): 731-741.
[3] CHEN Bin-Bin, ZHAO Yu, HAN Wen, WANG Yichen, WU Jiawen, YUE Xinyu, WU Yingting.  Sibling relationships: Forms, causes and consequences[J]. Advances in Psychological Science, 2017, 25(12): 2168-2178.
[4] Zhang Haihang; Shen Mowei; Zhou Jifan. High Visual Working Memory Resolution for Cooperation-oriented People[J]. Advances in Psychological Science, 2016, 24(Suppl.): 42-.
[5] SUN Dan; ZHANG Ye. The functional specialization and collaboration of #br# the bilateral fusiform face areas[J]. Advances in Psychological Science, 2016, 24(4): 510-516.
[6] LIU Changjiang; ZHANG Yue; HAO Fang; LIU Caimeng; DING Xu; SHI Yu. The automaticity of social behavior in situations of conflicting interests: Cooperation or self-interest?[J]. Advances in Psychological Science, 2016, 24(12): 1897-1906.
[7] LIU Changjiang; HAO Fang. Decision Making in Asymmetric Social Dilemmas: A Dual Mode of Action[J]. Advances in Psychological Science, 2015, 23(1): 1-10.
[8] LIU Changjiang; HAO Fang. Social Dilemmas: Theoretical Framework and Experimental Research[J]. Advances in Psychological Science, 2014, 22(9): 1475-1484.
[9] XU Xiaohui; LI Jing; ZHU Liqi. Infants and Toddlers’ Understanding of Sharing Characteristics in Cooperative Activities[J]. Advances in Psychological Science, 2014, 22(9): 1404-1412.
[10] ZHANG Shuwei;XU Zhiguo;XU Yan. Social Justice and Political Trust: The Mechanism of Cooperation with Government[J]. Advances in Psychological Science, 2014, 22(4): 588-595.
[11] ZHU Ruida; ZHANG Shen; SHEN Xueyi; LIU Chao. Self-punishment: Contributing Factors, Theoretical Models and Research Prospects[J]. Advances in Psychological Science, 2014, 22(12): 1935-1943.
[12] CHEN Xin;ZHAO GuoXiang;YE HaoSheng. The Forms and Functions of Punishment in Public-goods Dilemmas[J]. Advances in Psychological Science, 2014, 22(1): 160-170.
[13] XIE Wenlan;WANG Zuojun;WANG Fei;ZHANG Lin. A Review on Cooperation from the Point of View of Evolutionary Psychology[J]. Advances in Psychological Science, 2013, 21(11): 2057-2063.
[14] Kurt Pawlik. International Cooperation in Psychology at the Regional Level:
The European Example
[J]. , 2009, 17(02): 241-250.
[15] Chen Xin;Ye Haosheng. Review of the Researches in Cooperation in Social Dilemmas[J]. , 2007, 15(05): 743-748.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Advances in Psychological Science
Support by Beijing Magtech